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1 Section : Course Syllabus



 COURSE SYLLABUS 

A Course Title 
& Number MTH 320:  Abstract  Algebra

B Pre/Co-
requisite(s) Prerequisite: MTH  221

C Number of 
credits 3

D Faculty Name Ayman Badawi

E Term/ Year Fall 20

G Instructor 
Information Instructor Office Telephone Email

Ayman Badawi Nab 262  abadawi@aus.edu

Office Hours: 1 :0 -1 : . Others by appointment, just email me 
.

H Course 
Description from 

Catalog

Covers semi-groups, monoids, groups, permutation groups, cyclic groups, Lagrange’s 
Theorem, subgroups, normal subgroups, quotient groups, (external) direct product of
groups, homomorphism and isomorphism theorems, Cayley’s Theorem, and 
introduction to rings and fields .

I Course Learning 
Outcomes

Upon completion of the course, students will be able to:
Demonstrate knowledge and understanding of groups, subgroups, order of an
element in finite groups
Demonstrate knowledge and understanding of the concept of cosets of a subgroup of a group

normal subgroups

Demonstrate knowledge and understanding of direct product of groups
Demonstrate knowledge and understanding of the concept of group homomorphism and

isomorphism.
Demonstrate knowledge and understanding of the method on classification of finite abelian

groups.

J Textbook and 
other 

Instructional 
Material and 

Resources 

Class Notes (Very Crucial and it should be the main source for this course).  
Materials on I-Learn. Personal Webpage (for old HW’s, Exam, Finals): 

http://www.ayman-badawi.com/MTH%20320.htm

(Optional not required) Contemporary Abstract Algebra, Seventh Edition  by  Joseph 
A. Gallian
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 COURSE SYLLABUS 

K Teaching and 
Learning 

Methodologies

All thoughts are popped out of the harmonic parts of my brain.  To me I just enjoy
listening to the musical abstract algebra tones.  

L Grading Scale, 
Grading 

Distribution, and 
Due Dates

Grading Scale
85 – 100 4.0 A
82 – 84 3.7 A-
77 - 81 3.3 B+
72 - 76 3.0 B
68 – 71 2.7 B-
64 –67 2.3 C+
58– 63 2.0 C
50– 57 1.7 C-
40– 49 1.0 D
Less than 
40 0 F

Note: Tests and other graded assignments due dates are set.  No addendum, make-up
exams, or extra assignments to improve grades will be given.

Grading Distribution

Assessment Weig
ht

Due Date

Homework % TBA
Two exams 50% TBA
Final 3 % TBA

Total 100%

M Explanation of 
Assessments The methods I used for assessments are very much standard methods that are used by 

most universities world-wide.

N Student
Academic 

Integrity Code 
Statement

All students are expected to abide by the Student Academic Integrity Code as 
articulated in the AUS undergraduate catalog. 
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 COURSE SYLLABUS 

SCHEDULE 

CHAPTER NOTES

01: Introduction to groups, semi-groups and 
monoids Introduction to the Course

02: Groups Examples and that include
the symmetric group

03: Finite groups, subgroups LaGrange theorem and its
application

04: subgroups and cosets Definition and properties

06:  Order of an element in a group Definition and its connection
with LaGrange theorem

08: Cyclic groups Definition and its properties

09: Cyclic groups More properties of cyclic
groups

10: Review Over the above material

11: Permutation group Definition and examples

13: Permutation group
Write an element as disjoint
cycles and determine the
order of an element, and
discuss even permutations

14: Normal subgroups and quotient groups Definition and properties

16: Group homomorphism and isomorphism Definition and examples

17: Group homomorphism and isomorphism First isomorphic Theorem
and its uses

18:  External and internal direct product of groups Definition, examples, and
properties

22: External and internal direct product of groups

More properties, determine
the order of an element of a
direct product of groups and
determine when a direct
product of groups is cyclic

Classification of finite abelian groups Just explain the method
without proofs

Presentations and Course Revision

Final Exam COMPREHENSIVE

5



6 TABLE OF CONTENTS

2 Section : Academic Integrity Measures



Academic Integrity Measures in Online Exams 

List the measures taken to ensure the academic integrity of the exam. 

 

Homework’s 1-6, each HW was posted on I-Learn. Students were given one 
week to ten days to solve the questions. All questions are essay.  

       Students used lockdown browser for exams one, two and final exam. All 
questions are essay. Students submitted their solution in a folder that I created 
on I-learn.  The outcome (scores) was not significantly different from a normal 
in-class exams (see the scores of the students in the excel-sheet) 

I am completely satisfied with the outcome of MTH320. 
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3.1 2017 All HWs with Solution



A ym a n  B a w i, D e
p

a rm e n t  o f  M a ï h ,  m u i c s  &  M m i s ï i c s .  A . .  ıi m   ·  U n i w r s i r
y  

o f s h m jah .  E .  O .  B o x  2 6 6 6 6 .  S h a r jah .  U n i t e d  A r a b  E m i r a c s .

