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Abstract. Let R be a commutative ring with nonzero identity and H a

nonempty proper subset of R such that R \ H is a saturated multiplicatively

closed subset of R. The generalized total graph of R is the (simple) graph
GTH(R) with vertices all elements of R, and two distinct vertices x and y are

adjacent if and only if x+ y ∈ H. In this paper, we invetigate the structure of

GTH(R).

1. Introduction

Let R be a commutative ring with nonzero identity, Z(R) its set of zero-divisors,
Nil(R) its ideal of nilpotent elements, and U(R) its group of units. We define a
nonempty proper subset H of R to be a multiplicative-prime subset of R if the
following two conditions hold: (i) ab ∈ H for every a ∈ H and b ∈ R; (ii) if ab ∈ H
for a, b ∈ R, then either a ∈ H or b ∈ H. For example, H is multiplicative-prime
subset of R if H is a prime ideal of R, H is a union of prime ideals of R, H = Z(R),
or H = R \ U(R). In fact, it is easily seen that H is a multiplicative-prime subset
of R if and only if R \H is a saturated multiplicatively closed subset of R. Thus
H is a multiplicative-prime subset of R if and only if H is a union of prime ideals
of R [19, Theorem 2]. Note that if H is a multiplicative-prime subset of R, then
Nil(R) ⊆ H ⊆ R \ U(R); and if H is also an ideal of R, then H is necessarily
a prime ideal of R. In particular, if R = Z(R) ∪ U(R) (e.g., R is finite), then
Nil(R) ⊆ H ⊆ Z(R).

Let H be a multiplicative-prime subset of a commutative ring R. In this paper,
we introduce the generalized total graph of R, denoted by GTH(R), as the (simple)
graph with all elements of R as vertices, and for distinct x, y ∈ R, the vertices
x and y are adjacent if and only if x + y ∈ H. For A ⊆ R, let GTH(A) be the
induced subgraph of GTH(R) with all elements of A as the vertices. For example,
GTH(R \ H) is the induced subgraph of GTH(R) with vertices R \ H. When
H = Z(R), we have that GTH(R) is the so-called total graph of R as introduced
in [6] and denoted there by T (Γ(R)). As to be expected, GTH(R) and T (Γ(R))
share many properties; we invite the interested reader to compare this paper with
[6]. However, the concept of generalized total graph, unlike the earlier concept of
total graph, allows us to study graphs of integral domains. In particular, many of
the illustrating examples in this paper involve integral domains.

Over the past several years, there has been considerable attention in the literature
to associating graphs with commutative rings (and other algebraic structures) and
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studying the interplay between ring-theoretic and graph-theoretic properties; see
the recent survey articles [4] and [21]. For example, as in [9], the zero-divisor graph
of R is the (simple) graph Γ(R) with vertices Z(R)\{0}, and distinct vertices x and
y are adjacent if and only if xy = 0. The total graph has been investigated in [2],
[21], [22], [23], and [25]; and several variants of the total graph have been studied
in [1], [7], [8], [12], [14], and [20]. In [7], we investigated the induced subgraphs of
T (Γ(R)) with either R \ {0} or Z(R) \ {0} as vertices. Also, if H is the union of

all the maximal ideals of R (i.e., H = R \ U(R)), then observe that GTH(R), the
complement graph of GTH(R), is the unit graph of R in the sense of [11] and [24].
In [1], the authors considered the generalized total graph with respect to the set
H = S(I), where for a proper ideal I of R, S(I) is the set of all elements of R that
are not prime to I, i.e., S(I) = { a ∈ R | ra ∈ I for some r ∈ R \ I }. Note that
S(I) is a multiplicative-prime subset of R, but our concept is more general since
there are multiplicative-prime subsets not of this form. For example, let R = Z.
Then S({0}) = {0} and S(nZ) = ∪{ pZ | p is prime and p |n } for {0} ( nZ ( Z;
so in this case, an S(I) is necessarily a finite union of prime ideals.

Let H be a multiplicative-prime subset of a commutative ring R. Since H is a
union of prime ideals of R, the study of GTH(R) breaks naturally into two cases
depending on whether or not H is an (prime) ideal of R. In the second section, we
handle the case when H is an ideal of R; and in the third section, we do the case
when H is not an ideal of R. In the final section, we compute GTH(R) for several
classes of commutative rings R. For example, we consider idealizations, the D+M
construction, and localizations.

Let G be a (simple) graph. We say that G is connected if there is a path between
any two distinct vertices of G. At the other extreme, we say that G is totally
disconnected if no two vertices of G are adjacent. For vertices x and y of G, we define
d(x, y) to be the length of a shortest path from x to y (d(x, x) = 0 and d(x, y) =∞
if there is no such path). The diameter of G is diam(G) = sup{ d(x, y) | x and y
are vertices of G }. The girth of G, denoted by gr(G), is the length of a shortest
cycle in G (gr(G) =∞ if G contains no cycles). We denote the complete graph on
n vertices by Kn and the complete bipartite graph on m and n vertices by Km,n

(we allow m and n to be infinite cardinals). We will sometimes call a K1,n a star
graph. We say that two (induced) subgraphs G1 and G2 of G are disjoint if G1 and
G2 have no common vertices and no vertex of G1 (resp., G2) is adjacent (in G) to
any vertex not in G1 (resp., G2). By abuse of notation, we will sometimes write
G1 ⊆ G2 when G1 is a subgraph of G2. A general reference for graph theory is [16].

Throughout this paper, all rings R are commutative with 1 6= 0, and H denotes
a multiplicative-prime subset of R. For A ⊆ R, let A∗ = A \ {0}. We say that R is
reduced if Nil(R) = {0}, and dim(R) will always mean Krull dimension. As usual,
Z, Q, Zn, and Fq will denote the integers, rational numbers, integers modulo n,
and the finite field with q elements, respectively. General references for ring theory
are [18] and [19].

We would like to thank the referee for several helpful suggestions.

2. The case when H is an ideal of R

Let H be a multiplicative-prime subset of a commutative ring R. In this section,
we study the case when H is an (prime) ideal of R (i.e., when H is closed under ad-
dition). The main goal of this section is a general structure theorem (Theorem 2.2)



THE GENERALIZED TOTAL GRAPH OF A COMMUTATIVE RING 3

for GTH(R\H) when H is an ideal of R. We also determine the diameter and girth
of the graphs GTH(H), GTH(R \H), and GTH(R).

Theorem 2.1. Let H be a prime ideal of a commutative ring R. Then GTH(H) is a
complete (induced) subgraph of GTH(R) and GTH(H) is disjoint from GTH(R\H).
In particular, GTH(H) is connected and GTH(R) is never connected.

