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ON PSEUDO-ALMOST VALUATION DOMAINS
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Department of Mathematics and Statistics, American University of Sharjah,
Sharjah, United Arab Emirates

Let R be an integral domain with quotient field K and integral closure R′. Anderson
and Zafrullah called R an “almost valuation domain” if for every nonzero x ∈ K, there
is a positive integer n such that either xn ∈ R or x−n ∈ R. In this article, we introduce
a new closely related class of integral domains. We define a prime ideal P of R to
be a “pseudo-strongly prime ideal” if, whenever x� y ∈ K and xyP ⊆ P, then there is
a positive integer m ≥ 1 such that either xm ∈ R or ymP ⊆ P. If each prime ideal
of R is a pseudo-strongly prime ideal, then R is called a “pseudo-almost valuation
domain” (PAVD). We show that the class of valuation domains, the class of pseudo-
valuation domains, the class of almost valuation domains, and the class of almost
pseudo-valuation domains are properly contained in the class of pseudo-almost valuation
domains; also we show that the class of pseudo-almost valuation domains is properly
contained in the class of quasilocal domains with linearly ordered prime ideals. Among
the properties of PAVDs, we show that an integral domain R is a PAVD if and only
if for every nonzero x ∈ K, there is a positive integer n ≥ 1 such that either xn ∈ R

or ax−n ∈ R for every nonunit a ∈ R. We show that pseudo-almost valuation domains
are precisely the pullbacks of almost valuation domains, we characterize pseudo-almost
valuation domains of the form D +M , and we use this characterization to construct
PAVDs that are not almost valuation domains. We show that if R is a Noetherian
PAVD, then R has Krull dimension at most one and R′ is a valuation domain; we
show that every overring of a PAVD R is a PAVD iff R′ is a valuation domain and
every integral overring of R is a PAVD.
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1. INTRODUCTION

Throughout this article, R denotes an integral domain with quotient field K and
integral closure R′. If I is an ideal of R, then �I � I� = �x ∈ K � xI ⊆ I�. We start by
recalling some background material. In Hedstrom and Houston (1978a), the author
introduced a class of integral domains which is closely related to the class of valuation
domains (recall that an integral domain R is said to be a valuation domain if for
every nonzero x ∈ K, either x ∈ R or x−1 ∈ R). We recall fromHedstrom andHouston
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(1978a) that R is called a pseudo-valuation domain in case each prime ideal P of R
is a strongly prime ideal, in the sense that xy ∈ P, x� y ∈ K implies that either x ∈ P
or y ∈ P. It was shown in Hedstrom and Houston (1978a, Theorem 1.5(3)) that an
integral domain R is a pseudo-valuation domain if and only if for every nonzero
x ∈ K, either x ∈ R or ax−1 ∈ R for every nonunit a ∈ R. It is clear that a valuation
domain is a pseudo-valuation domain. Also, it was shown in Hedstrom and Houston
(1978b, Example 3.1) that for each n ≥ 1, there is a pseudo-valuation domain with
Krull dimension n which is not a valuation domain. In Badawi (2002), Houston and
the author gave a generalization of pseudo-valuation domains: Recall from Badawi
(2002) that R is said to be an almost pseudo-valuation domain in case each prime ideal
P of R is a strongly primary ideal, in the sense that xy ∈ P, x� y ∈ K implies that either
xn ∈ P for some n ≥ 1 or y ∈ P. It was shown in Badawi (2002, Theorem 3.4) that an
integral domain R is an almost pseudo-valuation domain if and only if R is quasilocal
with maximal ideal M such that for every nonzero x ∈ K, either xn ∈ M for some
positive integer n ≥ 1 or ax−1 ∈ M for every nonunit a∈R. Hence it is clear that a
pseudo-valuation domain is an almost pseudo-valuation domain, however Badawi
(2002, Example 3.9) is an example of an almost pseudo-valuation domain which is
not a pseudo-valuation domain. Anderson and Zafrullah (1991) introduced the notion
of an almost valuation domain. Recall from Anderson and Zafrullah (1991) that an
integral domain R is said to be an almost valuation domain if for every nonzero x ∈ K,
there exists an n ≥ 1 (depending on x) with xn or x−n ∈ R.

In this article, we introduce a new closely related class of integral domains.
We define a prime ideal P of R to be a pseudo-strongly prime ideal if, whenever
x� y ∈K and xyP ⊆ P, then there is a positive integer m ≥ 1 such that either xm ∈
R or ymP ⊆ P. If each prime ideal of R is a pseudo-strongly prime ideal, then R
is called a pseudo-almost valuation domain (PAVD). We show in Theorem 2.8 that
an integral domain R is a PAVD if and only if for every nonzero x ∈ K, there is a
positive integer n ≥ 1 such that either xn ∈ R or ax−n ∈ R for every nonunit a ∈ R.
Thus it is clear that an almost valuation domain is a PAVD and an almost pseudo-
valuation domain is a PAVD; however we show in Example 3.6 that for each n ≥
1, there is a PAVD with Krull dimension n which is neither an almost valuation
domain nor an almost pseudo-valuation domain. We show in Proposition 2.2 that
a PAVD is quasilocal with linearly ordered prime ideals and we give an example
(Example 3.4) of a quasilocal domain R with linearly ordered prime ideals but R is
not a PAVD. We then have the following implications, none of which is reversible:

valuation domain ⇒ pseudo-valuation domain ⇒ almost pseudo-valuation
domain ⇒ pseudo-almost valuation domain ⇒ quasilocal domain with linearly
ordered prime ideals AND valuation domain ⇒ almost valuation domain ⇒
pseudo-almost valuation domain ⇒ quasilocal domain with linearly ordered
prime ideals.