F a c u lty  in fn r m a ü n n

bije c tiv e , w e  c n n c ıııd p  ıh a t f
-

'

� D fo r  e v e ry f  � D .  H e n c e  (D , o ) is  a  n o n -
a be lian  g ro u p ,  n o w  l i n d  a  a n d  c i n  D ]c o n d n u o u s  a n d  b ije c tiv e }.  A n d la . - o .  F ro m  c la s s  n o te s  w e  k n o w  ıh a t (D , o ) is m o n o id .  Sin c e  e v e ry  f  in  D  isb u t a . c ¢ c " f o r s o m e c  � D .  [H in t T h e re a e m a n y e x a m p le s ,  f o r e x a m

p
l e l e t D  =  {f : R  4  R s u c h m a t f  is

(iii) G iv e  m e  a n  e x a m p le  o f  a  g ro u p  (D ,  
· ) s u c h  M a t D  h a s  a n  e le m e n t a  � D  w h e re  a

2   
· b  =  b .  A

2  
f o r  e v u y  

b  �  D ,

d .  L e t k  =  124 1,  f i n d  a
z

,  a
3

,  
a

4
.  Is ıh is d iffe re n t fio m  (c )?

c .  t  k  =  112 1,  l i n d  a ,  
a

3

, a
4

.  w n at c a n  y o u  c o n c lu d e  a b o u t {a , a , a
3

, a
4

}
b .  L e t a - 1 2  W h a t  is  la l? .

a .  W n a t is e  � D ?

(D ,  
· ) is a n  a b e ıia n  g ıo u p  (S in c e  (z ao ,  

· ) is a s sn r ia te ,  w e  c o n c l u d e  ıh a t  (D ,  
· ) is a sso c ia te ) .

m u ltip ıic a ū o n  m o d u le  3 o .  construct th e  c a le y
'
s  ta b l e  o f  (D ,  

· ).  B y s ta rin g  a t th e  m b le  y o u  s h o u ıd  c o n c lu d e  th a t(ii) t  D - {6 , 1 2 , 1 8 , 2 4 }.  D e fin e  #  
o n  D  s u c h  ıh a t fo r  e v e ry  a , b  E  D  w e  h a w  a   ·  ö  =  a   

· b,  w h e r e   
· 

m e a n s

d .  If a - (1, 2 ) � D ,  t h e n  w h a t  i s  la l?

c .  If a - (1, 6 ) � D ,  ıh e n  w h a t  is a
-

1 ?

b .  If a - (7 , 4 ) � D ,  t h e n  w h a t  i s a

-
1 ?

a .  W h at is e  � D ?

g ro u p .  N o te  ıh at D  is a s so c iate  s in c e  (z 8 ,  
· ) a n d  (z ı, + ) a le  a s s o c ia re  (s o  n o  n e e d  to  c h e c k  M a t u n le s s  y o u  ¡n s is t!) .8 .  C o n stru c t M e  c ale y

'

s  t a ble  fo r (D , 
* ).  N a w  b y  sıa rin g  a t t

h e  ta b le ,  y o u  sh o u ld  c o n c lu d e  m a t D  is a n  a b e lia n

(i) L et D - {(a , b ) la  � {l, 7 } a n d  ö  � {0 , 2 , 4 , 6 }}.  Define *  o n  D  s u c h  th a t fo r  e v e ��

Q U E S H O N  1.  E x a m ples  o f g ro u p s

A y m a n  B a d a w i

H W  O n e  A b str a c t A lg e b r a , M T H  32 01 b 11 2 0 1 7

e q n n igh
t A w

an  B a d a w j 0 ı7

3 2 0  A bsır a c l A lp e
b n  F M  2 0 ı7 .  1- 1_

t a n a  a m m l  ıd @ß o o  \  Ç Ç
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A y m a n  B a d a w i .  D e
p

a n m ' "  o f  M a t h e m m i c s  S r n r i ,  r i c s .  A m e r i c a n  U n i.  E i s i
w  o

f s h a tja h .  P O .  B o x  2 6666 ,  S h a Jja h .  U n i t e d  A r a b  F m i .  R p q

F a c u lty  in f o r m a tio n

S o  if  m y  c la im  is  ń g h t,  t h e n  D  m u s t  h a v e  a  s u b
g

m u
p  

w i t h  3 6  e l e m e n t s )

o f  o rd e r  k , t h e n  t h e  
g

r o u
p  

m u s t  h a v e  a  s u b
g

r o u
p  

o f  o r d e r  k ,  n a m e l
y  

H - {a , a
2

,
. . .

,  
a

»
_ e },  w h e r e  la l =  k .

d .  G iv e  m e  a n  e le m e n t c  � D  s u c h  th a t lc l =  3 6  (n o te  th a t ,  a s  I  e x
p

l a i n e d  i n  t h e  c l a s s ,  i f  a  
g

m u
p  

h a s  a n  e l e m e n t

c .  F in d  la
ó

.  ūl

b .  F in d  Ib 
3 
1

a .  F in d  la  
6  
[

(ii) L e t (D ,  
·  ) b e  a  g ro u p  a n d  a s s u m e  th a t fo r  s o m e  a , b  e  D ,  w e  h a v e  a  *  b =  b . . , [a l =  9  a n d  [bl =  8

Q U E S T IO N  5 .  (i) G iv e n  H - {0 , 4 , 
8 } is a  s u b g ro u p  o f  (Z rz , + ).  F in d  a ll d ist in c t le ft c o s e ts  o f  H  in  D .

c )  F in d  l 3  a  ız

b ) Ħ n d  T 2  o f  :

a ) F in d  í l o  f 3

a n d  j  
=  (6  4  5  3 )

Q U E S H O N  4 .  G iv e n  l l ,  fz   · a n d  l3 a r e  b ije c tio n  f u n c tio n s  o n  a  s e t w ith  6  e le m e n rs ,  w h e r e  İ  : =  (3 5 ), İ  : =  (3 1 4  2 ),

g c d (m ,  ·  ) =  k ,  t h e n  t h e r e  a l e  t w o  i n t e
g

e r s  u
,  

=  i n  Z  s u c h  t h a t  k -
+  = n )

y â =  b  �  D  m e a n s  b
m

_ a ) (th r e e  ıin e s  p m o f .  Y o u  m a y  n e e d  th e  fa c t f ro m  n u m b e r  th e o ry  o r  d is c re te  m a th  th a t s a y s  if

g c d (n , - ) =  1 .  L e t a  � D .  P ro v e  th a t th e re  e x is ts  a n  e le m e n t b  � D  s u c h  th a t b
-