Proof. This follows directly from the definitions. �

We now give the main result of this section. Since GTH(H) is a complete sub-
graph of GTH(R) and is disjoint from GTH(R \ H), the next theorem also gives
a complete description of GTH(R). It also shows that non-isomorphic rings may
have isomorphic graphs. We allow α and β to be infinite cardinals; if β is infinite,
then β − 1 = (β − 1)/2 = β.

Theorem 2.2. Let H be a prime ideal of a commutative ring R, and let |H| = α
and |R/H| = β.

(1) If 2 ∈ H, then GTH(R \H) is the union of β − 1 disjoint Kα’s.
(2) If 2 /∈ H, then GTH(R \H) is the union of (β − 1)/2 disjoint Kα,α’s.

Proof. (1) Assume that 2 ∈ H, and let x ∈ R \ H. Then the coset x + H is a
complete subgraph of GTH(R \H) since (x+ z1) + (x+ z2) = 2x+ z1 + z2 ∈ H for
all z1, z2 ∈ H since 2 ∈ H and H is an ideal of R. Note that distinct cosets form
disjoint subgraphs of GTH(R \H) since if x+ z1 and y + z2 are adjacent for some
y ∈ R \H and z1, z2 ∈ H, then x + y = (x + z1) + (y + z2) − (z1 + z2) ∈ H, and
hence x − y = (x + y) − 2y ∈ H since 2 ∈ H and H is an ideal of R. But then
x + H = y + H, a contradiction. Thus GTH(R \H) is the union of β − 1 disjoint
(induced) subgraphs x+H, each of which is a Kα, where α = |H| = |x+H|.

(2) Next, assume that 2 /∈ H, and let x ∈ R\H. Then no two distinct elements
in x+H are adjacent since (x+z1)+(x+z2) ∈ H for z1, z2 ∈ H implies that 2x ∈ H,
and hence either 2 ∈ H of x ∈ H since H is a prime ideal of R, a contradiction.
Also, the two cosets x + H and −x + H are disjoint, and every element of x + H
is adjacent to every element of −x + H. Thus (x + H) ∪ (−x + H) is a complete
bipartite (induced) subgraph of GTH(R \ H). Furthermore, if x + z1 is adjacent
to y + z2 for some y ∈ R \ H and z1, z2 ∈ H, then x + y ∈ H as in part (1)
above, and hence y + H = −x + H. Thus GTH(R \H) is the union of (β − 1)/2
disjoint (induced) subgraphs (x + H) ∪ (−x + H), each of which is a Kα,α, where
α = |H| = |x+H|. �

From the above theorem, one can easily deduce when GTH(R \H) is complete
or connected, and one can explicitly compute its diameter and girth. We first
determine when GTH(R \H) is either complete or connected.

Theorem 2.3. Let H be a prime ideal of a commutative ring R.

(1) GTH(R \H) is complete if and only if either R/H ∼= Z2 or R ∼= Z3.
(2) GTH(R \H) is connected if and only if either R/H ∼= Z2 or R/H ∼= Z3.
(3) GTH(R \ H) (and hence GTH(H) and GTH(R)) is totally disconnected if

and only if H = {0} (thus R is an integral domain) and char(R) = 2.

Proof. Let |H| = α and |R/H| = β.
(1) By Theorem 2.2, GTH(R \H) is complete if and only if GTH(R \H) is a

single Kα or K1,1. If 2 ∈ H, then β− 1 = 1. Thus β = 2, and hence R/H ∼= Z2. If
2 /∈ H, then α = 1 and (β−1)/2 = 1. Thus H = {0} and β = 3; so R ∼= R/H ∼= Z3.
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(2) By Theorem 2.2, GTH(R \H) is connected if and only if GTH(R \H) is a
single Kα or Kα,α. Thus either β − 1 = 1 if 2 ∈ H or (β − 1)/2 = 1 if 2 /∈ H; so
either β = 2 or β = 3, respectively. Thus R/H ∼= Z2 or R/H ∼= Z3, respectively.

(3) GTH(R \ H) is totally disconnected if and only if it is a disjoint union of
K1’s. So H = {0} by Theorem 2.2, and thus R must be an integral domain (since
H = {0} is a prime ideal of R) with 2 ∈ H, i.e., char(R) = 2. �

Using Theorem 2.2, it is also easy to compute both the diameter and girth of
GTH(R \H) when H is a prime ideal of R

Theorem 2.4. Let H be a prime ideal of a commutative ring R.

(1) diam(GTH(R \H)) = 0, 1, 2, or ∞. In particular, diam(GTH(R \H)) ≤ 2
if GTH(R \H) is connected.

(2) gr(GTH(R \ H)) = 3, 4, or ∞. In particular, gr(GTH(R \ H)) ≤ 4 if
GTH(R \H) contains a cycle.

Proof. (1) Suppose that GTH(R \ H) is connected. Then GTH(R \ H) is a sin-
gleton, a complete graph, or a complete bipartite graph by Theorem 2.2. Thus
diam(GTH(R \H)) ≤ 2.

(2) Suppose that GTH(R \H) contains a cycle. Since GTH(R \H) is a disjoint
union of either complete or complete bipartite graphs by Theorem 2.2, it must
contain either a 3-cycle or a 4-cycle. Thus gr(GTH(R \H)) ≤ 4. �

The next theorem gives a more explicit description of the diameter and girth of
GTH(R \H) when H is a prime ideal of R.

Theorem 2.5. Let H be a prime ideal of a commutative ring R.

(1) (a) diam(GTH(R \H)) = 0 if and only if R ∼= Z2.
(b) diam(GTH(R \H)) = 1 if and only if either R/H ∼= Z2 and R 6∼= Z2

(i.e., R/H ∼= Z2 and |H| ≥ 2), or R ∼= Z3.
(c) diam(GTH(R \ H)) = 2 if and only if R/H ∼= Z3 and R 6∼= Z3 (i.e.,

R/H ∼= Z3 and |H| ≥ 2).
(d) Otherwise, diam(GTH(R \H)) =∞.

(2) (a) gr(GTH(R \H)) = 3 if and only if 2 ∈ H and |H| ≥ 3.
(b) gr(GTH(R \H)) = 4 if and only if 2 /∈ H and |H| ≥ 2.
(c) Otherwise, gr(GTH(R \H)) =∞.

(3) (a) gr(GTH(R)) = 3 if and only if |H| ≥ 3.
(b) gr(GTH(R)) = 4 if and only if 2 /∈ H and |H| = 2.
(c) Otherwise, gr(GTH(R)) =∞.

