Exam I: MTH 221, Fall 2015

Ayman Badawi

QUESTION 1. (i) Given A is a 10×10 matrix such that $\operatorname{det}(A)=0$. Let B be the second column of A and consider the system of linear equations $A X=B$. Then
a. The system has no solutions (inconsistent).
b. $\{(0,1,0,0)\}$ is the solution set to the system.
e. The system has infinitely many solutions.
d. None of the above is correct.
(ii) Let $A=\left[\begin{array}{ccc}0 & a & b \\ 0 & -2 & c \\ 0 & 0 & 1\end{array}\right]$. Then $\operatorname{det}\left(A+3 I_{3}\right)=$ is
(a) 9
(b) 27
(e) 12
(d) 3
(iii) Let $A=\left[\begin{array}{cccc}2 & 4 & -1 & 2 \\ -3 & 7 & 11 & 23\end{array}\right], B=\left[\begin{array}{ccc}3 & 0 & 22 \\ -4 & 3 & 15.2 \\ 9 & 0 & 77.5 \\ -7 & 0 & 88\end{array}\right]$. Let $D=A B$. Then the second column of D is
(a) $\left[\begin{array}{l}12 \\ 21\end{array}\right]$
(b) $\left[\begin{array}{c}21 \\ 9 \\ 0\end{array}\right]$
(c) $\left[\begin{array}{c}0 \\ 21\end{array}\right]$
(d) Something else
(iv) Given A is a 4×4 matrix and $A \overrightarrow{2 R_{1}+R_{3} \rightarrow R_{3}} A_{1} \overrightarrow{3 R_{4}}\left[\begin{array}{cccc}1 & 3 & 4 & -1 \\ 0 & 3 & 1 & 8 \\ 0 & -3 & 2 & 1 \\ -1 & -3 & -4 & 4\end{array}\right]$. Then $\operatorname{det}\left(A^{T}\right)$
(a) 9
(b) 27
(c) $\frac{1}{9}$
(d) 51
(v) Given A is a 2×3 matrix and $A \overrightarrow{-2 R_{1}+R_{2} \rightarrow R_{2}} \quad B \quad \overrightarrow{4 R_{2}} \quad D=\left[\begin{array}{ccc}1 & 3 & 66 \\ 8 & 12 & 21\end{array}\right]$. Let F, W be two elementary matrices such that $F W A=D$. Then
(a) $W=\left[\begin{array}{ll}1 & 0 \\ 0 & 4\end{array}\right], \quad F=\left[\begin{array}{cc}1 & 0 \\ -2 & 1\end{array}\right], \quad$ (b) $F=\left[\begin{array}{cc}1 & 0 \\ 0 & 4\end{array}\right], \quad W=\left[\begin{array}{cc}1 & 0 \\ -2 & 1\end{array}\right] \quad$ (c) $F=\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 4 & 0 \\ 0 & 0 & 1\end{array}\right], \quad W=$ $\left[\begin{array}{lll}1 & 0 & 0 \\ -2 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]$
(d) Something else
(vi) Given A is a 3×3 matrix and $A \overrightarrow{-2 R_{1}+R_{2} \rightarrow R_{2}} \quad B \quad \overrightarrow{4 R_{2}} \quad D=\left[\begin{array}{ccc}1 & 3 & 66 \\ 8 & 12 & 21 \\ 1 & 2 & 62\end{array}\right]$. Then $\left[\begin{array}{ccc}1 & 0 & 0 \\ 0 & 1 & 0 \\ -1 & 0 & 1\end{array}\right]\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 4 & 0 \\ 0 & 0 & 1\end{array}\right]\left[\begin{array}{ccc}1 & 0 & 0 \\ -2 & 1 & 0 \\ 0 & 0 & 1\end{array}\right] A=$
(a) $\left[\begin{array}{ccc}1 & 3 & 66 \\ 8 & 12 & 21 \\ 1 & 2 & 62\end{array}\right]$
(b) $\left[\begin{array}{ccc}1 & 3 & 66 \\ 8 & 12 & 21 \\ 0 & -1 & -4\end{array}\right]$.
(c) D^{T}
(d) Something else