Among the properties of PAVDs which will be studied in this article, we show
in Proposition 2.16 that if an integral domain R admits a nonzero principal pseudo-
strongly prime ideal P, then R is an almost valuation domain with maximal ideal
P; we show in Theorem 2.15 that a quasilocal domain R with maximal ideal M is a
PAVD if and only if V = �M � M� is an almost valuation domain with maximal ideal
Rad�MV� (the radical of MV in V ); we show (Theorem 4.10) that the integral closure
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of a PAVD with maximal ideal M is a valuation domain if and only if �M � M� is
integral over R; we show in Propositions 2.22 and 4.11 that a Noetherian PAVD has
Krull dimension ≤1 and R′ is a valuation domain; we show in Theorem 2.19 that
a PAVD is a pullback of an almost valuation domain; we show in Corollary 4.12
that every overring of a PAVD R is a PAVD if and only if R′ is a valuation domain
and every integral overring of R is a PAVD. Let V be a valuation domain of the
form F +M , where F is a field and M is the maximal ideal of V . Let D be a proper
subring of F , and set R = D +M . Then, we show in Theorem 3.1 that R is a PAVD
if and only if either D is a field or D is a PAVD with quotient field H such that
H ⊆ F is a root extension. (Recall that an extension R ⊆ B with the property that
for each b ∈ B there exists a n ≥ 1 (depending on b) such that bn ∈ R is called a root
extension.)

2. PROPERTIES OF PAVDs

We start this section with the following definition.

Definition. A prime ideal P of R is called a pseudo-strongly prime ideal if, whenever
x� y ∈ K and xyP ⊆ P, there is a positive integer m ≥ 1 such that either xm ∈ R or
ymP ⊆ P. If every prime ideal P of R is a pseudo-strongly prime ideal, then R is a
PAVD.

Let S be a subset of an integral domain R with quotient field K. Then E�S� =
�x ∈ K � xn �∈ S for every n ≥ 1�. We have the following lemma which is an analog
of Hedstrom and Houston (1978a, Proposition 1.2).

Lemma 2.1. Let P be a prime ideal of R. Then P is a pseudo-strongly prime ideal if
and only if for every x ∈ E�R�, there is an n ≥ 1 such that x−nP ⊆ P.

Proof. Suppose that P is a pseudo-strongly prime ideal. Let x ∈ E�R�. Then
xx−1P = P. Since x ∈ E�R�, there is an n ≥ 1 such that x−nP ⊆ P. Conversely,
suppose that for every x ∈ E�R� there is an n ≥ 1 such that x−nP ⊆ P. Let x� y ∈K
such that xyP ⊆ P. Suppose that x ∈ E�R�. Then by hypothesis, there is an n≥ 1
such that x−nP ⊆ P. Since xnynP ⊆ P and x−nP ⊆ P, we conclude that ynP =
x−n�xnynP� ⊆ x−nP ⊆ P. �

Proposition 2.2. Let R be a PAVD. Then the prime ideals of R are linearly ordered.
In particular, R is quasilocal.

Proof. Suppose that P and Q are two distinct prime ideals of R such that neither
P ⊆ Q nor Q ⊆ P. Then there is a p ∈ P\Q and there is a q ∈ Q\P. Set x = p/q.
Since p �∈ Q, we conclude that x ∈ E�R�. Hence, by Lemma 2.1, there is an n ≥ 1
such that ax−n ∈ Q for every a ∈ Q. In particular, qn+1/pn = qx−n ∈ Q. Thus, qn+1 ∈
P, and therefore q ∈ P, which is a contradiction. Hence, either P ⊆ Q or Q ⊆ P.

�

Example 3.4 shows that the converse of the above proposition is not true.
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Proposition 2.3. Let P be a pseudo-strongly prime ideal of R. Then for every p ∈ P
and for every r ∈ R\P there is an n (depending on p and r) such that pn/rn ∈ P.

Proof. Let p ∈ P and r ∈ R\P. Set x = r2/p. Since r �∈ P, we conclude that
x∈E�R�. Hence, by Lemma 2.1, there is an n ≥ 1 such that ax−n ∈ P for every a ∈
P. In particular, p2n/r2n = pnx−n ∈ P. �

Proposition 2.4. Let P be a pseudo-strongly prime ideal of R. Suppose that P
contains a prime ideal Q of R. Then for every q ∈ Q and for every p ∈ P\Q, there is
an n ≥ 1 (depending on q and p) such that qn/pn ∈ Q.

Proof. Let q ∈ Q and p ∈ P\Q. Set x = q/p. Suppose that xn �∈ Q for every n≥ 1.
Then, x ∈ E�R�. Thus, by Lemma 2.1, there is an n ≥ 1 such that x−nP ⊆ P. In
particular, pn+1/qn = px−n ∈ P. Thus, p ∈ Q, which is a contradiction. Hence, there
is an n ≥ 1 such that qn/pn = xn ∈ Q. �

It is known (Hedstrom and Houston, 1978a, Theorem 1.4) that an integral
domain R is a pseudo-valuation domain if and only if some maximal ideal of R is a
strongly prime ideal; also, it is shown (Badawi, 2002, Theorem 3.4) that an integral
domain R is an almost pseudo-valuation domain if and only if a maximal ideal of
R is a strongly primary ideal. We have a similar result for PAVDs.