_ a  (i.  e .
,  V â  � D ,  w h e re

Q U E S T IO N  3 .  (R a d ic a ls ) .  L e t (D ,  ·  ) b e  a  g ro u p  s u c h  th a t In l =  n  <  c o .  L e t m  b e  a  p o s itiv e  in te g e r  s u c h  th a t

lin e s  p ro o f .  (N o te  th a t (C .
,  · ) is a n  a b e ıia n  g ro u p )

s o lu tio n s  o v e r  th e  c o m p ıe x  C .  N a w  le t  F - {a  E  
'

I  ·  
· 

_ 1 - 0 }.  P ro v e  th a t (F ,  
· ) is a  s u b g ro u p  o f  (C

'

,
- ) (T W o

(ii) (H o w  to  c h e c k  fo r  s u b g m u p s ) Ħ x a p o s itiv e  in te g e r  n .  W e  k n o w  th a t th e e q u a tio n  =
"

_ I =  O  h a s  e x a c t l y  
n d i s c i n c t

s e t.  A n  e x a m p le  o f  a n  in fin ite  F  w ill b e  g iv e n  d u rin g  th e  c o u r s e )

F _ {a  � D  1  · 
-

_ e }.  P ro v e  th a t (F ,  
* ) is a  s u b g ro u p  o f  D .  (T W o  lin e s  p ro o f .  N o te  th a t F  n e e d  n o t b e  a  fin ite

Q U E S T IO N  2 .  (i) ( H o w  to  c h e c k  fo r  s u b g ro u p s ) L e t (D ,  
·  ) b e  a n  a b e lia n  g ro u p .  Ħx  a  p o s itiv e  in te g e r  m  a n d  ï e t

e } fo r  s o m e  c  � D .  P ro v e  m y  c ıa im .  [ M a x  6  lin e s ]

w h e re  a  ¢  e  a n d  b  e ,  w e  h a v e  a
2 2

_ a
' 5

,  b
4 3

_ b?Z ,  a n d a + b = b * a .  Ħn d  ID I.  I c la im  th a t D  =  {c , c 2 , . . .
,  
ď '" _

(ii) (N ic e  p ro b ıe m ) L e t (D ,   
·  ) b e a  g ro u p  s u c h  th a t ID I =  

q r g z  w h e r e  9 1 , Q z  a r e  
p

r i m e s .  A s s u m e  th a t fo r  s o m e  a , b  �  D ,

fo r  e v e ry  a  E  D  iM a x  3  lin e s  p ro o f】

Q U E S T IO N  ı.  (i) N e ry  u s e fu ı re s u lt) L e t (D ,  
·  ) be  a  g m u p  w ith  n  <  o o  e le m e n ts  a n d  le t a  � D .  P ro v e  th a t a

"
_ .

7

A y m a n  B a d a w i

H W  T H R E E  A b s tr a c t A lg e b r a , M T H  3 2 0 ,  F a lı 2 0 1
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Q1 (ii) 
continues on 
back,  see 
page 5/13

1. Yousuf Abo Rahma

Two solutions back to 
back 
1. By Yousuf 
2. By Taha
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2. Taha Ameen

see Page 10/13
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Name��������������, ID ��������

MTH 320 Abstract Algebra Fall 2016, 1�2 © copyright Ayman Badawi 2016

HW III, MTH 320, Fall 2016

Ayman Badawi

QUESTION 1. (i) We know that 6Z, 8Z are in�nite cyclic subgroups of (Z,+). Hence 6Z ∩ 8Z is also an in�nite

cyclic subgroup and thus 6Z ∩ 8Z = aZ for some a ∈ Z. Find all possible values of a. Explain?

Sketch. Let a be the least positive integer that "lives" in 6Z and "lives" in 8Z. Hence 6|a and 8|a. Since a
is the least positive integer where 6|a and 8|a, we conclude that a = LCM [6, 8] = 24. Thus a = 24. Thus

6Z ∩ 8Z = 24Z

(ii) In general �x a, b ∈ (Z,+). Then aZ ∩ bZ = cZ for some c ∈ Z. Find all possible values c (of course write c in

terms of a, b.

Sketch: Let d ∈ (aZ ∩bZ). Then a | d and b | d. Let h = lcm[a, b]. Then h is the least positive integer that lives

in aZ∩bZ. Since aZ∩bZ must be an in�nite cyclic subgroup ofZ, we conclude that aZ∩bZ = lcm[a, b]Z = hZ.
We know that if H =< v > is an in�nite cyclic group, then H has exactly two generators, namely: v and v−1.

Thus aZ ∩ bZ = lcm[a, b]Z = −lcm[a, b]Z. Thus all possible values of c are : lcm[a,b] and -lcm[a, b]. .

(iii) Let (S, ∗) be a group. Assume that a ∗ b = b ∗ a for some a, b ∈ S. Prove that a ∗ b−1 = b−1 ∗ a.

Proof Since a ∗ b = b ∗ a, we have b−1 ∗ a ∗ b ∗ a−1 = b−1 ∗ b ∗ a ∗ a−1 = e ∗ e = e. Since b−1 ∗ a ∗ b ∗ a−1 = e we
conclude that b−1 ∗ a = e ∗ a ∗ b−1 = a ∗ b−1.

