Α	Course Number & Title	Discrete Mathematics – MTH 213						
В	Pre/Co-requisite(s)	Prerequisite: N	ИТН 102	or MTI	H 103			
С	Number of credits	3						
D	Faculty Name	Ayman Badaw	i					
E	Term/ Year	Spring 2025						
F	Sections	CRN		Days	Tir	ne		Location
		20960		TR	14:00-	-15:15		Nab 006
G	Instructor	Offic			alambana		Ema	-:I
	Information	NAB 2		10	elephone			
			202			0	abadawi@	vaus.edu
		Office Hours:	15.15.3	TD: 12.	40 12.40			
		By appoin	•		40—13:40 e			
Н	Course Description	(Equivalent to	CMP 213	3). Cov	ers proposition	nal and predica	ate calcul	us, sets, significant
	from Catalog	` ·		•		•		functions, the principle
				tion, pr	oof technique	s, recursive de	efinitions,	counting, relations,
		graphs, and trees.						
		Computer science and computer engineering students who have not yet been formally admitted to the second-year level in their major are not eligible to take this course.						
	Course Learning	Course Learning Outcomes (CLOs) Assessment Instrument(s)						
•	Course Learning Outcomes and	Upon completion of this course, students will be able						
Assessment to:								
	mstruments	CLO1: Apply	logic an	d math	ematical reaso	ning		Exam 1 and/or Final
						•		Exam I ana/or i mai
		CLO2: Perfo and proof b			thods of proo	f including ind	uction	Exams 1, 2 and/or
								Final
		CLO3: Identify and apply basic set theory principles.				Exam 2 and/or Final		
		CLO4: Identify and apply relations, and functions including one-						
		to-one and	onto fun	ctions.				Exam 2 and/or Final
			-	-	s of counting in	_	ddition	
		and multipli	cation ru	iles, an	d the pigeonh	ole principle.		Final
					ncepts, such as			
					problem, to r -life problems.		e a	
					·		والمناسم	Exam 1 and/or Final
		CLO7: Analyze different type of algorithms and their complexity and the order of algorithms.						

J	Mapping	CL	O's	to
			PLO)'s

Course Learning Outcomes	Program Learning Outcome:		
	The BSMTH CLOs are listed at the end of this document		
1. CLO1, CLO2	PLO1, PLO2, PLO3, PLO5, PLO8		
2. CLO3, CLO5	PLO1, PLO8		
3. CLO4	PLO1, PLO6, PLO8		
4. CLO6	PLO6, PLO8		
5. CLO7	PLO1, PLO6		

K Textbook and other Instructional Material and Resources

Required: Badawi- Class- Notes, materials on I-Learn, essential old quizzes, notes, and exams on the MTH 213 webpage: https://ayman-badawi.com/MTH213.html

======

(Optional) Susanna S. Epp, Discrete Mathematics with Applications, Metric Edition, 5th Edition, Brooks/Cole, Cengage Learning, 2020.

- **Sponsored students**: Contact the Office of Sponsored Students (Ms. Maha: mshushaa@aus.edu) for instructions on obtaining your access code.
- If you are **not** a sponsored student, you can buy the access code from the Bookstore (AllPrint). Instructions will follow soon.

L Teaching Methods

Lectures, oral presentations, and group discussion. All lecture notes and videos will be available on iLearn.

M Grading Scale, Grading Distribution, and Due Dates

Grading Scale (example)

93 – 100	4.0	Α	
89.00 – 92.99	3.7	A-	
86.00 - 88.99	3.3	B+	
81.00 - 85.99	3.0	В	
78.00 – 80.99	2.7	B-	

73.00 – 77.99	2.3	C+
68.00 - 72.99	2.0	С
62.00 - 67.99	1.7	C-
50.00 - 61.99	1.0	D
Less Than 50.00	0	F

Grading Distribution

Assessment Weight		Due Date (Week #)	
Quizzes	20%	Weekly/TBA	
Exam 1	25%	Thursday, March 6, in Class	
Exam 2	25%	Thursday, April 17, in Class	
Final Exam	30%	TBA	
Total	100%		

N Explanation of Assessments

There will be two exams, quizzes, and a comprehensive final exam.

