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Abstract. Let H = {R | R is a commutative ring and Nil(R) is a divided

prime ideal of R}. For a ring R ∈ H with total quotient ring T (R), let φ

be the natural ring homomorphism from T (R) into RNil(R). An integral

domain R is said to be an FC-domain (in the sense of Gilmer) if each chain

of distinct overrings of R is finite, and R is called an FO-domain if R

has finitely many overrings. A ring R is called an FC-ring if each chain of

distinct overrings of R is finite, and R is said to be an FO-ring if R has

finitely many overrings. A ring R ∈ H is said to be a φ-FC-ring if φ(R)

is an FC-ring, and R is called a φ-FO-ring if φ(R) is an FO-ring. In this

paper, we show that the theory of φ-FC-rings and φ-FO-rings resembles

that of FC-domains and FO-domains.

1. Introduction

We assume throughout that all rings are commutative with 1 6= 0. Let R be
a ring. Then T (R) denotes the total quotient ring of R, R′ denotes the integral
closure of R in T (R), Nil(R) denotes the set of nilpotent elements of R, Z(R)
denotes the set of zerodivisors of R. Recall from [19] and [9] that a prime ideal of
R is called a divided prime if P ⊂ (x) for every x ∈ R \ P ; thus a divided prime
ideal is comparable (under set inclusion) to every ideal of R. Throughout this
paper, H = {R | R is a commutative ring and Nil(R) is a divided prime ideal of
R}, and H0 = {R ∈ H | Nil(R) = Z(R)}. In [7], [8], [10], [11], [12], and [13] the
first-named author investigated the class of rings H. Observe that if R is an
integral domain, then R ∈ H0 ⊂ H. If R ∈ H, then R is called a φ-ring. For
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a further study on φ-rings, we recommend the references: [3], [4], [14], [15], and
[16].

A non-zerodivisor of a ring R is called a regular element and an ideal of R is
said to be regular if it contains a regular element. An ideal I of a ring R is said
to be a nonnil ideal if I 6⊆ Nil(R). If I is a nonnil ideal of a ring R ∈ H, then
Nil(R) ⊂ I. In particular, Nil(R) ⊂ I for every regular ideal of a ring R ∈ H.
Recall from [8] that for a ring R ∈ H with total quotient ring T (R), the map
φ : T (R) −→ RNil(R) such that φ(a/b) = a/b for a ∈ R and b ∈ R \ Z(R)
is a ring homomorphism from T (R) into RNil(R), and φ restricted to R is
also a ring homomorphism from R into RNil(R) given by φ(x) = x/1 for
every x ∈ R. Recall that if every finitely generated regular ideal of a ring R is
invertible, then R is said to be a Prüfer ring. Recall from [3] that a nonnil ideal
I of R ∈ H is a φ-invertible if φ(I) is an invertible ideal of φ(R), and a ring
R ∈ H is said to be a φ-Prüfer ring if every finitely generated nonnil ideal of R

is φ-invertible, that is, if φ(R) is a Prüfer ring. Also recall from [11] that a ring
R ∈ H is said to be a φ-chained ring (φ-CR) if for each x ∈ RNil(R) \ φ(R), we
have x−1 ∈ φ(R).

In this paper, we generalize the concept of FC-domains and FO-domains as in
[22] to the context of rings that are in H. Recall from [22] that an integral domain
R is said to be an FC-domain if each chain of distinct overrings of R is finite,
and R is called an FO-domain if R has finitely many overrings. Recall that B
is said to be an overring of a ring R if R ⊆ B ⊆ T (R), where T (R) is the total
quotient ring of R. Jaballah (the second-named author) asked in [27, Question
1] for a characterization of FO-domain. Gilmer in [22] gave such characterization.
A ring R is called an FC-ring if each chain of distinct overrings of R is finite,
and R is said to be an FO-ring if R has finitely many overrings. A ring R ∈ H
is said to be a φ-FC-ring if φ(R) is an FC-ring, and R is called a φ-FO-ring if
φ(R) is an FO-ring.

We remind the reader with the following important properties of φ-rings (for
(1) through (5) see [8].) Let R ∈ H. Then

(1) φ(R) ∈ H0.
(2) Ker(φ) ⊆ Nil(R).
(3) Nil(T (R)) = Nil(R).
(4) Nil(RNil(R)) = φ(Nil(R)) = Nil(φ(R)) = Z(φ(R)).
(5) T (φ(R)) = RNil(R) is quasilocal with maximal ideal Nil(φ(R)), and

RNil(R)/Nil(φ(R)) = T (φ(R))/Nil(φ(R)) is the quotient field of
φ(R)/Nil(φ(R)).