Theorem 2.5. An integral domain R is a PAVD if and only if some maximal ideal of
R is a pseudo-strongly prime ideal.

Proof. Suppose that a maximal ideal M of R is a pseudo-strongly prime ideal.
First, we show that R is quasilocal. Hence, suppose that N is a maximal ideal of R
such that M �= N . Since, by Proposition 2.3, for every m ∈ M and b ∈ N\M there
is an n ≥ 1 such that mn/bn ∈ M , we conclude that M ⊆ N , which is impossible.
Thus, R is a quasilocal domain with maximal ideal M . Now, let P be a prime
ideal of R. By Lemma 2.1, we need only show that for every x ∈ E�R�, there is an
n≥ 1 such that px−n ∈ P for every p ∈ P. Hence, let x ∈ E�R�. Since M is a pseudo-
strongly prime ideal, there is an n ≥ 1 such that ax−n ∈ M for every a ∈ M . In
particular, px−n ∈ M for every p ∈ P. Suppose that px−n = b ∈ M\P for some p ∈ P.
Then by Proposition 2.4, there is an m ≥ 1 such that pm/bm ∈ P. Thus, px−n = b
implies that �pm/bm�x−nm = 1. Thus, xnm = pm/bm ∈ P. Hence, x �∈ E�R�, which is a
contradiction. Thus, px−n ∈ P for every p ∈ P. �

In light of the proof of Theorem 2.5, we have the following corollary.

Corollary 2.6. Let P be a pseudo-strongly prime ideal of R. If Q is a prime ideal of
R and Q ⊆ P, then Q is a pseudo-strongly prime ideal of R.

For the proof of our next result, we need the following proposition.

Proposition 2.7 (Badawi, 1995, Theorem 1(5)). Let R be an integral domain. Then
the prime ideals of R are linearly ordered (and hence R is quasilocal) if and only if for
every nonzero nonunit elements a� b of R, either a � bn or b � an for some n ≥ 1.
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Theorem 2.8. An integral domain R is a PAVD if and only if for every x ∈ E�R�,
there is an n ≥ 1 such that ax−n ∈ R for every nonunit a ∈ R.

Proof. Suppose that R is a PAVD. Then R is quasilocal by Proposition 2.2. Let M
be the maximal ideal of R, and suppose that x ∈ E�R�. Then, by Lemma 2.1, there
is an n ≥ 1 such that x−nM ⊆ M ⊆ R. Conversely, suppose that for every x ∈ E�R�,
there is an n ≥ 1 such that ax−n ∈ R for every nonunit a of R. First, we show that R
is quasilocal. Let a� b be nonzero nonunit elements of R. Suppose that a � � bn in R
for every n ≥ 1. Then x = b/a ∈ E�R�. Hence, by hypothesis, there is an n ≥ 1 such
that cx−n ∈ R for every nonunit c of R. In particular, an+1/bn = ax−n ∈ R. Thus,
b � an+1 in R. Thus, by Proposition 2.7, the prime ideals of R are linearly ordered.
Hence, R is quasilocal. Let M be the maximal ideal of R. Suppose that x ∈ E�R�.
Thus, by hypothesis, there is an n ≥ 1 such that ax−n ∈ R for every a ∈ M . Since M
is the maximal ideal of R and x ∈ E�R�, we conclude that ax−n ∈ M for every a ∈ M .
By Lemma 2.1, M is a pseudo-strongly prime ideal of R. Hence, R is a PAVD by
Theorem 2.5. �

The following proposition is a restatement of the above theorem.

Proposition 2.9. An integral domain R is a PAVD if and only if for every a� b ∈ R
either an � bn in R for some n ≥ 1 or there is an m ≥ 1 such that bm � cam in R for every
nonunit c of R.

We recall the following proposition.

Proposition 2.10.

(i) (Hedstrom and Houston, 1978a, Theorem 1.5(3)). A quasilocal domain �R�M� is a
pseudo-valuation domain if and only if x−1M ⊆ M for every x ∈ K\R.

(ii) (Badawi, 2002, Lemma 2.3 and Theorem 3.4). An integral domain R is an almost
pseudo-valuation domain if and only if R is quasilocal with maximal ideal M such
that x−1M ⊆ M for every x ∈ E�M�.

In view of the above proposition, it is clear that a pseudo-valuation domain
is an almost pseudo-valuation domain. The proof of the following result is clear by
Proposition 2.10 and Theorem 2.8.

Proposition 2.11. Suppose that R is an almost pseudo-valuation domain. Then R is a
PAVD. In particular, if R is a pseudo-valuation domain, then R is a PAVD.

The proof of the following result is also clear by the definition of almost
valuation domain and Theorem 2.8.

Proposition 2.12. Suppose that R is an almost valuation domain. Then R is a PAVD.

We show in Example 3.6 that for each n ≥ 1, there is a PAVD with
Krull dimension n that is neither an almost valuation domain nor an almost
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pseudo-valuation domain. Hence we have the following implications, none of which
is reversible:

valuation domain ⇒ pseudo-valuation domain ⇒ almost pseudo-valuation
domain ⇒ pseudo-almost valuation domain ⇒ quasilocal domain with linearly
ordered prime ideals AND valuation domain ⇒ almost valuation domain ⇒
pseudo-almost valuation domain ⇒ quasilocal domain with linearly ordered
prime ideals.

In the following result, we show that a root closed PAVD is a pseudo-valuation
domain. Recall that R is called root closed if, whenever x ∈ K and xn ∈ R for some
n ≥ 1, then x ∈ R.