- No make-up quiz will be given. If you miss a quiz for whatever reason, you will get
 a zero for that quiz. However, the lowest quiz grade will not count toward your
 grade.
- With a valid written excuse and making immediate arrangements with the instructor, a missed exam might be replaced with a make-up exam or the grade of the final exam and/or the average grade of all tests (including final) and/or quizzes

O Attendance

Students in this course are required to follow the AUS Attendance Policy as outlined in the AUS Undergraduate Catalog.

P	Student Academic
	Integrity Code
	Statement

Students MUST read the Student Academic Integrity Code outlined in the *AUS Undergraduate* Catalog and abide by the standards for academic conduct, students' rights and responsibilities and procedures for handling allegations of academic dishonesty.

Q Generative Al Course Policy

It is considered an academic integrity violation to represent the output of a generative artificial intelligence tool as your own work.

Schedule(but not in order; I recommend following class notes)

WEEK	CHAPTER	NOTES
1	1: Speaking Mathematically	1.1 Variables 2.1 Logical Forms and Logical Equivalence
2	2: The Logic of Compound Statements	2.2 Conditional Statements 2.3 Valid and Invalid Arguments
3	3: The Logic of Quantified Statements	3.1 Predicates and Quantified Statements I 3.2 Predicates and Quantified Statements II 3.3 Statements with Multiple Quantifiers 3.4 Arguments with Quantified Statements
4	4: Elementary Number Theory and Methods of Proofs	4.1 Direct Proof and Counterexample I: Introduction 4.2 Direct Proof and Counterexample II: Writing Advice 4.3 Direct Proof and Counterexample III: Rational Numbers
5		 4.4 Direct Proof and Counterexample IV: Divisibility 4.5 Direct Proof and Counterexample V: Division into Cases and the 4.7 Indirect Argument: Contradiction and Contraposition 4.8 Indirect Argument: Two Famous Theorems
6	5: Sequences, Induction, and Recursion	5.2 Mathematical Induction I 5.3 Mathematical Induction II 5.4 Strong Mathematical Induction
7		5.6 Defining Sequences Recursively5.7 Solving Recurrence Relations by Iteration5.8 Second-Order Linear Homogenous Recurrence Relations
8	6: Set Theory	1.2 The Language of Sets6.1 Definitions and the Elements Method of Proof6.2 Properties of Sets6.3 Disproof and Algebraic Proofs
9	7: Functions	1.3 The language of Relations and Functions7.1 Functions Defined on General Sets7.2 One-to-One and Onto, Inverse Functions
10	8: Relations	 8.1 Relations on Sets 8.2 Reflexivity, Symmetry, and Transitivity 8.3 Equivalence Relations 8.4 Modular Arithmetic with Applications to Cryptography
11	9: Counting and Probability	 9.1 Introduction 9.2 Possibility Tree and the Multiplication Rule 9.3 Counting Elements of Disjoint Sets: the Addition Rule 9.4 The Pigeonhole Principle
12		Introduction to Graphs 10.1 Trails, Paths, and Circuits
13	10: Graphs and Trees	10.4 Trees 10.5 Rooted Trees
14	10: Graphs and Trees/algorithm complexity	10.6 Spanning Trees and Shortest Paths
15	11: Analysis of Algorithm Efficiency	11.3 Application: Analysis of Algorithm Efficiency I, 11.2 O-, Omega-, and Theta-Notations
16	Final Exam (Comprehensive): TBA	<u>'</u>

* The teaching schedule is subject to change at the instructor's discretion, and students will be informed accordingly.

BSMTH Program Learning Outcomes

- **PLO1**: Demonstrate knowledge and understanding of diverse areas in mathematics such as analysis, algebra, discrete mathematics, and applied mathematics.
- PLO2: Construct and effectively communicate valid mathematical arguments.
- **PLO3**: Demonstrate a solid grounding in the ideas and techniques of mathematics.
- **PLO4**: Apply mathematical analysis and mathematical skills to problems in other disciplines.
- **PLO5**: Use discrete mathematical concepts in a variety of contexts such as algorithm development, computer programming and network development and implementation.
- PLO6: Demonstrate the ability to identify and carry out thoughtful approaches to problem solving.
- **PLO7**: Define and execute simple research tasks, and assist in more complex research tasks as required for professional work.
- **PLO8**: Formulate a problem in mathematical terms from descriptions written in language specific to disciplines associated with engineering, finance and the natural sciences.
- **PLO9**: Obtain the research skills necessary to adapt to change and remain current in the field and continue to learn new information, skills and concepts.