SOME FINITENESS CONDITIONS ON THE SET OF OVERRINGS OF A φ-RING 399

(6) If R ∈ H0 and D = R/Nil(R), then D′ = R′/Nil(R) [2, Lemma 2.8].
The technique of idealization as in [24] is used in this paper to construct ex-

amples. Recall that for an R-module M , the idealization of M over R is the ring
formed from R ×M by defining addition and multiplication as (r, a) + (s,m) =
(r + s, a+m) and (r, a)(s,m) = (rs, rm+ sa), respectively.

2. φ-FC-Extensions

Let R ⊆ S be a ring extension. Then [R,S] denotes the set of all rings that
are between R and S, and (R : S) = {r ∈ R | rS ⊆ R} is the conductor of R

in S. We start with the following (trivial) lemma.

Lemma 2.1. Suppose that R ⊆ S is a ring extension such that Nil(R) =
Nil(S). Then

(1) R/Nil(R) = S/Nil(R) if and only if R = S.
(2) R ⊆ S is an FC(FO)-extension if and only if R/Nil(R) ⊆ S/Nil(R) is

an FC(FO)-Extension.
(3) [R,S] satisfies the d.c.c(a.c.c)-condition if and only if

[R/Nil(R), S/Nil(R)] satisfies the d.c.c(a.c.c)-condition.
(4) (R/Nil(R) : S/Nil(R)) = (R : S)/Nil(R).

The following result is a generalization of [23, Theorem 5].

Theorem 2.2. Let R ∈ H0. Then each α ∈ T (R) is the root of a polynomial
in R[X] with unit coefficient (i.e. one of the coefficients is a unit) if and only if
the integral closure of R (in T(R)) is a Prüfer ring. In particular, an integrally
closed ring R ∈ H0 is a Prüfer ring if and only if each α ∈ T (R) is the root of
a polynomial in R[X] with unit coefficient.

Proof. Let D = R/Nil(R). Suppose that R′ is a Prüfer ring. Let α ∈ T (R).
Since D is a Prüfer domain by [3, Theorem 2.6] and T (D) = T (R)/Nil(R),
α+Nil(R) is the root of a polynomial in D[X] with unit coefficient. Since an
element b ∈ R is a unit of R if and only if b + Nil(R) is a unit of D, we
conclude that α is the root of a polynomial in R[X] with unit coefficient.

Conversely, suppose that each α ∈ T (R) is the root of a polynomial in R[X]
with unit coefficient. Then it is clear that each β ∈ T (R)/Nil(R) is the root
of a polynomial in (R/Nil(R))[X] with unit coefficient. Since T (R)/Nil(R) is
the total quotient field of the integral domain R/Nil(R), the integral closure of
R/Nil(R) ( in T (R)/Nil(R)) is a Prüfer domain by [23, Theorem 5]. Since the
integral closure of R/Nil(R) is of the form of R′/Nil(R) by [2, Lemma 2.8], we
conclude that R′ is a Prüfer ring by [3, Theorem 2.6]. �
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The following result is a generalization of [22, Corollary 1.2].

Corollary 2.3. Let R ∈ H0. If d.c.c is satisfied in [R, T (R)], then R′ is a
Prüfer ring. In particular, the integral closure of an FC-ring in H0 is a Prüfer
ring.

Proof. Since [R, T (R)] satisfies the d.c.c, each α ∈ T (R) is the root of a
polynomial in R[X] with unit coefficient by [22, Proposition 1.1]. Thus the
claim is now clear by Theorem 2.2 and by the fact that an FC-ring satisfies the
d.c.c condition. �

Let S be a ring extension of a ring R. Then recall that S is said to be
strongly affine over R if every subring B of S such that R ⊆ B ⊆ S is finitely
generated as a ring extension of R. The following result is a generalization of
[22, Proposition 1.3].

Proposition 2.4. Let R ∈ H0. If R is an FC-ring, then T (R) is strongly affine
over R; hence the integral closure of R (inside T (R)) is a finite R-module.