Proof. These results all follow directly from Theorem 2.1 and Theorem 2.2. �

The following examples illustrate the previous theorems.

Example 2.6. (a) Let R = Z and H be a prime ideal of R. Then GTH(R \H) is
complete if and only if H = 2Z, and GTH(R \H) is connected if and only if either
H = 2Z or H = 3Z. Moreover, diam(GTH(R \ H)) = 1 if and only if H = 2Z,
and diam(GTH(R \H)) = 2 if and only if H = 3Z. Let p ≥ 5 be a prime integer
and H = pZ. Then GTH(R \H) is the the union of (p − 1)/2 disjoint Kω,ω’s; so
diam(GTH(R \H)) =∞. Finally, diam(GTH(R \H)) =∞ when H = {0}.

Also, gr(GTH(R \ H)) = ∞ if H = {0}, gr(GTH(R \ H)) = 3 if H = 2Z, and
gr(GTH(R\H)) = 4 otherwise. Moreover, gr(GT{0}(R)) =∞ and gr(GTH(R)) = 3
for any nonzero prime ideal H of R.
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(b) Let R = Zpm × R1 × · · · × Rn, where m ≥ 2 is an integer, p is a positive
prime integer, and R1, . . . , Rn are commutative rings. Then H = pZpm × R1 ×
· · · × Rn is a prime ideal of R. The graph GTH(R \H) is complete if and only if
p = 2, and GTH(R \ H) is connected if and only if p = 2 or p = 3. Moreover,
diam(GTH(R \ H)) = 1 if and only if p = 2, and diam(GTH(R \ H)) = 2 if and
only if p = 3. Assume that p ≥ 5. Then GTH(R \ H) is the union of (p − 1)/2
disjoint Kα,α’s, where α = m|R1| · · · |Rn|; so diam(GTH(R \H)) =∞.

Also, gr(GTH(R\H)) = 3 if p = 2 and gr(GTH(R\H)) = 4 otherwise. Moreover,
gr(GTH(R)) = 3 for any prime p.

Many of the earlier results of this section can also easily be proved directly
without recourse to Theorem 2.2. We give two such cases.

Theorem 2.7. Let H be a prime ideal of a commutative ring R.

(1) Let G be an induced subgraph of GTH(R \H), and let x and y be distinct
vertices of G that are connected by a path in G. Then there is a path of
length at most two between x and y in G. In particular, if GTH(R \H) is
connected, then diam(GTH(R \H)) ≤ 2.

(2) Let x and y be distinct elements of R \ H that are connected by a path
in GTH(R \ H). If x + y 6∈ H (i.e., if x and y are not adjacent), then
x− (−x)− y and x− (−y)− y are paths of length two between x and y in
GTH(R \H).

Proof. (1) It suffices to show that if x1, x2, x3, and x4 are distinct vertices of G and
there is a path x1 − x2 − x3 − x4 from x1 to x4, then x1 and x4 are adjacent. Now
x1 +x2, x2 +x3, x3 +x4 ∈ H implies x1 +x4 = (x1 +x2)− (x2 +x3)+(x3 +x4) ∈ H
since H is an ideal of R. Thus x1 and x4 are adjacent.

(2) Suppose that x + y 6∈ H. Then there is a z ∈ R \ H such that x − z − y
is a path of length two by part (1) above (note that necessarily z ∈ R \ H since
x, y ∈ R \H). Thus x+ z, z+ y ∈ H, and hence x− y = (x+ z)− (z+ y) ∈ H and
y− x = −(x− y) ∈ H since H is an ideal of R. Also, x 6= −x, y 6= −x, and y 6= −y
since x− y ∈ H and x+ y /∈ H. Thus x− (−x)− y and x− (−y)− y are paths of
length two between x and y in GTH(R \H). �

We have already observed in Theorem 2.1 that GTH(H) is always connected
and GTH(R) is never connected when H is an ideal of R. The next theorem gives
several new criteria for when GTH(R \H) is connected.

Theorem 2.8. Let H be a prime ideal of a commutative ring R. Then the following
statements are equivalent.

(1) GTH(R \H) is connected.
(2) Either x+ y ∈ H or x− y ∈ H for every x, y ∈ R \H.
(3) Either x + y ∈ H or x + 2y ∈ H for every x, y ∈ R \ H. In particular,

either 2x ∈ H or 3x ∈ H (but not both) for every x ∈ R \H.
(4) Either R/H ∼= Z2 or R/H ∼= Z3.

Proof. (1) ⇒ (2) Suppose that GTH(R \H) is connected, and let x, y ∈ R \H. If
x = y, then x− y ∈ H. Hence assume that x 6= y. If x+ y 6∈ H, then x− (−y)− y
is a path from x to y by Theorem 2.7(2), and thus x− y ∈ H.

(2)⇒ (3) Let x, y ∈ R\H, and suppose that x+y 6∈ H. Since (x+y)−y = x 6∈ H,
thus x+2y = (x+y)+y ∈ H by hypothesis. In particular, if x ∈ R\H, then either
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2x ∈ H or 3x ∈ H. But 2x and 3x can not both be in H since then x = 3x−2x ∈ H,
a contradiction.

(3)⇒ (1) Let x, y ∈ R\H be distinct elements of R such that x+y 6∈ H. Then
x + 2y ∈ H by hypothesis. Since H is an ideal of R, x ∈ R \H, and x + 2y ∈ H,
we have 2y ∈ R \H. Thus 3y ∈ H by hypothesis. Since x + y 6∈ H and 3y ∈ H,
we have x 6= 2y, and hence x− 2y − y is a path from x to y in GTH(R \H). Thus
GTH(R \H) is connected.

(2) ⇒ (4) Let x ∈ R \H. Then either x− 1 ∈ H or x+ 1 ∈ H by hypothesis,
and thus either x + H = 1 + H or x + H = −1 + H. If 2 ∈ H, then R/H ∼= Z2;
otherwise, R/H ∼= Z3.

(4) ⇒ (2) This is clear. �

3. The case when H is not an ideal of R

In this section, we consider the remaining case when the multiplicative-prime
subset H is not an ideal of R. Since H is always closed under multiplication by
elements of R, this just means that 0 ∈ H and there are distinct x, y ∈ H∗ such
that x+y ∈ R\H. In this case, GTH(H) is always connected (but never complete),
GTH(H) and GTH(R \H) are never disjoint subgraphs of GTH(R), and |H| ≥ 3.
We first show that GTH(R) is connected when GTH(R\H) is connected. However,
we give an example to show that the converse fails.

