, MTH 320, SPRING 2009

Ayman Badawi

QUESTION 1. Let f be a group-isomorphism from $\left(M_{1}, *\right)$ into $\left(M_{2}, \square\right)$.
a) We proved in the class that if $a \in M_{1}$ and $|a|=n<\infty$, then $|f(a)|=n$. Now assume that $|a|=\infty$. Prove that $|f(a)|=\infty$.
b) Let H be a normal subgroup of M_{1}. We know that $f(H)$ is a subgroup of M_{2}. ONLY PROVE THAT $K=f(H)$ is normal in M_{2}. (hint: Let $c \in M_{2}$. Show that $c K=K c$)
c) Let $b \in M_{1}$. Suppose that the equation $x^{m}=b$ has exactly k distinct solutions in M_{1}, say $a_{1}, a_{2}, \ldots, a_{k} \in M_{1}$. Prove that the equation $x^{m}=f(b)$ has exactly k distinct solutions in M_{2}. [Hint: Show that $f\left(a_{1}\right), f\left(a_{2}\right), \ldots, f\left(a_{k}\right)$ are distinct solutions to the equation. Then you must show there are no other solutions to the equation in M_{2}, so take $d \in M_{2}$ such that $d^{m}=f(b)$ and show that d must be one of the $f\left(a_{i}\right)$.]

QUESTION 2. Show that $\left(U\left(Z_{9}\right), x_{9}\right)$ is group-isomorphic to $\left(Z_{3},+_{3}\right) \oplus\left(Z_{2},+_{2}\right)$. Assume f is a group-isomorphism from $\left(U\left(Z_{9}\right), \times_{9}\right)$ into $\left(Z_{3},+_{3}\right) \oplus\left(Z_{2},+_{2}\right)$. What are the possibilities for $f(2)$?

QUESTION 3. I claim that $\left(U\left(Z_{8}\right), \times_{8}\right)$ is group-isomorphic to $\left(U\left(Z_{12}, \times_{12}\right)\right.$. Prove my claim by finding a map f from $\left(U\left(Z_{8}\right), \times_{8}\right)$ into $\left(U\left(Z_{12}, \times_{12}\right)\right.$ such that f is 1-1, onto, and group-homomorphism. If you do not believe me, then tell me why?

QUESTION 4. Suppose $(M, *)$ is a finite abelian group with m elements and let n be a positive integer such that $g c d(m, n)=1$. Let f be a map from $(M, *)$ into itself (i.e., into $(M, *)$ such that $f(a)=a^{n}$ for every $a \in M$. Show that f is a group-isomorphism.

QUESTION 5. It is easy to prove that the intersection of two subgroups of M is a subgroup of M (so do not prove that). However
a) Let $a \in(M, *)$ such that $|a|=28$. Hence $((a), *)$ is a cyclic group with 28 elements. Thus we know that $H=\left(a^{10}\right) \cap\left(a^{21}\right)$ is a subgroup of (a). Since (a) is cyclic, we know that H is cyclic. How many elements are in H ? Write down the elements in H. What are the elements in H that generate H ? Now we know that $((a) / H, \wedge)$ is a group. Find all elements of $(a) / H$. CALCULATE the order of each element in $(a) / H$. Is $((a) / H, \wedge)$ groupisomorphic to $\left(Z_{n},+_{n}\right)$ for some n ? if yes, find n and tell me WHY??

We know that every subgroup of $(Z,+)$ is of the form $n Z$ for some $n \geq 0$. Let $H_{1}=21 Z, H_{2}=15 Z$. Hence we know that $H_{1} \cap H_{2}$ is a subgroup of Z and thus $H_{1} \cap H_{2}=m Z$ for some m. Find m.

QUESTION 6. Let H be a subgroup of Z. Say $H=10 Z$. Show there is a group-homomorphism f from $\left(Q^{*}, \times\right)$ into $(H,+)$ such that f is onto, i.e., $\operatorname{Image}(f)=H$. (nice..right?)

QUESTION 7. (the NICEST of all) Show that there is exactly one group-homomorphism, say f, from $(Z,+)$ into $\left(Q^{*}, \times\right)$ such that $\operatorname{Ker}(f) \neq\{0\}$.

QUESTION 8. Calculate the order of each element in $\left(\left(U\left(Z_{12}\right), \times_{12}\right) \oplus\left(Z_{2},+_{2}\right)\right)$

QUESTION 9. We know that $(Z,+)$ is a normal subgroup of $(Q,+)$. Show that $(Q / Z, \wedge)$ is an infinite group but each element in Q / Z is of finite order.

QUESTION 10. Let F be a group-homomorphism from an abelian group $\left(M_{1}, *\right)$ with 30 elements into $\left(Z_{6},+6\right)$. Assume that F is surjective (ONTO), i.e., $\operatorname{Image}(F)=Z_{6}$. Prove that M_{1} is cyclic.

Faculty information

Ayman Badawi, Department of Mathematics \& Statistics, American University of Sharjah, P.O. Box 26666, Sharjah, United Arab Emirates.
E-mail: abadawi@aus.edu, www.ayman-badawi.com