Proof. Suppose that R is an FC-ring. Let D = R/Nil(R). Since T (D) =
T (R)/Nil(R), D is an FC-domain by Lemma 2.1. Thus T (D) is strongly affine
over D by [22, Proposition 1.3]. It is easily verified that T (D) is strongly affine
over D if and only if T (R) is strongly affine over R. Since D′ = R′/Nil(R)
and D′ is a finite D-module by [22, Proposition 1.3], it is easily verified that R′

is a finite R-module. �

The following result is a generalization of [22, Theorem 1.5].

Theorem 2.5. Let R ∈ H0 be an integrally closed ring. The following conditions
are equivalent:

(1) R is a Prüfer ring with finitely many prime ideals;
(2) R/Nil(R) is a Prüfer domain with finitely many prime ideals;
(3) R is a finite dimensional Prüfer ring with finitely many maximal ideals;
(4) R/Nil(R) is a finite dimensional Prüfer domain with finitely many max-

imal ideals;
(5) R/Nil(R) is an FC-domain;
(6) R/Nil(R) is an FO-domain;
(7) R is an FO-ring;
(8) R is an FC-ring.

Proof. Let D = R/Nil(R). Then D is an integral domain with quotient field
T (R)/Nil(R). Since D′ = R′/Nil(R) and R is an integrally closed ring, we
conclude that D is an integrally closed domain. We will prove
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(2) ⇒ (3) and (8) ⇒ (1). The reader should be able to verify the other
implications. (2) ⇒ (3). Since D is a Prüfer domain with finitely many prime
ideals, D is a finite dimensional Prüfer domain with finitely many maximal
ideals by [22, Theorem 1.5]. Thus R is a finite dimensional Prüfer ring with
finitely many maximal ideals by [3, Theorem 2.6]. (8) ⇒ (1). Since D is an FC-
domain, D is a Prüfer domain with finitely many prime ideals by [22, Theorem
1.5]. Hence R is a Prüfer ring by [3, Theorem 2.6] and it is clear that R has
finitely many prime ideals. �

Observe that if R ∈ H, then φ(R) ∈ H0. Hence in view of Theorem 2.2,
Corollary 2.3, and Proposition 2.4, we have the following corollary.

Corollary 2.6. Let R ∈ H. Then all the following statements hold:

(1) Each α ∈ RNil(R) is the root of a polynomial in φ(R)[X] with unit
coefficient if and only if the integral closure of φ(R) (in RNil(R)) is a
Prüfer ring. In particular, a φ- integrally closed ring R ∈ H is a φ-
Prüfer ring if and only if each α ∈ T (R) is the root of a polynomial in
φ(R)[X] with unit coefficient.

(2) If d.c.c is satisfied in [φ(R), RNil(R)], then φ(R)′ is a Prüfer ring. In
particular, the φ-integral closure of a φ−FC-ring in H is a Prüfer ring.

(3) If R is a φ−FC-ring, then RNil(R) is strongly affine over φ(R); hence
the integral closure of φ(R) (inside RNil(R)) is a finite φ(R)-module.

Theorem 2.7. Let R ∈ H. The following statements hold :

(1) R is a φ-FC-ring if and only if R/Nil(R) is an FC-domain.
(2) R is a φ-FO-ring if and only if R/Nil(R) is an FO-domain.

Proof. (1) Suppose that R is a φ-FC-ring. Then φ(R) is an FC-ring. Let
D = φ(R)/Nil(φ(R)). Since T (D) = T (φ(R))/Nil(φ(R)) = RNil(R)/Nil(φ(R)),
we conclude that D is an FC-domain by Lemma 2.1. Since D is ring-isomorphic
to R/Nil(R) by [3, Lemma 2.5], we conclude that R/Nil(R) is an FC-domain.
Conversely, suppose that F = R/Nil(R) is an FC-domain. Again, by Lemma
2.1 φ(R) is an FC-ring, and thus R is a φ-FC-ring.

(2) Just use a similar argument as in (1). �

Let R ∈ H. Then R is a φ-Prüfer ring if and only if R/Nil(R) is a Prüfer
domain by [3, Theorem 2.6]. In view of Theorem 2.5, for a ring R ∈ H we have
the following implications:
R is a φ-Prufer ring with finitely many prime ideals ⇔ R is a φ-FC and a

φ-integrally closed ring ⇔ R is a φ-FO and a φ-integrally closed ring.



402 AYMAN BADAWI AND ALI JABALLAH

The following result is a generalization of [22, Corollary 1.6].

Corollary 2.8. A φ-FC-ring in H has finitely many prime ideals.