Theorem 2.13. Let R be a root closed PAVD. Then R is a pseudo-valuation domain.

Proof. Let M be the maximal ideal of R. Suppose that x ∈ K\R. Since R is root
closed, x ∈ E�R�. Hence, there is an n ≥ 1 such that x−nM ⊆ M by Lemma 2.1.
Thus, x−nmn ∈ R for every m ∈ M . Hence, once again, since R is root closed, we
conclude that x−1m ∈ R for every m ∈ M . Thus, R is a pseudo-valuation domain by
Proposition 2.10(1). �

It is known (Dobbs, 1978, Lemma 4.5(i)) that if P is a prime ideal of a pseudo-
valuation domain R, then R/P is a pseudo-valuation domain. We have a similar
result for PAVDs.

Proposition 2.14. Let R be a PAVD and P be a prime ideal of R. Then D = R/P is
a PAVD.

Proof. Let R be a PAVD and P be a prime ideal of R. Set D = R/P and let
x� y ∈D. Then x = a+ P and y = b + P for some a� b ∈ R. Suppose that xn � � yn in
D for every positive integer n ≥ 1. Then, an � � bn in R for every positive integer n ≥
1. Thus, by Proposition 2.9, there is a positive integer m ≥ 1 such that bm � cam in
R for every nonunit c of R. Thus, ym � zxm for every nonunit z of D. Hence, by
Proposition 2.9, D is a PAVD. �

It is known (Anderson and Dobbs, 1980, Proposition 2.5) that a quasilocal
domain R with maximal ideal M is a pseudo-valuation domain if and only if �M � M�
is a valuation domain with maximal ideal M . We have the following result.

Theorem 2.15. A quasilocal domain R with maximal ideal M is a PAVD if and only
if V = �M � M� is an almost valuation domain with maximal ideal Rad�MV�.

Proof. Suppose that R is a PAVD. Let x ∈ E�V�. Then x ∈ E�R�. Hence, there is an
n ≥ 1 such that x−nM ⊆ M . Thus, x−n ∈ V . Thus, V is an almost valuation domain.
Now, let x be a nonunit of V . Suppose that x �∈ Rad�MV�. Then, since MV = M
and x is a nonunit of V , we conclude that x ∈ E�R�. Thus, by Lemma 2.1, there
is an n ≥ 1 such that x−nM ⊆ M . Hence, x−n ∈ V . Since x ∈ V and x−n ∈ V , we
conclude that x is a unit of V , which is a contradiction. Thus, if x is a nonunit of V ,
then x ∈ Rad�MV�. Hence, Rad�MV� is the maximal ideal of V . Conversely, suppose
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that V = �M � M� is an almost valuation domain with maximal ideal Rad�MV�.
Suppose that x ∈ E�R�. Then, x �∈ Rad�MV�. Thus, if xn ∈ V for some n ≥ 1, then
xn is a unit of V , and hence x−nM ⊆ M . Thus, suppose that x ∈ E�V�. Hence,
since V is an almost valuation domain, x−m ∈ V for some m ≥ 1. Thus, x−mM ⊆ M .
Hence, M is a pseudo-strongly prime ideal by Lemma 2.1. Thus, R is a PAVD by
Theorem 2.5. �

Before we state our next result, we would like to point out that if R is a
PAVD with maximal ideal M , then �M � M� need not be a valuation domain, see
Example 3.5. It was shown Anderson (1983, Proposition 4.3(2)) that if an integral
domain R admits a nonzero principal strongly prime ideal, then R is a valuation
domain. We have the following result.

Proposition 2.16. Suppose that an integral domain R admits a nonzero principal
pseudo-strongly prime ideal P. Then R is an almost valuation domain with maximal
ideal P.

Proof. Suppose that P is a nonzero principal pseudo-strongly prime ideal of R.
Then P = �p� for some nonzero prime element p ∈ R. Now, suppose that P is a
nonmaximal ideal of R. Then there is a nonunit r ∈ R\P. Hence by Proposition 2.3,
let n be the least positive integer such that pn = rnd for some nonunit d ∈ R. Since
r �∈ P, p �d in R. Suppose that n = 1. Then r is a unit of R which is a contradiction.
Hence suppose that n > 1. Then pn−1 = rn−1�rd/p�, which is again a contradiction
since n is the least positive integer such that rn �pn. Thus P is a maximal ideal of R.
Hence R is a PAVD by Theorem 2.5 and thus �P � P� is an almost valuation domain
by Theorem 2.15. Since P is a nonzero principal ideal, we have �P � P� = R is an
almost valuation domain. �

Recall that an overring V of R is said to be a root extension of R if for every
x ∈ V , there is an n ≥ 1 such that xn ∈ R.

Theorem 2.17. Let R be a quasilocal domain with maximal ideal M . Suppose that V
is an almost valuation overring of R such that M is an ideal of V and Rad�M� (in V )
is the maximal ideal of V . Then R is an almost valuation domain if and only if V is a
root extension of R.