(iv) Let (D, ∗) be a group with 8 elements. Assume that D has a unique subgroup of order 2 and it has a unique abelian

subgroup of order 4. Prove that D is an abelian group. In fact, you can prove that (D, ∗) is cyclic.
Proof: Let F be the unique abelian subgroup of D with 2 elements and let M be the unique abelian subgroup

of D with 4 elements. Since M is abelian with 4 elements, we know that M has an abelian subgroup K
with 2 elements. Since K is also an abelian subgroup of D with 2 elements, we conclude that K = F .

Now let a ∈ D \ M and let c = |a|. Hence by Lagrange Theorem, c = 1 or 2 or 4 or 8. We know that

{a, a2, ..., ac = e} =< a > is an abelian (cyclic) subgroup of D with c elements. Since a ∈ D \ M and F ⊂ M
are unique abelian subgroups of order 2 and 4 respectively, we conclude that c ̸= 2 and c ̸= 4. Clearly, c ̸= 1.

Hence c = 8. Thus D =< a >. ,

(v) Let (D, ∗) be a group. Assume a ∗ b = b ∗ a for some a, b ∈ D. Given |a| = n, |b| = m, and gcd(n, m) = 1. Prove

that |a ∗ b| = nm. [Hint: Since gcd(n,m) = 1, from class notes we know that if n | mc for some c ∈ Z, then n | c.
Also you need to use a trivial fact from number theory that if gcd(n,m) = 1 and n | c and m | c for some c ∈ Z,

then nm | c]

Proof: Let k = |a ∗ b|. Since a ∗ b = b ∗ a, (a ∗ b)nm = (an)m(bm)n = e ∗ e = e. Hence k|nm. Now

e = (a ∗ b)km = akm ∗ (bm)k = akm ∗ e = akm. Thus n | km. Since gcd(n,m) = 1, we conclude that n | k.
Similarly, e = (a ∗ b)km = (am)k ∗ bkn = e ∗ bkn = bkn. Thus m | kn. Since gcd(n,m) = 1, we conclude that

m | K. Since n | k and m | k and gcd(n,m) = 1, we conclude that nm | k. Since k | nm and nm | k, we
conclude that k = nm.

(vi) Let (D, ∗) be a group. Assume a ∗ b = b ∗ a for some a, b ∈ D. Given |a| = 6 and |b| = 14. Prove that (D, ∗) has a
cyclic subgroup of order 42. [hint: Some how show that D has an element of order 7, then you need to use (V )]

Proof. We know |b2| = 14/gcd(2, 14) = 7. Since a ∗ b = b ∗ a, it is clear that a ∗ b2 = b2 ∗ a. Since gcd(6, 7) = 1,

by part V |a ∗ b2| = 42. Hence H =< a ∗ b2 > is a cyclic subgroup of D with 42 elements.

(vii) Let D be an abelian group with pq elements where p, q are distinct prime numbers. Prove that D is cyclic.

Proof. Since D is abelian, we have a subgroup H of order p and a subgroup K of order q. Let a ∈ H such

that a ̸= e. By Lagrange Theorem we conclude |a| = p. Similarly, if b ∈ K and b ̸= e, then |b| = q. Thus
|a ∗ b| = pq by part V. Hence D =< a ∗ b >

(viii) Let D be a �nite abelian group and H be a proper subgroup of D with 10 elements. Assume a ∈ D \ H such that

|a| = 3. Then

a. Show that a ∗ H , a2 ∗ H, a3 ∗ H are distinct left cosets of H[ Hint: First note that a3 ∗ H = e ∗ H = H . We

know a ∗ H ∩ H = ∅. So show a2 ∗ H ∩ a ∗ H = ∅ and a2 ∗ H ∩ H = ∅].
Proof: We show a2 ̸∈ H and a2 ̸∈ a ∗ H . Assume that a2 ∈ H . Since a3 = e, a ∗ a2 = e. Thus e ∈ a ∗ H ,

impossible since a ∗ H ∩ H = ∅. Assume a2 ∈ a ∗ H . Thus a2 = a ∗ h for some h ∈ H . Hence a = h,
impossible. Thus H, a ∗ H, a2 ∗ H are all distinct left cosets of H .

b. Show that F = a ∗ H ∪ a2 ∗ H ∪ a3 ∗ H is a subgroup of D with 30 elements.

Proof: Note that H = a0 ∗H = e∗Hand hence F = a0 ∗H ∪a∗H ∪a2 ∗H . Let x, y ∈ F . Since F is �nite,

we only need show x ∗ y ∈ F . Hence x = ai ∗ h, y = ak ∗ g for some i, k, 0 ≤ i, k ≤ 2 and some h, g ∈ H .

Since |a| = 3 and D is abelian, x ∗ y = (ai ∗ h) ∗ (ak ∗ g) = a(i+k)mod3 ∗ (h ∗ g). Since 0 ≤ (i + k)mod3 ≤ 2

and h ∗ g ∈ H , we are done.

(ix) Consider (U(16), .16). Given H = {1, 7} is a subgroup of U(16).
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a. Find all distinct left cosets of H . Note there must be exactly 4 such left cosets

: This is my present to you... just straight forward calculations

b. Is H ∪ 5H a subgroup of U(16)? Is H ∪ 9H a subgroup of U(16)? explain

Note K = H ∪ 5H = {1, 7, 3, 5}. (5.3 = 15 ̸∈ K, so no) and L = H ∪ 9H = {1, 7, 9, 15} (by Caley's Table
L is a subgroup)

Submit your solution on TuesdayOctober 18, 2016 at 2pm. Faculty information

Ayman Badawi, Department of Mathematics & Statistics, American University of Sharjah, P.O. Box 26666, Sharjah, United Arab Emirates.