Theorem 3.1. Let R be a commutative ring and H a multiplicative-prime subset
of R that is not an ideal of R.

(1) GTH(H) is connected with diam(GTH(H)) = 2.
(2) Some vertex of GTH(H) is adjacent to a vertex of GTH(R \H). In partic-

ular, the subgraphs GTH(H) and GTH(R \H) of GTH(R) are not disjoint.
(3) If GTH(R \H) is connected, then GTH(R) is connected.

Proof. (1) Every x ∈ H∗ is adjacent to 0. Thus x− 0− y is a path in GTH(H) of
length two between any two distinct x, y ∈ H∗. Moreover, there are nonadjacent
x, y ∈ H∗ since H is not an ideal of R; so diam(GTH(H)) = 2.

(2) Since H is not an ideal of R, there are distinct x, y ∈ H∗ such that x+ y ∈
R \ H. Then −x ∈ H and x + y ∈ R \ H are adjacent vertices in GTH(R) since
−x+ (x+ y) = y ∈ H. The “in particular” statement is clear.

(3) Suppose that GTH(R\H) is connected. Since GTH(H) is also connected by
part (1) above, it is sufficient to show that there is a path from x to y in GTH(R)
for every x ∈ H and y ∈ R \ H. By part (2) above, there are adjacent vertices
z and w in GTH(H) and GTH(R \H), respectively. Since GTH(H) is connected,
there is a path from x to z in GTH(H); and since GTH(R \H) is connected, there
is a path from w to y in GTH(R \H). As z and w are adjacent in GTH(R), there
is a path from x to y in GTH(R). Thus GTH(R) is connected. �

Next, we determine when GTH(R) is connected and compute diam(GTH(R)).
In particular, GTH(R) is connected if and only if diam(GTH(R)) < ∞. As usual,
if A ⊆ R, then (A) denotes the ideal of R generated by A.

Theorem 3.2. Let R be a commutative ring and H a multiplicative-prime subset
of R that is not an ideal of R. Then GTH(R) is connected if and only if (H) = R
(i.e., R = (z1, . . . , zn) for some z1, . . . , zn ∈ H). In particular, if H is not an ideal
of R and either dim(R) = 0 (e.g., R is finite) or R is an integral domain with
dim(R) = 1, then GTH(R) is connected.
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Proof. Suppose that GTH(R) is connected. Then there is a path 0−b1−· · ·−bn−1
from 0 to 1 in GTH(R). Thus b1, b1 + b2, . . . , bn−1 + bn, bn + 1 ∈ H. Hence 1 ∈
(b1, b1 + b2, . . . , bn−1 + bn, bn + 1) ⊆ (H); so R = (H).

Conversely, suppose that (H) = R . We first show that there is a path from 0
to x in GTH(R) for every 0 6= x ∈ R. By hypothesis, x = a1 + · · · + an for some
a1, . . . , an ∈ H. Let b0 = 0 and bk = (−1)n+k(a1 + · · · + ak) for every integer k
with 1 ≤ k ≤ n. Then bk + bk+1 = (−1)n+k+1ak+1 ∈ H for every integer k with
0 ≤ k ≤ n−1, and thus 0−b1−· · ·−bn−1−bn = x is a path from 0 to x in GTH(R)
of length at most n. Now, let 0 6= z, w ∈ R. Then by the preceding argument, there
are paths from z to 0 and 0 to w in GTH(R). Hence there is a path from z to w in
GTH(R); so GTH(R) is connected.

For the “in particular” statement, assume that either dim(R) = 0 or R is an
integral domain with dim(R) = 1. Since H is a union of prime ideals of R and H
is not an ideal of R, there are distinct (nonzero) prime ideals P and Q of R with
P,Q ⊆ H. The ideals P,Q are necessarily maximal ideals of R. Thus R = P +Q;
so R = (p, q) for some p ∈ P and q ∈ Q. Hence GTH(R) is connected. �

Corollary 3.3. Let R be a commutative ring and H a multiplicative-prime subset
of R. Then GTH(R) is connected if and only if (H) = R.

Proof. This follows directly from Theorem 2.1 and Theorem 3.2. �

Theorem 3.4. Let R be a commutative ring and H a multiplicative-prime subset
of R that is not an ideal of R such that (H) = R (i.e., GTH(R) is connected).
Let n ≥ 2 be the least integer such that R = (z1, . . . , zn) for some z1, . . . , zn ∈ H.
Then diam(GTH(R)) = n. In particular, if H is not an ideal of R and either
dim(R) = 0 (e.g., R is finite) or R is an integral domain with dim(R) = 1, then
diam(GTH(R)) = 2.

Proof. We first show that any path from 0 to 1 in GTH(R) has length at least
n. Suppose that 0 − b1 − b2 − · · · − bm−1 − 1 is a path from 0 to 1 in GTH(R)
of length m. Thus b1, b1 + b2, . . . , bm−2 + bm−1, bm−1 + 1 ∈ H, and hence 1 ∈
(b1, b1 + b2, . . . , bm−2 + bm−1, bm−1 + 1) ⊆ (H). Thus m ≥ n.

Now, let x and y be distinct elements in R. We show that there is a path from x
to y in GTH(R) with length at most n. Let 1 = z1+· · ·+zn for some z1, . . . , zn ∈ H,
and let z = y+(−1)n+1x. Define d0 = x and dk = (−1)n+kz(z1 + · · ·+zk)+(−1)kx
for every integer k with 1 ≤ k ≤ n. Then dk+dk+1 = (−1)n+k+1zzk+1 ∈ H for every
integer k with 0 ≤ k ≤ n−1 and dn = z+(−1)nx = y. Thus x−d1−· · ·−dn−1−y
is a path from x to y in GTH(R) with length at most n. In particular, a shortest
path between 0 and 1 in GTH(R) has length n, and thus diam(GTH(R)) = n.

The “in particular” statement is clear by the proof of the last part of Theorem
3.2. �

Corollary 3.5. Let R be a commutative ring and H a multiplicative-prime subset
of R that is not an ideal of R such that GTH(R) is connected.

(1) diam(GTH(R)) = d(0, 1).
(2) If diam(GTH(R)) = n, then diam(GTH(R \H)) ≥ n− 2.

Proof. (1) This is clear from the proof of Theorem 3.4.
(2) Since n = diam(GTH(R)) = d(0, 1) by part (1) above, let 0−s1−· · ·−sn−1−1

be a shortest path from 0 to 1 in GTH(R). Clearly s1 ∈ H. If si ∈ H for some
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integer i with 2 ≤ i ≤ n − 1, then the path 0 − si − · · · − sn−1 − 1 from 0 to 1
has length less than n, a contradiction. Thus si ∈ R \ H for every integer i with
2 ≤ i ≤ n− 1. Hence s2 − · · · − sn−1 − 1 is a shortest path from s2 to 1 in R \H,
and it has length n− 2. Thus diam(GTH(R \H)) ≥ n− 2. �

The following is an example of a ring R such that GTH(R) is connected, but
GTH(R \H) is not connected.