Proof. If V = R, then there is nothing to prove. Hence, we assume that V �= R.
Suppose that R is an almost valuation domain. Let x ∈ V\R. If x ∈ Rad�M�, then
xk ∈ M ⊂ R for some k > 1. Hence, assume that x �∈ Rad�M�. Since Rad�M� is the
maximal ideal of V , we conclude that x is a unit of V . Since R is an almost valuation
domain and x is a unit of V\R, we conclude that xn is a unit of R for some n > 1.
Thus, V is a root extension of R. Conversely, suppose that V is a root extension of
R and x ∈ E�R�. Since V is a root extension of R, we conclude that x ∈ E�V�. Since
V is an almost valuation domain and x ∈ E�V�, there is an n ≥ 1 such that x−n ∈ V .
Since V is a root extension of R and x−n ∈ V , we have x−nm ∈ R for some m ≥ 1.
Hence, R is an almost valuation domain. �

We recall the following result.
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Proposition 2.18 (Anderson and Dobbs, 1980, Lemma 3.1). Let R and V be
integral domains such that R ⊆ V . If R and V share a nonzero ideal, then R and V
have the same quotient field.

It is known (Anderson and Dobbs, 1980, Proposition 2.6) that a pseudo-
valuation domain is a pullback of a valuation domain. An excellent article on
pullbacks is Fontana (1980). Our next result shows how to construct a PAVD as a
pullback of an almost valuation domain.

Theorem 2.19. Let V be an almost valuation domain with nonzero maximal ideal
N and let M be an ideal of V such that Rad�M� = N , F = V/M , � � V −→ F the
canonical epimorphism, H be a field contained in F , and R = �−1�H�. Then the pullback
R = V ×F H is a PAVD with maximal ideal M . In particular, if H is properly contained
in F and V is not a root extension of R, then R is a PAVD which is not an almost
valuation domain.

Proof. In view of the construction stated in the hypothesis, it is well known that
for any domain V , M is a maximal ideal of R. Also, it is clear that R and V have
the same quotient field by Proposition 2.18. Suppose that x ∈ E�R�. Then, since V
is an almost valuation domain, either xn ∈ V\R for some n ≥ 1 or x ∈ E�V�. Hence,
suppose that xn ∈ V\R for some n ≥ 1. Since M is an ideal of V , Rad�M� = N is the
maximal ideal of V and x ∈ E�R�, we conclude that xn is a unit of V . Thus, x−nM ⊆
M . Now, suppose that x ∈ E�V�. Then, since V is an almost valuation domain, we
conclude that x−n ∈ V for some n ≥ 1. Since M is an ideal of V , we conclude that
x−nM ⊆ M . Thus, M is a pseudo-strongly prime ideal of R by Lemma 2.1. Hence, R
is a PAVD by Theorem 2.5. The remaining part is clear from Theorem 2.17. �

In view of Theorems 2.19 and 2.17, the following is an example of a PAVD
which is not an almost valuation domain.

Example 2.20. Let F be a finite field, H = F�X� be the quotient field of F�X	, V =
H + Y 3H��Y		, and R = F + Y 3H��Y		. Then V ′ = H + YH��Y		 is a valuation domain
and V ⊆ V ′ is a root extension. Thus V is an almost valuation domain by Anderson
and Zafrullah (1991, Theorem 5.6). It is clear that V is not a valuation domain.
Since M = Y 3H��Y		 is the maximal ideal of both domains V and R, we have F =
R/M is a subfield of V/M = H . Let � � V −→ H = V/M . Then �−1�F = R/M� = R
is a PAVD by Theorem 2.19. However, since V is not integral over R, R is not an
almost valuation domain again by Theorem 2.17.

In light of Theorems 2.15 and 2.19, we have the following corollary which is
an analog of Anderson and Dobbs (1980, Proposition 2.6).

Corollary 2.21. The pseudo-almost valuation domains are precisely the pullbacks in
the category of commutative rings (with 1) of diagrams of the form:

V
↓
F ← H�
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in which V is an almost valuation domain having maximal ideal Rad�M� for some ideal
M of V , F = V/M , the vertical map is the canonical surjection, H is a field contained
in F , and the horizontal map is inclusion.

In the following result, we show that a Noetherian PAVD has Krull dimension
≤1. In Example 3.6, we show that for every n ≥ 1 (possibly infinite), there is a PAVD
with Krull dimension n.

Proposition 2.22. If R is a Noetherian PAVD, then R has Krull dimension ≤1.

Proof. (It is similar to the proof of Hedstrom and Houston, 1978a, Proposition
3.2.) This follows from the fact that if P1 ⊆ P2 ⊆ P3 are three distinct prime ideals of
a Noetherian domain, then there are infinitely many prime ideals between P1 and P3

(Kaplansky, 1974, Theorem 144), and the fact that the prime ideals of R are linearly
ordered (Proposition 2.2). �

3. EXAMPLES AND D +M CONSTRUCTION OF PAVDs

Recall that an extension R ⊆ B with the property that for each b ∈ B there
exists a n ≥ 1 (depending on b) such that bn ∈ R is called a root extension.

Theorem 3.1. Let V be a valuation domain of the form F +M , where F is a field and
M is the maximal ideal of V . Let D be a proper subring of F . Set R = D +M . Then R
is a PAVD if and only if either D is a field or D is a PAVD with quotient field H such
that H ⊆ F is a root extension.

Proof. Suppose that R is a PAVD and assume that D is not a field. By
Proposition 2.14, R/M 
 D is a PAVD. Let N be the maximal ideal of D, and H be
the quotient field of D. Since D ⊆ F and F is a field, H ⊆ F . Hence, assume that H is
properly contained in F . Let x ∈ F\H . Then x is in the quotient field of R. Suppose
that xn �∈ H for every n ≥ 1. Then x ∈ E�R�. Since x is in the quotient field of R, R
is a PAVD, and x ∈ E�R�, we conclude that x−n�N +M� ⊆ �N +M� for some n ≥ 1
by Lemma 2.1. Since F is a field, x−n ∈ F , N ⊆ H ⊆ F , M ∩ F = �0�, and x−n�N +
M� ⊆ �N +M�, we conclude that x−nN ⊆ N . Thus, let d be a nonzero element of
N . Since x−nd = g ∈ N , we conclude that xn = d/g ∈ H , which is a contradiction.
Hence, H ⊆ F is a root extension.