Proof. Let D = R/Nil(R). Since D is an FC-domain by Theorem 2.7, D
has finitely many prime ideals by [22, Corollary 1.6], and hence it is clear that R

has finitely many prime ideals. �

The following is an example of a non-domain FC-ring R ∈ H0 that is not an
FO-ring.

Example 2.9. Let J be the FC-domain that is not an FO-domain constructed
in [22, Example 1.7] and let L be the quotient field of J . Set R = J(+)L. It
is easily verified that Z(R) = Nil(R) = {0}(+)L is a divided prime ideal of R,
and hence R ∈ H0. Since R/Nil(R) is ring-isomorphic to J , we conclude that
R/Nil(R) is an FC-domain that is not an FO-domain. Hence R is an FC-ring
that is not an FO-ring by Lemma 2.1.

The following result is a generalization of [22, Theorem 2.3].

Theorem 2.10. Let R ∈ H0. Then R is an FC-ring if and only if a.c.c. and
d.c.c. hold in both [R,R′] and [R′, T (R)].

Proof. Let D = R/Nil(R). Then D is an integral domain with quotient field
T (R)/Nil(R) and D′ = R′/Nil(R). Suppose that R is an FC-ring. Then
D is an FC-domain by Lemma 2.1. Thus a.c.c. and d.c.c. hold in both [D,D′]
and [D′, T (D)] by [22, Theorem 2.3], and hence a.c.c. and d.c.c. hold in both
[R,R′] and [R′, T (R)] by Lemma 2.1. Conversely, suppose that a.c.c. and d.c.c.
hold in both [R,R′] and [R′, T (R)]. Then a.c.c. and d.c.c. hold in both [D,D′]
and [D′, T (D)] by Lemma 2.1. Thus D is an FC-domain by [22, Theorem 2.3].
Hence R is an FC-ring by Lemma 2.1. �

In view of Theorems 2.7, 2.10, and [22, Theorem 2.4], we have the following
corollary.

Corollary 2.11. Let R ∈ H. The following statements are equivalent:

(1) R is a φ- FC-ring;
(2) a.c.c and d.c.c hold in both [R/Nil(R), (R/Nil(R))′] and

[(R/Nil(R))′, RNil(R)/Nil(RNil(R))].

The following result is a generalization of [22, Theorem 2.3].
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Theorem 2.12. Suppose that R ∈ H has finitely many maximal ideals. Then
R is a φ-FC-ring if and only if RM is a φ-FC-ring for each maximal ideal M

of R.

Proof. Set D = R/Nil(R). Suppose that R is a φ-FC-ring. Let M be a
maximal ideal of R. Since D is an FC-domain by Theorem 2.7, DM/Nil(R) =
RM/Nil(RM ) is an FC-domain by [22, Theorem 2.4]. Hence RM is a φ-FC-ring
by Theorem 2.7. Conversely, suppose that RM is a φ-FC-ring for each maximal
ideal M of R. Hence RM/Nil(RM ) = DM/Nil(R) is an FC-domain by Theorem
2.7 for each maximal ideal M of R. Thus, D = R/Nil(R) is an FC-domain by
[22, Theorem 2.4], and hence R is a φ-FC ring by Theorem 2.7. �

Corollary 2.13. Suppose that R ∈ H0 has finitely many maximal ideals. Then
R is an FC-ring if and only if RM is an FC-ring for each maximal ideal M

of R.

The following result is a generalization of [22, Theorem 2.14].

Theorem 2.14. Let R ∈ H0 and let C be the conductor of R in R′. Then
R is an FC-ring if and only if the following three conditions are satisfied:

(1) R′ is a Prüfer ring with finitely many prime ideals.
(2) R′ is a finite R-module.
(3) R/C is an Artinian ring.

Proof. Let D = R/Nil(R). Suppose that R is an FC-ring. Then the conditions
(1) and (2) hold by Theorem 2.5, Corollary 2.8, and Proposition 2.4. Let J be
the conductor of D in D′. Then J = C/Nil(R) by Lemma 2.1. Since D

is an FC-domain by Lemma 2.1 and R/C ∼= R/Nil(R)
C/Nil(R)

∼= D/J , we conclude
that D/J is an Artinian ring by [22, Theorem 2.14], and hence R/C is an
Artinian ring. Conversely, suppose that the conditions (1), (2), and (3) hold.
Since J = C/Nil(R) is the conductor of D in D′ and R/C ∼= D/J , D/J is an
Artinian ring. Since R′ is a finite R-module and D′ = R′/Nil(R), we conclude
that D′ is a finite D-module. Since R′ is a Prüfer ring with finitely many prime
ideals, D is a Prüfer domain with finitely many prime ideals by [3, Theorem 2.6].
Thus D is an FC-domain by [22, Theorem 2.14]. Hence R is an FC-ring by
Lemma 2.1. �

In view of Theorem 2.14 and Theorem 2.7, we have the following corollary.