Example 3.6. (a) Let R = Q[X]. Then H = Q[X] \ Q∗ is a multiplicative-
prime subset of R that is not an ideal of R. Thus GTH(H) is connected with
diam(GTH(H)) = 2 by Theorem 3.1(1). Moreover, GTH(R) is connected with
diam(GTH(R)) = 2 (by Theorems 3.2 and 3.4) since R = (X,X + 1) with X, (X +
1) ∈ H. However, GTH(R \H) is not connected since there is no path from 1 to 2
in GTH(R \H). Thus the converse of Theorem 3.1(3) need not hold.

(b) Let R = Z. Then H = Z \ U(Z) is a multiplicative-prime subset of R that
is not an ideal of R. Since GTH(R \H) is clearly connected, GTH(R) is connected
by Theorem 3.1(3).

If H is not an ideal of R, then diam(GTH(H)) = 2 by Theorem 3.1. Moreover,
we have 2 ≤ diam(GTH(R)) <∞ when GTH(R) is connected. In the next example,
for every integer n ≥ 2, we construct a commutative ring Rn such that GTHn

(Rn)
is connected with diam(GTHn

(Rn)) = n for some multiplicative-prime subset Hn

of Rn.

Example 3.7. (a) Let n ≥ 2 be an integer, Rn = Z[X1, . . . , Xn−1], P0 = (X1 +
X2 + · · · + Xn−1), Pi = (Xi) for every integer i with 1 ≤ i ≤ n − 2, and Pn−1 =
(Xn−1 + 1). Then P0, P1, . . . , Pn−1 are distinct prime ideals of Rn, and thus Hn =
P0 ∪P1 ∪ · · · ∪Pn−1 is a multiplicative-prime subset of Rn. Moreover, 1 = −(X1 +
X2 + · · ·+Xn−1) +X1 +X2 + · · ·+Xn−2 + (Xn−1 + 1) is the sum of n elements
of Hn; and by construction, n is the least integer m ≥ 2 such that Rn is generated
by m elements of Hn. Hence GTHn

(Rn) is connected with diam(GTHn
(Rn)) = n

by Theorem 3.2 and Theorem 3.4, respectively.
(b) Let R = Z[{Xn}∞n=1]. For a fixed n ≥ 2, let P0, P1, . . . , Pn−1, and Hn be

defined as in part (a) above (but as ideals in R). Then GTHn(R) is connected with
diam(GTHn(R)) = n by Theorem 3.2 and Theorem 3.4, respectively.

(c) The Krull dimension hypotheses are needed in the “in particular” statements
in Theorems 3.2 and 3.4. Let R = Z[X], a two-dimensional integral domain, and
H = (2) ∪ (X), a multiplicative-prime subset of R. Then (H) ( R; so GTH(R)
is not connected by Theorem 3.2. Next, let I = (2) ∩ (X), R′ = R/I, and H ′ =
(2)/I ∪ (X)/I. Then R′ is one-dimensional, H ′ is a multiplicative-prime subset of
R′, and (H ′) ( R′. Thus GTH′(R′) is not connected by Theorem 3.2.

Example 3.6(a) shows that we may have diam(GTH(R)) <∞ and diam(GTH(R\
H)) =∞. The next example shows that we may also have either diam(GTH(R)) =
diam(GTH(R\H)) or diam(GTH(R)) > diam(GTH(R\H)) when H is not an ideal
of R.

Example 3.8. (a) Let R = Z and H = 3Z ∪ 5Z. Then diam(GTH(R)) = 2 by
Theorem 3.4. Let x, y ∈ R\H such that x+y 6∈ H (for example, let x = 2, y = 14).
By the Chinese Remainder Theorem, there is a w ∈ R such that w + x,w + y ∈
H (for x = 2, y = 14, let w = 1). Note that w 6∈ H since x, y 6∈ H. Thus
diam(GTH(R \H)) = 2, and hence diam(GTH(R)) = diam(GTH(R \H)).
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(b) Let R = Z and H = 2Z ∪ 5Z. Then diam(GTH(R)) = 2 by Theorem 3.4.
Since every element of R\H is an odd integer, x+y ∈ 2Z ⊆ H for every x, y ∈ R\H.
Thus diam(GTH(R \H)) = 1, and hence diam(GTH(R)) > diam(GTH(R \H)).

In view of Theorems 3.2 and 3.4, we have the following two results. Recall that
two ideals I and J of R are co-maximal if R = I + J . Note that if a multiplicative-
prime subset H of R contains two comaximal ideals, then H is not an ideal of
R.

Theorem 3.9. Let R be a commutative ring and H a multiplicative-prime subset
of R that contains two co-maximal ideals of R. Then GTH(R) is connected with
diam(GTH(R)) = 2. In particular, this holds if H is not an ideal of R and either
dim(R) = 0 or R is an integral domain with dim(R) = 1.

Proof. Let I, J ⊆ H be co-maximal ideals of R. Then R = I + J ; so R = (i, j)
for some i ∈ I and j ∈ J . Thus GTH(R) is connected with diam(GTH(R)) = 2
by Theorem 3.2 and Theorem 3.4, respectively. The “in particular” statement is
clear. �

Corollary 3.10. Let R be a commutative ring, H a multiplicative-prime subset of
R that is not an ideal of R, S = R \H, and RS the localization of R with respect
to S. Then GTHS

(RS) is connected with diam(GTHS
(RS)) = 2.

Proof. Clearly HS is a multiplicative-prime subset of RS . Since H is not an ideal
of R, there are x, y ∈ H such that x+ y ∈ S = R \H. Since H is a union of prime
ideals of R, there are prime ideals P and Q of R contained in H with x ∈ P \ Q
and y ∈ Q \ P . Thus the prime ideals PS and QS are co-maximal in RS ; so the
result follows by Theorem 3.9. �

The following is an example of a commutative ring R with a multiplicative-prime
subset H such that neither GTH(R \H) nor GTH(R) is connected, but GTHS

(RS)
is connected for some multiplicatively closed subset S of R with S 6= R \H.