Conversely, suppose that D is a field. Then M is the maximal ideal of R. Since
�M � M� = V is a valuation domain, R is a PAVD (PVD) by Theorem 2.15. Thus,
suppose that D is not a field and D is a PAVD with quotient field H such that H ⊆ F
is a root extension. Let N be the maximal ideal of D. Then, N +M is the maximal
ideal of R by Bastida and Gilmer (1973). Now, suppose that x ∈ E�R�. Since V is a
valuation overring of R and M is the maximal ideal of V , we conclude that either
x−1 ∈ M or x is a unit of V . If x−1 ∈ M , then it is clear that x−1�N +M� ⊆ �N +M�.
Hence, suppose that x is a unit of V . Then, x = f + d is a unit of V , where f is a
nonzero element of F and d ∈ M . Since H ⊆ F is a root extension and x∈E�R�, we
conclude that fm ∈ H for some m ≥ 1 and fmn �∈ D for every n ≥ 1. Thus, f−mnN ⊆
N for some n ≥ 1 by Lemma 2.1. Hence, x−nm�N +M� ⊆ �N +M�. Thus, N +M
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is a pseudo-strongly prime ideal of R by Lemma 2.1. Thus, R is a PAVD by
Theorem 2.5. �

By an argument similar to the one just given in the proof of Theorem 3.1, one
can prove the following result.

Corollary 3.2. Let F , M , V , D, and R be as in Theorem 3.1. Then R is an almost
valuation domain if and only if D is an almost valuation domain with quotient field H
such that H ⊆ F is a root extension.

Let F , M , V , and D as in Theorem 3.1. Dobbs (1978, Proposition 4.9) showed
that R = D +M is a pseudo-valuation domain if and only if either D is a field
or D is a pseudo-valuation domain with quotient field F . In view of the proof of
Theorem 3.1, we will give an alternative proof of the part: If R is a pseudo-valuation
domain and D is not a field, then F is the quotient field of D.

Proposition 3.3 (Dobbs, 1978, Proposition 4.9). Let F , M , V , and D be as in
Theorem 3.1. If R = D +M is a pseudo-valuation domain and D is not a field, then F
is the quotient field of D.

Proof. Deny. Let H be the quotient field of D, N be the maximal ideal of D, and
K be the quotient field of R. Then, there is an x ∈ F\H . Hence, x ∈ K\R. Thus,
x−1�N +M� ⊆ �N +M�. Since F is a field, x−1 ∈ F , N ⊆ H ⊆ F , F ∩M = �0�, and
x−1�N +M� ⊆ �N +M�, we conclude that x−1N ⊆ N . Thus, x−1a = b ∈ N for some
nonzero a ∈ N . Hence, x = a/b ∈ H , which is a contradiction. Thus, F = H . �

Since a PAVD is quasilocal with linearly ordered prime ideals by
Proposition 2.2, the following is an example of a quasilocal Noetherian domain R
with linearly ordered prime ideals that is not a PAVD.

Example 3.4. Let R = C + CX2 + x4C��X		 = C��X2� X5		, where C is the field
of complex numbers. Then R is a quasilocal Noetherian domain with maximal
ideal M = �X2� X5�R, so its prime ideals are linearly ordered. Since �M � M� =
C��X2� X3		 is not an almost valuation domain, we conclude that R is not a PAVD
by Theorem 2.15.

The following is an example of a PAVD which is neither an almost valuation
domain nor an almost pseudo-valuation domain.

Example 3.5. Let F be a finite field and H = F�X� be the quotient field of F�X	.
Set R = F +HY 2 + Y 4H��Y		. Then R is a quasilocal domain with maximal ideal
M = HY 2 + Y 4H��Y		. Since V = �M � M� = H + Y 2H��Y		 is an almost valuation
domain with maximal ideal Rad�MV� in V , we conclude that R is a PAVD by
Theorem 2.15. It is clear that V = �M � M� = H + Y 2H��Y		 is not a valuation
domain, and hence R is not an almost pseudo-valuation domain by Badawi (2002,
Theorem 3.4). Also, since F ⊂ H is not a root extension, R is not an almost
valuation domain.
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In the following example, we show that for every n ≥ 1, there is a PAVD with
Krull dimension n that is neither an almost valuation domain nor an almost pseudo-
valuation domain.

Example 3.6. Let F be a finite field and H = F�X� be the quotient field of F�X	.
Set D = F +HY 2 + Y 4H��Y		. By Example 3.5, D is a PAVD with maximal ideal
M = HY 2 + Y 4H��Y		 and Krull dimension one that is neither an almost valuation
domain nor an almost pseudo-valuation domain. Let K be the quotient field of D
and let n > 1. Then there is a valuation domain of the form K + N with maximal
ideal N and Krull dimension n− 1. Then R = D + N is a PAVD by Theorem 3.1.
By standard properties of the D +M-construction (see Bastida and Gilmer, 1973),
R has Krull dimension n. Since D is not an almost valuation domain as it is
shown in Example 3.5, R is not an almost valuation domain by Corollary 3.2. Since
neither Y ∈ �M + N � M + N� nor 1/Y ∈ �M + N � M + N�, �M + N � M + N� is not a
valuation domain. Hence, R is not an almost pseudo-valuation domain by Badawi
(2002, Theorem 3.4).

