Final Exam, MTH 320, SPRING 2009

Ayman Badawi

WORK OUT ONLY FOUR QUESTIONS

QUESTION 1. (i) Let $a, b \in a$ group (M, *) such that $|b| = k < \infty$. Show that $|a * b * a^{-1} = |b|$.

(ii) Find a group homomorphism, say f, from $(Z_{10}, +_{10})$ into (Z_5^*, \times_5) such that $Ker(f) \neq \{e\}$. Find image (f). Find Ker(f).

QUESTION 2. Given that H is a normal cyclic subgroup of (M, *). Let K be a subgroup of H. Prove that K is also a normal subgroup of M. (We know that K is a subgroup of M, just show it is normal in M).

QUESTION 3. (i) We know that $6/8 + 3Z \in Q/3Z$. Find |6/8 + 3Z|.

(ii) Give me an example of a group with 49 elements that is not cyclic .

(iii) Give me an example of two group (M, *) and (H, *) such that H is a normal subgroup of M and M/H is cyclic but M is not cyclic.

QUESTION 4. (i) Given (M, *) is a group and H is a subgroup of Z(M) such that $(M/H, \wedge)$ is cyclic. Prove that (M, *) is an abelian group.

(ii) Let Q^+ be the set of all nonzero positive rational numbers. We know that (Q^+, \times) is a group. Let $f : (Z, +) \to (Q^+, \times)$ be a group homomorphism. Show that f(a) = 1 for every $a \in Z$

QUESTION 5. (i) Let (M, *) be a a finite group and H be a normal subgroup of M. Given $a * H \in M/H$ such that $|a * H| = n < \infty$. Prove that M must have an element of order n.

(ii) Give me two elements, say a and b, in the group $[(Z_{33}, +_{33}) \oplus (Z_3^*, \times_3)]$ such that |a| = |b| = 22.

QUESTION 6. Let f be a group-homomorphism from (M, *) into (H, \Box) . Let K be a subgroup of H. 1) Show that $D = f^{-1}(K) = \{m \in M \mid f(m) \in K\}$ is a subgroup of M.

2) If K is also normal in H, then show that D in part (1) is also normal in M.

Faculty information

Ayman Badawi, Department of Mathematics & Statistics, American University of Sharjah, P.O. Box 26666, Sharjah, United Arab Emirates. E-mail: abadawi@aus.edu, www.ayman-badawi.com