Example 3.11. Let R = Z[X], H = XZ[X] ∪ 3Z[X], and S = {1, (X + 3), (X +
3)2, (X + 3)3, . . .} ( R \ H. Then H is a multiplicative-prime subset of R that
is not an ideal of R and (H) = (3, X) ( R. Thus GTH(R) is not connected by
Theorem 3.2, and hence GTH(R \ H) is not connected by Theorem 3.1(3). Since
XZ[X]S, 3Z[X]S are co-maximal ideals of RS and XZ[X]S, 3Z[X]S ⊆ HS, the
graph GTHS

(RS) is connected with diam(GTHS
(RS)) = 2 by Theorem 3.9.

We next investigate the girth of GTH(H), GTH(R \H), and GTH(R) when H
is not an ideal of R. Recall that |H| ≥ 3 if H is not an ideal of R.

Theorem 3.12. Let R be a commutative ring and H a multiplicative-prime subset
of R that is not an ideal of R. Let H = ∪αPα for prime ideals Pα of R. Suppose that
a− b− c is a path of length two in GTH(R \H) for distinct vertices a, b, c ∈ R \H.

(1) If 2k ∈ H for some k ∈ {a, b, c} and ∩αPα 6= {0}, then gr(GTH(R\H)) = 3.
(2) If 2k = 0 for some k ∈ {a, b, c} and char(R) 6= 2, then gr(GTH(R\H)) = 3.
(3) If 2k /∈ H for every k ∈ {a, b, c}, then gr(GTH(R \H)) ≤ 4.

Proof. (1) Suppose that 2k ∈ H for some k ∈ {a, b, c} and there is a 0 6= h ∈ ∩αPα.
Assume 2a ∈ H. If b 6= a + h, then a − b − (a + h) − a is a cycle of length three
in GTH(R \ H). Hence, assume that b = a + h. Since (a + h) + c = b + c ∈ H
and h ∈ ∩αPα, we have a+ c ∈ H. Thus a− b− c− a is a cycle of length three in
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GTH(R \H). Assume 2b ∈ H. If c 6= b + h, then b − c − (b + h) − b is a cycle of
length three in GTH(R \H). Thus, assume c = b + h. Hence a − b − (b + h) − a
is a cycle of length three in GTH(R \ H). Assume 2c ∈ H. If b 6= c + h, then
b − c − (c + h) − b is a cycle of length three in GTH(R \ H). Thus, assume that
b = c+ h. Since a+ (c+ h) = a+ b ∈ H and h ∈ ∩αPα, we have a+ c ∈ H. Hence
a− b− c− a is a cycle of length three in GTH(R \H). Thus gr(GTH(R \H)) = 3.

(2) Suppose that 2k = 0 for some k ∈ {a, b, c} and char(R) 6= 2. Thus 2 6= 0.
Since k ∈ R \H and 2k = 0, we have 2 ∈ Pα for every Pα. Hence 0 6= 2 ∈ ∩αPα.
Thus gr(GTH(R \H)) = 3 by part (1) above.

(3) Suppose that 2k /∈ H for every k ∈ {a, b, c}. Then z 6= −z for every
z ∈ {a, b, c}. Hence there are distinct x, y ∈ {a, b, c} such that y 6= −x. Thus
x− y − (−y)− (−x)− x is a 4-cycle in GTH(R \H); so gr(GTH(R \H)) ≤ 4. �

We will need the following lemma.

Lemma 3.13. Let R be a commutative ring. Then R ∼= Z2 × Z2 if and only if R
has two distinct prime ideals P and Q with |P | = |Q| = 2.

Proof. We need only show that R ∼= Z2 ×Z2 when R has two distinct prime ideals
P and Q with |P | = |Q| = 2. Let P = {0, x} and Q = {0, y} be distinct prime
ideals of R, where x 6= y and x, y ∈ R∗. Since x /∈ Q, we have x2 6= 0, and thus
x2 = x. Since x(1 − x) = 0 ∈ Q and x /∈ Q, we have 1 − x ∈ Q, and hence
1 − x = y ∈ Q. Since x and 1 − x = y are nonzero idempotent elements of R, we
have R ∼= P × Q. Thus R ∼= Z2 × Z2 since P and Q are finite commutative rings
with |P | = |Q| = 2. �

Theorem 3.14. Let R be a commutative ring and H a multiplicative-prime subset
of R that is not an ideal of R.

(1) Either gr(GTH(H)) = 3 or gr(GTH(H)) =∞. Moreover, if gr(GTH(H)) =
∞, then R ∼= Z2 × Z2 and H = Z(R); so GTH(H) is a K1,2 star graph
with center 0.

(2) gr(GTH(R)) = 3 if and only if gr(GTH(H)) = 3.
(3) gr(GTH(R)) = 4 if and only if gr(GTH(H)) = ∞ (if and only if R ∼=

Z2 × Z2).
(4) If char(R) = 2, then gr(GTH(R\H)) = 3 or ∞. In particular, gr(GTH(R\

H)) = 3 if char(R) = 2 and GTH(R \H) contains a cycle.
(5) gr(GTH(R \ H)) = 3, 4, or ∞. In particular, gr(GTH(R \ H)) ≤ 4 if

GTH(R \H) contains a cycle.

Proof. (1) If x + y ∈ H for distinct x, y ∈ H∗, then 0 − x − y − 0 is a 3-cycle in
GTH(H); so gr(GTH(H)) = 3. Otherwise, x+ y ∈ R \H for all distinct x, y ∈ H∗.
So in this case, every x ∈ H∗ is adjacent to 0, and no two distinct x, y ∈ H∗ are
adjacent. Thus GTH(H) is a star graph with center 0; so gr(GTH(H)) =∞.

Since H is a multiplicative-prime subset of R, we have H = ∪α∈ΛPα for distinct
prime ideals Pα of R. Also, |Λ| ≥ 2 since H is not an ideal of R. Assume that
gr(GTH(H)) = ∞. Then x + y ∈ R \H for all distinct x, y ∈ H∗, and thus every
|Pα| = 2. Hence the intersection of any two distinct Pα’s is {0}, and thus |Λ| = 2.
(If P1, P2, P3 ⊆ H are distinct prime ideals of R, then P1P2 ⊆ P1 ∩ P2 = {0} ⊆ P3.
Thus P1 ⊆ P3 or P2 ⊆ P3, a contradiction since every |Pi| = 2.) Hence H = P1∪P2

for prime ideals P1, P2 of R with P1 ∩ P2 = {0} and |P1| = |P2| = 2, and thus
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R ∼= Z2 × Z2 by Lemma 3.13. Hence P1 and P2 are the only prime ideals of R and
Z(R) = P1 ∪ P2 = H.