Corollary 2.15. Let R ∈ H, D = R/Nil(R), and let C be the conductor of
φ(R) in φ(R)′ . The following statements are equivalent:
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(1) R is a φ-FC-ring.
(2) The following three conditions are satisfied:

(a) D′ is a Prüfer ring with finitely many prime ideals.
(b) D′ is a finite D-module.
(c) D/N is an Artinian ring, where N is the conductor of D in D′.

Combining Theorems 2.10, Corollary 2.13, and Theorem 2.14 we arrive at the
following corollary.

Corollary 2.16. Let R ∈ H0, and let C be the conductor of R in R′. The
following statements are equivalent:

(1) R is an FC-ring.
(2) a.c.c. and d.c.c. hold in both [R,R′] and [R′, T (R)].
(3) Max(R) is finite and RM is an FC-ring for each maximal ideal M

of R.
(4) The following three conditions are satisfied:

(a) R′ is a Prüfer ring with finite spectrum;
(b) R′ is finite R-module;
(c) R/C is an Artinian ring.

The following result is a generalization of [26, Corollary 3.4].

Theorem 2.17. Let R ∈ H0 be a Prüfer ring. If R is an FC-ring, then each
maximal chain R = R0 ⊂ R1 ⊂ R2 · · · ⊂ Rn = T (R) of overrings of R has
length n =| Spec(R) | −1.

Proof. Let D = R/Nil(R). Then D is a Prüfer domain by [3, Theorem 2.6].
Let R = R0 ⊂ R1 ⊂ R2 · · · ⊂ Rn = T (R) be a maximal chain of overrings of R.
Since T (D) = T (R)/Nil(R), D = R/Nil(R) ⊂ R1/Nil(R) ⊂ R2/Nil(R) · · · ⊂
Rn/Nil(R) = T (D) is a maximal chain of overrings of D, and hence it has length
| Spec(D) | −1 by [26, Corollary 3.4]. Since | Spec(D) |=| Spec(R) |, we conclude
that the maximal chain R = R0 ⊂ R1 ⊂ R2 · · · ⊂ Rn = T (R) of overrings of
R has length | Spec(R) | −1.

�

Corollary 2.18. Let R ∈ H be a φ-Prüfer ring. If R is a φ-FC-ring, then the
following statements hold:

(1) Each maximal chain φ(R) = R0 ⊂ R1 ⊂ R2 · · · ⊂ Rn = RNil(R) of
overrings of φ(R) has length n =| Spec(R) | −1.

(2) Each maximal chain R/Nil(R) = R0 ⊂ R1 ⊂ R2 · · · ⊂ Rn =
RNil(R)/Nil(RNil(R)) of overrings of R/Nil(R) has length
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n =| Spec(R) | −1.

Proof. Just observe that φ(R) ∈ H0 and | Spec(R) |=| Spec(φ(R)) |=
| Spec(R/Nil(R)) | by [16, Lemma 2.1]. �

The following result is a generalization of [17, Theorem 3.6 and Proposition
3.8].

Theorem 2.19. Let R ∈ H be of finite Krull dimension d ≥ 1. The following
statements are equivalent:

(1) R is a φ-chained ring;
(2) R/Nil(R) is a valuation domain;
(3) | [R/Nil(R), RNil(R)/Nil(RNil(R))] |= d+ 1;
(4) | [φ(R), RNil(R)] |= d+ 1;
(5) For each chain of overrings φ(R) = R0 ⊂ R1 ⊂ R2 · · · ⊂ Rn = RNil(R)

of φ(R), we have n ≤ d;
(6) For each chain of overrings R/Nil(R) = R0 ⊂ R1 ⊂ R2 · · · ⊂ Rn =

RNil(R)/Nil(RNil(R)) of R/Nil(R), we have n ≤ d.