E-mail: abadawi@aus.edu, www.ayman-badawi.com

86



Name—————————————–, ID ———————–

MTH 320 Abstract Algebra Fall 2016, 1–2 © copyright Ayman Badawi 2016

HW IV, MTH 320, Fall 2016
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QUESTION 1. (i) Let α = (1 4 5 2)o(2 6 5) ∈ S6. Find |α|
Typical question

(ii) Let β ∈ S7 and x = βo(2 6 3 1)oβ−1. Find |x|.
Typical question

(iii) Let D = (Z4,+) × (Z6,+). Give me a subgroup H of D such that there is no subgroup L1 of Z4 and there is no
subgroup L2 of Z6 where H = L1 × L2.

Solution: The element (2, 3) in D is of order 2. Hence H = {(0, 0), (2, 3)} is a subgroup of D but there is no
subgroup L1 of Z4 and there is no subgroup L2 of Z6 where H = L1 × L2.

(iv) Let D = (S, ∗1)× (F, ∗2) be a cyclic group (you may assume |S| > 1, |F | > 1). Let H be a subgroup of D. Prove
that there exists a subgroup K of S and there exists a subgroup L of F such that H = K × L. [Hint: You may use
the fact that if gcd(n,m) = 1 and i | nm, then i | n or i | m or i = ab (a > 1 and b > 1) such that a | n and b | m.)
[OBSERVE that the group in part III is not cyclic, interesting!]
Solution: We know that F, S are cyclic and finite groups. Let n = |S| and m = |F |. Hence |D| = nm. Since
D is cyclic, we know gcd(n,m) = 1. Let H be a subgroup of D and k = |H|. Since D is cyclic, we know that
H is the only subgroup of D that has k element. Since k | nm and gcd(n,m) = 1, we conclude that k = ab
such that a | n, b | m, and gcd(a, b) = 1 (note it is possible that a = 1 or b = 1). Since a | n, S has a unique
subgroup L1 of order a. Since b | m, F has a unique subgroup L2 of order b. Thus L1 × L2 is the unique
subgroup of D that has k elements. Hence H = L1 × L2.

(v) Let a ∈ Sn be a permutation (i.e a = (a1 · · · ak). Note that not every function in Sn is a permutation). Prove that
a ∈ An if and only if |a| is an odd number.

Solution: Since a = (a1 a2 · · · ak−1 ak) = (a1 ak)o(a1 ak−1)o · · · o(a1 a2) , (k-1)-2-cycles, we conclude that
a ∈ An iff (k-1) is even. Hence k must be an odd positive integer. Thus |a| = k is odd.

(vi) We know that D4 is a subgroup of S4 and hence L = D4 ∩A4 is a subgroup of S4. Find L. Is L / A4? EXPLAIN

Solution: Let L = D4 ∩ A4 = {(1), (1 3)(2 4), (1 3)(2 4), (2 3)(1 4)}. Now if we view L as a subgroup of A4.
Then [A4 : L] = 3. Thus L has exactly 3 left cosets, say: L, aoL, and boL. Now do the calculation, show:
aoL = Loa and boL = Lob. Thus we conclude that L / A4.

(vii) Let D be a group with 15 elements. Assume H / D such that |H| = 3. Assume there exists a ∈ S \ H such that
|a| 6= 5. Prove that D is cyclic. [Hint: you may want to consider D/H !!]

Solution: We knowD/H is a group with 5 element. Consider the natural group homomorphism fromD onto
D/H (given by x → x ∗ H). Let k = |a|, and m = |a ∗ H| (note that m is the order of the element a ∗ H in
D/H). We know that m | k and m | 5 (since |D/H| = 5). Since a 6∈ H , m 6= 1. Hence m = 5. Thus 5 | k. Since
5 | k and k | 15 and a5 6= 1, we conclude that k = 15. Thud D is cyclic.

(viii) Let F be a nontrivial group-homomorphism from (Z6,+) into (Z8,+). Find Ker(F ) and find Image(F ) (i.e.
Range(F )).

Solution: We know Z6/Ker(F ) ≈ Image(F ) and Image(F ) is a subgroup of Z8. Thus |Image(F )| is a factor
of 8. Let a = |Image(F )|, b = |Z6/Ker(F )|. Hence a = b. Since b | 6 and a = b and a | 8, we conclude that
a = b = 2. Now Z8 has exactly one subgroup of order 2. Thus Image(F ) = {0, 4}. Since b = 2, we conclude
|Ker(F )| = 3. Since Z6 has exactly one subgroup of order 3, we conclude Ker(F ) = {0, 2, 4}.

(ix) Is the group (Z4,+) isomorphic to U(8)? EXPLAIN.

Solution: No, Z4 is cyclic but U(8) is not cyclic

(x) Give me an example of a non-abelian group say D such that D has a normal subgroup H where D/H is abelian.

Solution: Let D = S3 and H = A3.

(xi) Give me an example of an abelian group say D that is not cyclic but D has a normal subgroup H where D/H is
cyclic .

Solution: Let D = U(8) and H = {1, 7}.
(xii) Give me an example of a group say D that has a normal subgroup H such that there is an a ∈ D where |a| =∞ but

the order of the element a ∗H in G/H is finite.

Solution: Let D = (Z,+), H = 5Z, and a = 1. Then |1| =∞. Since Z/5Z ≈ Z5, |1 + 5Z| = 5.

(xiii) Give me an example of a group say D such that for each integer n ≥ 2, there is an element a ∈ D with |a| = n.
(note that such D must be infinite)

Solution: Let D = (Q,+) and H = Z. Then 1
n + Z| = n in Q/Z.
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(xiv) Let n ≥ 3 and let x ∈ Sn. Prove that x2 is always an even function.