(2) We need only show that gr(GTH(H)) = 3 when gr(GTH(R)) = 3. Since
gr(GTH(R)) = 3 and H is not a prime ideal of R, we have R 6∼= Z2×Z2 by part (1)
above. Thus R has at most one prime ideal, say P , with |P | = 2 by Lemma 3.13.
Hence, since H is not an ideal of R and H is a union of prime ideals of R, there
must be a prime ideal Q ( H with |Q| ≥ 3; so gr(GTH(H)) = 3.

(3) Suppose that gr(GTH(H)) =∞. Then R ∼= Z2×Z2 and H = Z(R) by part
(1) above; so gr(GTH(R)) = 4. Conversely, suppose that gr(GTH(R)) = 4. Then
gr(GTH(H)) =∞ by parts (1) and (2) above.

(4) Suppose that char(R) = 2 and GTH(R \ H) contains a cycle C. Then C
contains a path a − b − c for some distinct vertices a, b, c ∈ R \ H. Since b 6= c,
we have 0 6= b + c ∈ H. Let H = ∪αPα for prime ideals Pα of R. Suppose there
is a 0 6= h ∈ ∩αPα. Then gr(GTH(R \ H)) = 3 by Theorem 3.12(1). Suppose
that ∩αPα = {0}. Since Nil(R) ⊆ ∩αPα = {0}, the ring R is reduced. Hence
b2 + c2 = (b + c)2 6= 0; so b2 6= c2. Thus b2 6= bc and c2 6= bc. For if b2 = bc,
then b(b + c) = 0, and hence b + c ∈ Pα for every Pα since b /∈ Pα for every Pα.
Thus 0 6= b + c ∈ ∩αPα, a contradiction. Similarly, we cannot have c2 = bc. Since
b, c ∈ R \H, we have bc /∈ H. Also, b2 + bc, bc + c2, c2 + b2 ∈ H since b + c ∈ H.
Hence b2 − bc− c2 − b2 is a 3-cycle in GTH(R \H), and thus gr(GTH(R \H)) = 3.

(5) By part (4) above, we may assume that char(R) 6= 2. Suppose that GTH(R\
H) contains a cycle C. Then C contains a path a− b− c, where a, b, c are distinct
vertices of R \H. Suppose that 2k = 0 for some k ∈ {a, b, c}. Then gr(GTH(R \
H)) = 3 by Theorem 3.12(2). Thus, assume that 2k 6= 0 for every k ∈ {a, b, c}.
Then z 6= −z for every z ∈ {a, b, c}, and hence gr(GTH(R \H)) ≤ 4 as in the proof
of Theorem 3.12(3). �

The next example shows that the three possibilities for gr(GTH(R \ H)) when
H is not an ideal of R from Theorem 3.14(5) may occur when gr(GTH(H)) =
gr(GTH(R)) = 3. However, if gr(GTH(H)) = ∞ and H is not an ideal of R,
then R ∼= Z2 × Z2 by Theorem 3.14(1), and thus gr(GTH(R \ H)) = ∞ and
gr(GTH(R)) = 4. In particular, gr(GTH(H)) = 3 when R is not reduced and
H is not an ideal of R.

Example 3.15. (a) Let R = Z and H be the union of all the prime ideals of R; so
R \H = U(Z) = {1,−1}. It is easy to check that gr(GTH(H)) = gr(GTH(R)) = 3
and gr(GTH(R \H)) =∞.

(b) Let R = Z and H = 2Z∪3Z. Then it is easy to check that gr(GTH(R\H)) =
gr(GTH(H)) = gr(GTH(R)) = 3.

(c) Let R = (Z3 × F4)[X] and H be the union of all the prime ideals of R.
Then R \ H = U(R) = U(Z3) × U(F4) = (Z3)∗ × (F4)∗. It is easy to check that
GTH(R \ H) = K3,3. Thus GTH(R \ H) (and hence GTH(R)) is connected and
gr(GTH(R \H)) = 4. It is also easy to check that gr(GTH(R)) = gr(GTH(H)) = 3.

4. GTH(R) for specific rings

In this section, we determine GTH(R) for several classes of commutative rings.
In particular, we investigate GTH(R) when R is either an idealization, a D + M
construction, or a localization. We start with some examples.
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Example 4.1. (a) Let R be a commutative ring such that its set of prime ideals
is totally ordered under inclusion (e.g., R is a valuation domain). Then every
multiplicative-prime subset H of R is a prime ideal of R; so the structure of GTH(R)
and GTH(R \H) is completely described in Section 2.

(b) Let R be a commutative ring with dim(R) = 0 (e.g., R is finite). If R is
quasilocal with maximal ideal M , then H = M = Z(R); so GTH(R) = T (Γ(R)).
So we may assume that R is not quasilocal. If H is an (prime) ideal of R, then
the structure of GTH(R) and GTH(R \H) is described in Section 2. Otherwise, H
contains two comaximal ideals; so GTH(R) is connected with diam(GTH(R)) = 2
by Theorem 3.9.

(c) Let R be a quasilocal commutative ring with maximal ideal M and H a
multiplicative-prime subset of R. If H is an (prime) ideal of R, then the structure
of GTH(R) and GTH(R \H) is described in Section 2. If H is not an (prime) ideal
of R, then GTH(R) is not connected by Corollary 3.3 since (H) ⊆M ( R.

(d) Let R be an integral domain with dim(R) = 1 and H a multiplicative-
prime subset of R. If H is an (prime) ideal of R, then the structure of GTH(R)
and GTH(R \H) is described in Section 2. Otherwise, H contains two comaximal
ideals; so GTH(R) is connected with diam(GTH(R)) = 2 by Theorem 3.9.

The next result follows directly from the definitions.

Theorem 4.2. Let H1 and H2 be multiplicative-prime subsets of a commutative
ring R. Then GTH1

(R) ⊆ GTH2
(R) if and only if H1 ⊆ H2. In particular,

GTH1(R) = GTH2(R) if and only if H1 = H2. Moreover, if R = Z(R) ∪ U(R)
(e.g., dim(R) = 0 or R is finite), then GTH(R) is a subgraph of T (Γ(R)).

Theorem 4.3. Let R ⊆ T be an extension of commutative rings, and let H be
a multiplicative-prime subset of T . Then H ′ = H ∩ R is a multiplicative-prime
subset of R and GTH′(R) ⊆ GTH(T ). Moreover, GTH(T ) is connected if GTH′(R)
is connected, and diam(GTH(T )) ≤ diam(GTH′(R)).