Recall from Theorem 2.15 that a quasilocal domain R with maximal ideal M
is a PAVD if and only if V = �M � M� is an almost valuation domain with maximal
ideal Rad�MV� in V . The following is an example of a PAVD R with maximal ideal
M such that R is not an almost valuation domain and �M � M� is an almost valuation
domain that is not a valuation domain.

Example 3.7. Let F , H , R, and M be as in Example 3.5. Then R is a PAVD with
maximal ideal M such that �M � M� is an almost valuation domain that is not a
valuation domain.

It is well known that if R is a pseudo-valuation domain with maximal ideal
M , then R′ (the integral closure of R in K) ⊆ �M � M�. The following is an example
of a PAVD with maximal ideal M such that R′ is a valuation domain, and �M � M�
is properly contained in R′.

Example 3.8. Let F be a finite field, H = F + XF��X		 = F��X		, and R = F +
FX2 + X4F��X		. Then R is a quasilocal domain with maximal ideal M = FX2 +
X4F��X		. Since V = �M � M� = F + X2F��X		 is an almost valuation domain with
maximal ideal Rad�MV� in V , we conclude that R is a PAVD by Theorem 2.15.
Since R′ = H is a valuation domain, we conclude that V = �M � M� = F + X2F��X		
is properly contained in R′.

The following is an example of a PAVD R with maximal ideal M such that
neither R′ ⊆ �M � M� nor �M � M� ⊆ R′, and hence �M � M� is not integral over R.

Example 3.9. Let F be a finite field and H = F�X� be the quotient field of F�X	.
Set R = F +HY 2 + Y 4H��Y		. Then R is a quasilocal domain with maximal ideal
M = HY 2 + Y 4H��Y		. Since V = �M � M� = H + Y 2H��Y		 is an almost valuation
domain with maximal ideal Rad�MV� in V , we conclude that R is a PAVD by
Theorem 2.15. Since H is not integral over F , �M � M� = H + Y 2H��Y		 is not integral
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over R, and hence �M � M� is not contained in R′. Also, since Y is integral over R
and Y �∈ �M � M�, we conclude that R′ is not contained in �M � M�.

4. OVERRINGS THAT ARE PAVDs

We start this section with the following result that is an analog of
Anderson et al. (1995, Lemma 8).

Theorem 4.1. Let R be a PAVD with maximal ideal M . Suppose that V is an overring
of R such that 1/s ∈ V for some s ∈ M . Then V is an almost valuation domain.

Proof. Suppose that x ∈ E�V�. Hence, x ∈ E�R�. Thus, by Lemma 2.1 there is an
n ≥ 1 such that ax−n ∈ M for every a ∈ M . In particular, sx−n = d ∈ M . Hence,
x−n = d/s. Since 1/s ∈ V , we conclude that x−n = d/s ∈ V . Hence, V is an almost
valuation domain. �

The following result is an analog of Hedstrom and Houston (1978a,
Proposition 2.6).

Corollary 4.2. Let R be a PAVD. Suppose that P is a nonmaximal prime ideal of R.
Then RP is an almost valuation domain.

Proof. Since P is a nonmaximal prime ideal of R, we conclude that RP contains an
element of the form 1/s for some nonunit s ∈ R\P. Hence, by Theorem 4.1, RP is
an almost valuation domain. �

The following result is an analog of Anderson (1979, Propositions 4.2 and 4.3)

Theorem 4.3. Let P be a pseudo-strongly prime ideal of R. Then �P � P� is an almost
valuation domain. In particular, if R is a PAVD, then �P � P� is an almost valuation
domain for every prime ideal P of R.

Proof. Let B = �P � P�. Suppose that x ∈ E�B�. Hence, x ∈ E�R�. Thus, by
Lemma 2.1, there is an n ≥ 1 such that x−nP ⊆ P. Hence, x−n ∈ B. Thus, B is an
almost valuation domain. �

We recall the following result.

Proposition 4.4 (Anderson and Zafrullah, 1991, Theorem 5.6). An integral domain
R is an almost valuation domain if and only if R′ is a valuation domain and R ⊆ R′ is
a root extension.

Proposition 4.5. Let R be a PAVD with maximal ideal M . Set V = �M � M�. Then
V ′ is a valuation domain (and hence is a pseudo-valuation domain) with maximal ideal
N = �x ∈ K � xn ∈ M for some n ≥ 1�, and V ⊆ V ′ is a root extension. Furthermore, if
B is an overring of R such that B does not contain an element of the form 1/s for some
nonunit s of R, then B ⊆ V ′. In particular, R′ ⊆ V ′.
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Proof. By Theorem 2.15, V is an almost valuation domain with maximal ideal
Rad�MV� = Rad�M� in V . Hence, by Proposition 4.4, V ′ is a valuation domain and
V ⊆ V ′ is a root extension. Thus, Let N be the maximal ideal of V ′. Then, N =
�x ∈ K � xn ∈ Rad�MV� for some n ≥ 1� = �x ∈ K � xm ∈ M for some m ≥ 1�. Now,
suppose that B is an overring of R such that 1/s �∈ B for every nonunit s of R.
We will show that B ⊆ V ′. Let x ∈ B. Suppose that x �∈ V ′. Since V is a valuation
domain, x−1 ∈ V . Hence, x−1 is a nonunit of V ′. Thus, x−1 ∈ N . Hence, x−n = d∈M
for some n ≥ 1. Hence, xn = 1/d ∈ B (since x ∈ B). A contradiction. Hence, B⊆V ′.
Since 1/m is never integral over R for every nonunit m ∈ M , we conclude that
R′ ⊆ V ′. �

Recall from Hedstrom and Houston (1978a, Theorem 1.4) that a quasilocal
integral domain with maximal ideal M is a pseudo-valuation domain if and only if
M is a strongly prime ideal of R. It was shown in Badawi (2002, Proposition 3.7) that
if R is an almost pseudo-valuation domain, then R′ is a pseudo-valuation domain.
For a PAVD we have a similar result.