Solution: Since A4 � S4, we know that S4/A4 is a group with exactly 2 elements. Let x ∈ S4. Then (xoA4)2 =
x2oA = A in S4/A4. Thus x2 ∈ A4.
DUE DATE : Nov 18, 2016, Thursday at 2pm
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EXAM I, MTH 320, Fall 2016

Ayman Badawi

QUESTION 1. (i) We know that (Z,+) is cyclic. Prove that F = (Z,+) × (Z,+) is not a cyclic (Some of you have
the right idea but ...)

Proof. Deny. Then F =< (a, b) > for some a, b ∈ Z. It is clear that a 6= 0, and b 6= 0. Since (1, 0) ∈ F , there
must exist k ∈ Z such that (1, 0) = (a, b)k = (ak, bk). Hence bk = 0 and ak = 1. Since bk = 0 and b 6= 0, we
conclude k = 0. But (a, b)0 = (0, 0) 6= (1, 0). A contradiction. Thus F is not cyclic.

(ii) Give me an example of an abelian group with 16 elements, say D, such that D has a subgroup H with exactly 8
elements, but D has no elements of order 8.

Solution: Let D = (Z4,+) × (Z4,+). We know that |(a, b)| = LCM [|a|, |b|]. Hence each element in D is of
order 1, 2, or 4. Now H = {0, 2} is a subgroup of Z4. Thus Z4 ×H is a subgroup of D with 8 elements.

(iii) Let D be an abelian group such that D has a subgroup H with 10 elements. Given that D has an element a of order
2 where a 6∈ H . Prove that D has a subgroup of order 20.

Proof. Let F = H ∪ a ∗ H . We know H ∩ a ∗ H = ∅ and |F | = 20. Hence we show that F is closed. Let
x, y ∈ F . Then x = ai ∗ h1, y = ak ∗ h2 where 0 ≤ i, k ≤ 2, h1, h2 ∈ H . Thus x ∗ y = ai+k(mod2)h1h2 ∈ F .

(iv) We know that if a, b are elements of a group (D, ∗) such that a ∗ b = b ∗ a and gcd(|a|, |b|) = 1, then |a ∗ b| = |a||b|.
Give me an example of a group D that has two elements, say a, b, such that gcd(|a|, |b|) = 1 but |a ∗ b| 6= |a||b|.
Solution: Let a = (1 2 3), b = (2 3) ∈ S3. Then |a| = 3 and |b| = 2. aob = (1 2). Thus |aob| = 2, where
|a||b| = 6

(v) Let (D, ∗) be a group and a, b ∈ D such that a ∗ b = b ∗ a. Prove that a−1 ∗ b−1 = b−1 ∗ a−1.

Proof. Since a∗b = b∗a, we have (a∗b)−1 = (b∗a)−1. We know that (a∗b)−1 = b−1∗a−1 and (b∗a)−1 = a−1∗b−1.
Thus a−1 ∗ b−1 = b−1 ∗ a−1.

(vi) Let (D, ∗) be a group such that a2 = e for every a ∈ D. Prove that D is an abelian group.

Proof. Since a2 = e for every a ∈ D, we conclude that a = a−1 for every a ∈ D. Now let x, y ∈ D. Since
x ∗ y ∈ D, we have (x ∗ y)2 = (x ∗ y) ∗ (x ∗ y) = e. Thus x ∗ y = y−1 ∗ x−1 = y ∗ x (since y−1 = y and x−1 = x

(vii) ((All of you - 2) got it right just straightforward class notes, see your notes)

Is U(10)× (Z7,+) cyclic? Explain briefly.

a.b. Is U(15)× (Z9,+) cyclic? Explain briefly.

c. Let F = (Z12,+) and H = {0, 3, 6, 9}. Find all left cosets of H

d. Let V = (1 3 4)o(2 5 6) Find |v|
e. Let V = (1 3 5)o(2 3 4 5). Find |v|.

H Faculty information
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3.6 2016 Exam Two with Solution
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EXAM II, MTH 320, Fall 2016

Ayman Badawi

QUESTION 1. Let D be a group with 55 elements.

(i) (6 points). Convince me that D is not simple.
Solution: We know that D has an element of order 11, and hence D has a subgroup, say H, with 11 elements.
Since [D : H] = 5 and 5 is the smallest prime factor of 55, we know that H must be normal. Thus D is not
simple.

(ii) (8 points). Assume that D has a normal subgroup, say H , such that |H| = 5. Prove that D is cyclic.
Solution: Let K be a normal subgroup of D with 5 elements and let H as in (i). We know HK is a subgroup
of D. Thus |HK| = 5 or 11 or 55. Since K and H are subgroups of HK, we conclude that |HK| = 55. Thus
HK = D. It is clear that H∩K = {e}. Hence by one of the results in class, we have D/(H∩K) ' D/H×D/K
and thus D ' D/H ×D/K. Since |D/H| = 5 and |D/K| = 11, we conclude that D/H ' Z5 and D/K ' Z11.
Thus D ' Z5 × Z11 ' Z55 is cyclic.

QUESTION 2. (8 points). Given that H is a normal subgroup of a group (D, ∗) such that |H| = 11. Assume that
D/H =< a ∗H > (i.e., D/H is cyclic and generated by a ∗H) for some a ∈ D \H such that a ∗ h = h ∗ a for every
h ∈ H . Prove that D is abelian

Solution: I wrote this question to see how many of you read the proof I give in CLASS. Similar proof to if
D/C(D) is cyclic, then D is abelian. Here we go: Let x, y ∈ D. Show x ∗ y = y ∗ x. Hence x = ai ∗H, y = ak ∗H
in D/H . Thus x = ai ∗ b, y = ak ∗ c for some b, c ∈ H . Now since |H| = 11, H is cyclic and hence abelian. Thus
b∗ c = c∗ b. Also by hypothesis, we have a∗ b = b∗a and a∗ c = c∗a. Hence x∗y = ai+k ∗ b∗ c = ai+k ∗ c∗ b = y ∗x.
QUESTION 3. (6 points). Let F : Z15 → Z12 be a nontrivial group homomorphism. Find Ker(F ) and Image(F ).