Proof. The first part of the theorem is clear. For the “moreover” part, note that
(H) = T if (H ′) = R. Thus GTH(T ) is connected if GTH′(R) is connected by
Corollary 3.3, and diam(GTH(T )) ≤ diam(GTH′(R)) by Theorem 3.4. �

However, GTH(T ) may be connected when GTH′(R) is not connected. Let
R = Z ⊆ T = Z[X] and H = (X) ∪ (X + 1). Then GTH(T ) is connected with
diam(GTH(T )) = 2 by Theorem 3.9. But H ′ = H ∩R = {0} is a prime ideal of R;
so GTH′(R) is not connected by Theorem 2.1.

Recall that for an R-module M , the idealization of M over R is the commutative
ring formed from R×M by defining addition and multiplication as (r,m)+(s, n) =
(r + s,m + n) and (r,m)(s, n) = (rs, rn + sm), respectively. A standard notation
for this “idealized ring” is R(+)M ; see [18] and [3] for basic properties of rings
resulting from the idealization construction. The zero-divisor graph Γ(R(+)M)
has been studied in [10] and [13], and the total graph T (Γ(R(+)M)) has been
studied in [23].

Let M be an R-module. Since ({0}(+)M)2 = 0, it is easy to check that F is a
multiplicative-prime subset of T = R(+)M if and only if F = H(+)M , where H
is a multiplicative-prime subset of R. Moreover, F is an (prime) ideal of T if and
only if H is an (prime) ideal of R; and if H is an ideal of R, then T/F ∼= R/H.
The next theorem thus follows directly from Theorem 2.3 and Theorem 2.5.
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Theorem 4.4. Let R be a commutative ring, H a prime ideal of R, M a nonzero
R-module, T = R(+)M , and F = H(+)M .

(1) GTF (T \ F ) is complete if and only if R/H ∼= Z2.
(2) GTF (T \ F ) is connected if and only if GTH(R \ H) is connected, if and

only if either R/H ∼= Z2 or R/H ∼= Z3.
(3) (a) diam(GTF (T \ F )) = 1 if and only if R/H ∼= Z2.

(b) diam(GTF (T \ F )) = 2 if and only if R/H ∼= Z3.
(c) Otherwise, diam(GTF (T \ F )) =∞.

We next consider the case when H is not an ideal of R.

Theorem 4.5. Let R be a commutative ring, H a multiplicative-prime subset of
R that is not an ideal of R, M an R-module, T = R(+)M , and F = H(+)M .
Then GTF (T ) is connected if and only if GTH(R) is connected, and moreover,
diam(GTF (T )) = diam(GTH(R)).

Proof. It is easily verified that (H) = R if and only if (F ) = T since (h1, . . . , hn) =
R for hi ∈ H if and only if ((h1,m1), . . . , (hn,mn)) = T for (hi,mi) ∈ T . Thus
GTF (T ) is connected if and only if GTH(R) is connected by Theorem 3.2 and
diam(GTF (T )) = diam(GTH(R)) by Theorem 3.4. �

Next, we consider the D+M construction as in [17]. Let T be an integral domain
of the form T = K + M , where K is a subfield of T and M is a nonzero maximal
ideal of T . Then for D a subring of K, R = D + M is a subring of T with the
same quotient field as T . This construction has proved very useful for constructing
examples. If P is a prime ideal of D, then Q = P + M is a prime ideal of R with
R/Q ∼= D/P . Since any multiplicative-prime subset is a union of prime ideals, it
follows that F = H + M is a multiplicative-prime subset of R for H ⊆ D if and
only if H is a multiplicative-prime subset of D. Note that if H is an (prime) ideal
of D, then F is an (prime) ideal of R with R/F ∼= D/H. Thus Theorem 2.3 and
Theorem 2.5 yield an analog of Theorem 4.4 for GTF (R); we leave the details to
the interested reader.

Theorem 4.6. Let T = K +M be an integral domain, where K is a subfield of T
and M is a nonzero maximal ideal of T , D be a subring of K, and R = D + M .
Let H be a multiplicative-prime subset of D and F = H + M . Then GTF (R) is
connected if and only if GTH(D) is connected, and moreover, diam(GTF (R)) =
diam(GTH(D)).

Proof. It is easily verified that (H) = D if and only if (F ) = R. Thus D is connected
if and only if R is connected by Corollary 3.3. Moreover, if (h1, . . . , hn)D = D for
hi ∈ H, then (h1, . . . , hn)R = R. Conversely, if (h1 + m1, . . . , hn + mn) = R for
hi +mi ∈ F , then (h1, . . . , hn)D = D. Hence diam(GTF (R)) = diam(GTH(D)) by
Theorem 3.4. �

Let R be an integral domain and S a multiplicatively closed subset of R; so
R ⊆ RS . Let H be a multiplicative-prime subset of R with H ∩S = ∅. Then H is a
union of prime ideals of R disjoint from S; so HS is a union of prime ideals of RS .
Thus HS is a multiplicative-prime subset of RS . If H is a prime ideal of R, then HS

is a prime ideal of RS with RS/HS
∼= R/H. Thus Theorem 2.3 and Theorem 2.5

yield an analog of Theorem 4.4 for GTHS
(RS); we again leave the details to the

interested reader.
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Theorem 4.7. Let S be a multiplicatively closed subset of an integral domain R
and H a multiplicative-prime subset of R with H ∩ S = ∅. Then GTHS

(RS) is
connected if and only if GTH(R) is connected, and moreover, diam(GTHS

(RS)) =
diam(GTH(R)).

Proof. It is easily verified that (H) = R if and only if (HS) = RS . Thus GTHS
(RS))

is connected if and only if GTH(R) is connected by Corollary 3.3. Moreover,
(h1, . . . , hn) = R for hi ∈ H if and only if (h1/s1, . . . , hn/sn) = RS for hi ∈
H, si ∈ S. Hence diam(GTHS

(RS)) = diam(GTH(R)) by Theorem 3.4. �

In [6, Corollary 3.6], we showed that if R has a nontrivial idempotent, then
T (Γ(R)) is connected with diam(T (Γ(R)) = 2. In particular, this holds for a (non-
trivial) product of commutative rings ([6, Corollary 3.7]). The following example
shows that this need not hold for GTH(R). However, note that if dim(R) = 0, then
GTH(R) is connected with diam(GTH(R)) = 2 when H is not an ideal of R by
Theorem 3.2 and Theorem 3.4, respectively.

Example 4.8. Let R = Z[X]× Z and H = (XZ[X]× Z) ∪ (3Z[X]× Z). Then R
has nontrivial idempotents, H is a multiplicative-prime subset of R, and (H) 6= R.
Thus GTH(R) is not connected by Theorem 3.2.
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