Theorem 4.6. Let R be a PAVD with maximal ideal M . Then R′ is a pseudo-valuation
domain with maximal ideal N = �x ∈ K � xn ∈ M for some n ≥ 1�. Hence, R′ and V ′

have the same maximal ideal, where V ′ is the integral closure of V = �M � M�.

Proof. Let V = �M � M�. Since R′ ⊆ V ′ and N is a strongly prime ideal of V ′ by
Proposition 4.5, we conclude that N is a strongly prime ideal of R′. Since M ⊆N ,
by integrality, we conclude that N is the unique maximal ideal of R′. Thus, R′ is a
pseudo-valuation domain by Hedstrom and Houston (1978a, Theorem 1.4). �

Theorem 4.7. Let R be a PAVD with maximal ideal M . If each overring of R is a
PAVD, then R′ = V ′ is a valuation domain, where V = �M � M�.

Proof. (It is similar to the proof of Badawi, 2002, Proposition 3.8.) Suppose
that each overring of R is a PAVD. Since R′ is a pseudo-valuation domain by
Theorem 4.6, the proof of Hedstrom and Houston (1978a, Proposition 2.7) shows
that if R′ is not a valuation domain, then there is a nonquasilocal overring of R′.
However, such an overring cannot be a PAVD by Proposition 2.2. Hence, R′ is a
valuation domain. Since R′ ⊆ V ′ by Proposition 4.5, and V ′ is a valuation domain
with the same maximal ideal as R′ by Theorem 4.6, we conclude that R′ = V ′. �

The converse of Theorem 4.7 is false, as the following example shows that.

Example 4.8. Let Q be the field of rational numbers and F = Q�
√
2�. Set V =

F + XF��X		 = F��X		, S = Q+QX + X2F��X		, and R = Q+ X2F��X		. Then R is
a PAVD and R′ = V is a valuation domain, but S is an overring ring of R with
maximal ideal M = QX + X2F��X		 which is not a PAVD by Theorem 2.15. For let
a = 1+√

2; then a ∈ E�R� and a−nX �∈ M for every n ≥ 1. Thus, M is not a pseudo-
strongly prime ideal of S by Lemma 2.1. Hence, S is not a PAVD.

In Example 4.8, S is an integral overring of R. The following result shows
that this is the only stumbling block. A similar result for almost pseudo-valuation
domains was obtained in Badawi (2002, Proposition 3.10).
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Theorem 4.9. Let R be a PAVD with R′ a valuation domain, and assume that every
integral overring of R is a PAVD. Then every overring of R is a PAVD.

Proof. Let M be the maximal ideal of R, and set V = �M � M�. Since R′ is a
valuation domain, R′ ⊆ V ′ is a valuation domain by Proposition 4.5, and V ′ has
the same maximal ideal as R′ by Theorem 4.6, we have R′ = V ′. Now, let S be an
overring of R. If S contains an element of the form 1/m for some m ∈ M , then R is
an almost valuation domain by Theorem 4.1 and hence is a PAVD by Proposition
2.12. Thus, suppose that S does not contain an element of the form 1/m for some
m ∈ M . Then S ⊆ V ′ by Proposition 4.5. Hence, S ⊆ R′(since R′ = V ′). Thus, S is an
integral overring of R. Hence, S is a PAVD. �

In view of Examples 3.8 and 3.9, we have the following result.

Theorem 4.10. Let R be a PAVD with maximal ideal M . Then R′ is a valuation
domain if and only if �M � M� is integral over R.

Proof. Let V = �M � M�. Suppose that R′ is a valuation domain. Then R′ = V ′

by the same argument as in the proof of Theorem 4.9. Hence, �M � M� is integral
over R. Conversely, suppose that V is integral over R. Hence, R′ = V ′ is a valuation
domain by Proposition 4.5. �

In light of Theorem 4.10, we have the following result.

Proposition 4.11. Let R be a PAVD with maximal ideal M . If M is finitely generated,
then R′ is a valuation domain. In particular, if R is a Noetherian PAVD, then R′ is a
valuation domain.

Proof. Since M is finitely generated, �M � M� is integral over R. Hence, R′ is a
valuation domain by Theorem 4.10. �

In view of Proposition 2.12, Theorem 4.1, Proposition 4.5, Theorem 4.7,
Theorem 4.9, the proof of Theorems 4.9 and 4.10, we arrive at the following
corollary.

Corollary 4.12. Let R be a PAVD with maximal ideal M . Then the following
conditions are equivalent:

(1) Every overring of R is a PAVD;
(2) �M � M� is integral over R and every integral overring of R is a PAVD;
(3) R′ is a valuation domain and every integral overring of R is a PAVD;
(4) If B is an overring of R that does not contain an element of the form 1/m for some

nonunit m of R, then B is a PAVD.
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