Solution: We know Z15/Ker(F ) ' Image(F ). Hence by staring (and keep in mind that Image(F) is a sub-
group of Z12 and |image(F )| must be a factor of the two numbers 12 and 15), we conclude that |Z15/Ker(F )| =
|Image(F )| = 3. Thus Image(F ) = {0, 4, 8}, and in order that |Z15/Ker(F )| = 3 we must have |Ker(F )| = 5.
Thus Ker(F ) = {0, 3, 6, 9, 12}.
QUESTION 4. (6 points). Let F : Z → Z20 be a nontrivial group homomorphism. Given that F is not ONTO (not
surjective) and 5 ∈ Image(F ). Find Ker(F ) and Image(F ).

Solution: Since F is not onto and 5 ∈ Image(F ), < 5 >= {0, 5, 10, 15} is the only subgroup of Z20 that is not
equal to Z20 and contains 5. Thus Image(F ) = {0, 5, 10, 15}. We know every subgroup of Z is of the form kZ.
Hence Z/Ker(F ) = Z/kZ ' Image(F ) = {0, 5, 10, 15} ' Z4. Thus K = 4. Hence Ker(F ) = 4Z.
QUESTION 5. (6 points). Let D be an abelian group with p3 elements for some prime integer p. Assume that D has a
unique subgroup of order p. Prove that D is cyclic.

Solution: We Know that (1) D ' Zp3 or (2) D ' Zp × Zp2 or (3) D ' Zp × Zp × Zp. If D is isomorphic to the
groups in (2) or (3), then clearly D has more than one subgroup with p elements. Thus D ' Zp3 is cyclic.
QUESTION 6. (6 points). Let D be a a noncyclic abelian group with 32 elements. Assume that |a| = 16 for some
a ∈ D. Up to isomorphism, find all such groups.

Solution: We know (1) D ' Z32 or (2) D ' Z2 × Z16 or (3) D ' Zk1 × · · ·Zkm where k1, ..., km ∈ {2, 4, 8}. Now
D is not isomorphic to Z32 since D is not cyclic. D is not isomorphic to a group as in (3) since all such groups have
elements of order 8 or less. Thus D ' Z2 × Z16.
QUESTION 7. (6 points). Assume that a group D has unique subgroup H where |H| = 2016. Prove that H is a normal
subgroup of D.

Solution: Let a ∈ D. Show a ∗ H = H ∗ a. Since Ca(H) = a ∗ H ∗ a−1 is a subgroup od D with cardinality
equals to the cardinality of H , we conclude a ∗H ∗ a−1 = H . Thus a ∗H = H ∗ a.
QUESTION 8. (i) (5 points). Is U(27) ' Z18? explain

(ii) (5 points). Is (1 2 4)o(1 3) ∈ A4? explain

(iii) (5 points). Is every abelian group with 45 elements isomorphic to Z15 × Z3 ? explain

(iv) (5 points). Let a = (1 3 4 5)o(2 4 1). Find |a|
(v) (5 points). Let a ∈ S7 and m = |a|. What is the maximum value of m. Explain briefly.

Solution: (i-iv): all of you got it right. For (v): just observe that a must be written as disjoint cycles say
a = a1 o a2 o · · · o ak and |a| = LCM[length of a1, length of a2, ..., length ak] = m = maximum. Now it should be
clear that for m to be maximum k = 2, |a1| = 4 and |a2| = 3. Hence m = 12.
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Final EXAM , MTH 320, Fall 2016

Ayman Badawi

QUESTION 1. (i) (5 points). Is (Q∗, .) isomorphic to (Z,+)? Explain

No. (Q∗, .) has a finite group, namely {1,−1}. So (Q∗, .) is not cyclic (since every subgroup of a cyclic infinite
group is cyclic). However, (Z,+) is cyclic. Thus (Q∗, .) is not isomorphic to (Z,+).

(ii) (5 points). Is Z3 × Z8 isomorphic to Z6 × Z4? Explain

Z3 × Z8 is isomorphic to Z24 and hence cyclic. Since gcd(6, 4) 6= 1, Z6 × Z4 is not cyclic.

(iii) (5 points) . Let n = 52.73.11, and let D = {a ∈ (Zn,+) | |a| = 77}. Find the cardinality of D.

Since Zn is cyclic, we know Zn has a unique subgroup of order 77, say H =< a >. Hence if b ∈ D, then
< a >=< b >. Thus D = {c ∈ H | |c| = 77}. We know that H has exactly φ(77) = φ(7× 11) = 6× 10 = 60
elements of order 77. Thus |D| = 60.

(iv) (5 points). It is easy to see that A8 has an elements of order 15. With at most two lines, convince me that A8 must
have at least two distinct subgroups each is of order 15.

Let H be a subgroup of order 15. Since A5 is simple, there exists a ∈ A5 such that a ∗ H 6= H ∗ a. Thus
a ∗H ∗ a−1 6= H . We know a ∗H ∗ a−1 is a subgroup of A8 with 15 elements .

(v) (5 points). Is it possible to have infinitely many non-isomorphic groups such that each has 100 elements? Explain

It is clear that S100 has finitely many subgroups, each is of order 100. By Caley’s Theorem a group with 100
elements is isomorphic to a subgroup of S100. Thus there are finitely many non-isomorphic groups such that
each has 100 elements.