(vii) Given A is nonsingular matrix such that $A^{-1}=\left[\begin{array}{ccc}a & -3 & 2 \\ b & 1 & 1 \\ c & 0 & -3\end{array}\right]$, for some fixed numbers a, b, c. Consider the system of linear equations $A X=\left[\begin{array}{l}0 \\ 1 \\ 2\end{array}\right]$. Then
(a) It is possible that the system has no solution.
(b) $\{(1,3,-6)\}$ is the solution set of the system
(c) $\{(a-6, b+2, c)\}$ is the solution set of the system
(d) Not enough information in order to determine the solution set, but I am sure that it must have a unique solution.
(viii) Let $A=\left[\begin{array}{ccc}1 & 0 & 0 \\ -1 & 1 & 1 \\ -2 & 0 & 1\end{array}\right]$. Then $A^{-1}=$
(a) $\left[\begin{array}{ccc}1 & 0 & 0 \\ 1 & 1 & -1 \\ 2 & 0 & -1\end{array}\right]$
(b) $\left[\begin{array}{ccc}1 & 0 & 0 \\ -1 & 1 & -1 \\ 2 & 0 & 1\end{array}\right]$
(c) There is no inverse of A
(d) Something else
(ix) Given $A=\left[\begin{array}{lll}a & 2 & 0 \\ b & 1 & 4 \\ c & 0 & d\end{array}\right]$ such that $\operatorname{det}(A)=-4$ (i.e, A is invertible). Then the (1,3)-entry of A^{-1} is
(a) $\frac{c}{-4}$
(b) $\frac{c}{4}$
(e) -2
(d) something else
(x) Let $A=\left[\begin{array}{ccc}2 & 4 & a \\ 0 & 2 & b \\ 0 & -2 & d\end{array}\right]$ such that $\operatorname{det}(A)=2$. Consider the system $A\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right]=\left[\begin{array}{l}4 \\ 2 \\ 3\end{array}\right]$. Then the value of x_{3}
(a) cannot be determined, I need more info.
(b)5
(c) 10
(d) 6
(e) Something else
(xi) Let $A=\left[\begin{array}{ccc}2 & a & b \\ -2 & 4 & 7 \\ 4 & 2 a & 10\end{array}\right]$. The values of a, b where the system $A X=\left[\begin{array}{c}\sqrt{7} \\ 2015 \\ 36.23\end{array}\right]$ has unique solution are :
(a) $a \neq-4$ and $b \neq 5$
(b) $a \neq 0$ and b can be any real number
(c) $a=0$ and $b \neq 0$ or $b=0$ and $a \neq 0$. (d) Something else
(xii) Given A is a 2×2 matrix such that $A\left[\begin{array}{ll}3 & 2 \\ 0 & 1\end{array}\right]-2 A=I_{2}$. Then $A=$
(a) $\left[\begin{array}{cc}1 & 2 \\ 0 & -1\end{array}\right]$
(b) $\left[\begin{array}{cc}-1 & -2 \\ 0 & 1\end{array}\right]$
(c) $\frac{1}{3}\left[\begin{array}{cc}1 & -2 \\ 0 & 3\end{array}\right]$
(d) Something else
(xiii) Given the augmented matrix of a system of linear equations $\left[\begin{array}{ccccc}2 & 4 & 2 & 0 & 4 \\ -1 & -2 & -1 & 1 & -1 \\ 3 & 6 & 4 & 0 & 3 \\ -1 & -2 & -1 & 0 & -2\end{array}\right]$. The solution set of the system is
(a) $\left\{\left(5-2 x_{2}, x_{2},-3,1\right) \mid x_{2} \in R\right\}$
$\left\{\left(-1+x_{4}, 1,-3, x_{4}\right) \mid x_{4} \in R\right\}$
$\{(5,0,-3,1)\}$
(d) Something else
(xiv) Given the augmented matrix of a system of linear equations $\left[\begin{array}{cccc}1 & -1 & 3 & 4 \\ -1 & 1 & a & 6 \\ -2 & 2 & b & -8\end{array}\right]$. The values of a, b that make the system consistent (i.e, has a solution)
(a) $a \neq-3$ and $b=-6$
(b) a can be any real number, $b \neq-6$
(c) $a=-3$ and $b=-6$
(d) Something else.

Faculty information