Proof. Let D = R/Nil(R) and F = φ(R)/Nil(φ(R)). Then T (D) ∼= T (F ) =
RNil(R)/Nil(RNil(R)). (1) ⇐⇒ (2). See [3, Lemma 2.7]. (2) ⇒ (3). Since D is
ring-isomorphic to F by [3, Lemma 2.5], F is a valuation domain and the Krull
dimension of F is d. Hence | [F, T (F )] |=| [D,T (D)] |= d+ 1 by [17, Theorem
3.6 and Proposition 3.8]. (3) ⇒ (4) ⇒ (5) ⇒ (6) . These implications are clear
since there is a one-to-one correspondence between the overrings of F and the
overrings of φ(R). (6) ⇒ (1). By [17, Theorem 3.6 and Proposition 3.8], D is
a valuation domain, and thus R is a φ-chained ring by [3, Lemma 2.7]. �

In the following result, we show that a φ-FC-ring is a pullback of an FC-domain.

Theorem 2.20. Let R ∈ H. Then R is a φ-FC-ring if and only if φ(R) is
ring-isomorphic to a ring A obtained from the following pullback diagram:
A −→ A/M

↓ ↓
T −→ T/M

where T is a zero-dimensional quasilocal ring with maximal ideal M , A/M is
an FC-subring of T/M , the vertical arrows are the usual inclusion maps, and the
horizontal arrows are the usual surjective maps.

Proof. Suppose φ(R) is ring-isomorphic to a ring A obtained from the given
diagram. Then A ∈ H and Nil(A) = Z(A) = M . Since A/M is an FC-domain,
A is a φ-FC-ring by Theorem 2.7(1), and thus R is a φ-FC-ring.
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Conversely, suppose that R is a φ-FC-ring. Then, letting T = RNil(R),
M = Nil(RNil(R)), and A = φ(R) yields the desired pullback diagram. �

It is clear that if R ∈ H is a φ − FC-ring, then R is an FC-ring. The
following is an example of an FC-ring R ∈ H but R is not a φ− FC-ring.

Example 2.21. Let D be a Prüfer domain with infinitely many maximal ideals
and let K be the quotient field of D. Set R = D(+)(K/D). It is easily verified
that R ∈ H and every nonunit of R is a zero-divisor of R. Thus R = T (R),
so R is φ-integrally closed. Hence R is an FC-ring. Since R/Nil(R) is ring-
isomorphic to D, we conclude that R/Nil(R) is not an FC-domain by Corollary
??, and thus R is not a φ− FC-ring by Theorem 2.7(1).

3. φ-FO-Extension

The results in this section are parallel to those for FC-extension in the previous
section and the proofs are similar too. Hence we will only state the results of this
section without giving proofs.

The following result is a generalization of [22, Theorem 3.1], also see [1, The-
orem 2.6].

Theorem 3.1. Let R ∈ H0. Then R is an FO-ring if and only if each of the
sets [R,R′], and [R′, T (R)] is finite.

The following result is a generalization of [22, Theorem 3.2].

Theorem 3.2. Let R ∈ H0 with finitely many maximal ideals. Then R is an
FO-ring if and only if RM is an FO-ring for each maximal ideal M of R.

Anderson, Dobbs, and Mullins [1] and [2] investigated finiteness of [R,S] for
a ring extension R ⊆ S. If [R,S] is finite, they say R ⊆ S has FIP. The
following result is a generalization of [22, Theorem 3.4]

Theorem 3.3. Let R ∈ H0, and let C be the conductor of R in R′. Then R

is an FO-ring if and only if R′ is a Prüfer ring with finitely many prime ideals
and the extension R/C ⊂ R′/C has FIP.

Combining Theorem 3.1, 3.2, and 3.3 we arrive at the following corollary.

Corollary 3.4. Let R ∈ H0, and let C be the conductor of R in R′. The
following statements are equivalent:

(1) R is an FO-ring;
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(2) R has finitely many maximal ideals and RM is an FO-ring for each
maximal ideal M of R;

(3) R′ is a Prüfer ring with finitely many prime ideals and R/C ⊂ R′/C

has FIP.

A similar argument as in Theorem 2.20, one can easily verify the following
result.

Corollary 3.5. Let R ∈ H. Then R is a φ-FO-ring if and only if φ(R) is
ring-isomorphic to a ring A obtained from the following pullback diagram:
A −→ A/M

↓ ↓
T −→ T/M

where T is a zero-dimensional quasilocal ring with maximal ideal M , A/M
is an FO-subring of T/M , the vertical arrows are the usual inclusion maps, and
the horizontal arrows are the usual surjective maps.
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