(vi) (5 points). Give me an example of a group D that has an element w of order 2 and an element f of order 3, but D
has no elements of order 6.

S3 has no elements of order 6. However a = (1 2) is of order 2 and b = (1 2 3) is of order 3.

(vii) (8 points). Let F : (Z,+) → (Q∗, .) be a nontrivial group homomorphism such that F is not one-to-one. Find
F (1), then find Image(F ) and Ker(F ).

Since F is not 1-1, Ker(f) 6= {0}. Hence Ker(F ) = mZ for some m ∈ Z+. Thus Z/mZ = Zm ' Image(F ) <
Q∗. Thus Image(F ) must be finite. However (Q∗, .) has a unique finite subgroup H = {1,−1}. Thus
Image(F ) = H ' Z2. Hence m = 2 and Ker(F ) = 2Z. If F (1) = 1, then F (a) = 1 for every a ∈ Z and thus
F is the trivial group homomorphism, a contradiction. Hence F (1) = −1.

(viii) (8 points). Let F be a group with 21 elements such that F has a unique subgroup with 3 elements. Prove that F is
isomorphic to Z21.

We know F has a subgroup with 7 elements, say H , and it has a subgroup with 3 elements, say K. Since
[H : F ] = 3, and 3 is the minimum prime divisor of |F | = 21, we conclude that H � F . Since K is unique,
we conclude K � F . It is clear that |HK| = 21 and H ∩ K = {e}. Hence HK = F and F = F/(H ∩ K) '
F/H × F/K ' Z3 × Z7 ' Z21 is cyclic.

(ix) (8 points). Let D be a group with 77 elements. Prove that either |C(D)| = 1 or D is abelian.

|C(D) = 1 or 7 or 11 or 77. If C(D) = 77, we are done. If C(D) = 7or11, then D/C(D) is cyclic and hence
D is abelian.

(x) (8 points). Let D be a finite group. Assume H is a normal subgroup. Given |a ∗H| = n (the order of the element
a ∗H is n in G/H) for some a ∈ D. Prove that D has an element of order n.

Let m = |a|. We know n | m. Thus m = nk. Let f = ak ∈ D. We know |f | = |ak| = m
gcd(k,m) =

m
k = n.
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Ayman Badawi, Department of Mathematics & Statistics, American University of Sharjah, P.O. Box 26666, Sharjah, United Arab Emirates.
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4.1 HW1-Solution



MTH320 - Abstract Algebra I

HW #1

----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

September 14th, 2020
Question 1:
Let H be the set of all symmetries on an equilateral triangle. Construct the Caley's Table of (H ; �) 
and conclude that (H ; �) is a group.

From class notes, we have the following 6 functions:
�

f1:

�
a b c
b c a

�
; f2:

�
a b c
c a b

�
; f3=e:

�
a b c
a b c

�
; f4:

�
a b c
a c b

�
; f5:

�
a b c
c b a

�
; f6:

�
a b c
b a c

��

We further know that the binary operator is the composition of the functions. We define the binary
operator as per the following example:

f1 � f2= f1(f2)

By this, we say for each a; b; c 2 fn, we approach it by doing the following. Let us take a for this
case and see what happens to a.

1. We first see what a corresponds to in f2. In this case, it is c

2. Now, we return to f1 and see what c corresponds to after the rotation, and in this case, it is a

Therefore, if we proceed with the same logic, we go by each of the columns:

a! c! a

b! a! b

c! b! c

So:

f1 � f2:

�
a b c
a b c

�
= f3= e

Now, let us see the case for all 6 functions and their compositions with each other.

f1 � f1:

�
a b c
c a b

�
= f2

f1 � f2:

�
a b c
a b c

�
= e

f1 � e:

�
a b c
b c a

�
= f1

f1 � f4:

�
a b c
b a c

�
= f6

f1 � f5:

�
a b c
a c b

�
= f4

f1 � f6:

�
a b c
c b a

�
= f5

1
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We can do the same for all the rows of the Caley table, but they are trivial. So we will no longer
work out each individual composition and instead put all the results as per the same standards of
the aforementioned technique.

Therefore, we can come up with the following Caley's Table:

� f1 f2 e f4 f5 f6
f1 f2 e f1 f6 f4 f5
f2 e f1 f2 f5 f6 f4
e f1 f2 e f4 f5 f6
f4 f5 f6 f4 e f1 f2
f5 f6 f4 f5 f2 e f1
f6 f4 f5 f6 f1 f2 e

Table 1.

We have thus constructed the Caley's table for the set of symmetries for an equilateral triangle.
Now, what are some things we can conclude from this? We conclude that (H;�) is a group because
it has closure (all compositions result in elements of the set, H), it has an identity, e, and we will
now look for the inverse of each element.

By definition, the inverse of an element is defined as follows: a �a−1= e. In this set, all we need to
do is look at the Caley table to see what elements composed with each other give us the identity, e.

(i)

f1
−1= f2 since f1 � f2= e

f2
−1= f1 since f2 � f1= e

f3
−1= f3 since f3= e and e � e = e

f4
−1= f4 since f4 � f4= e

f5
−1= f5 since f5 � f5= e

f6
−1= f6 since f6 � f6= e

Hence, we have found all the inverses, and these inverses are clearly also in the set H. Furhtermore, by observation from the 
Caley's table, we can see that it is also associative. So, since this is the case, we conclude that (H ; � ) is a group (closure, 
inverse, identity, associative).

(ii) For all f 2 H, find jf j. Note that jf j, or the order of f , is the minimum number of times the binary operation has to be 
repeated on the f before we obtain the identity, e. We will do one example to
show the process and put the final answers for the rest.

Tofind jf1j;first wedo:
f1 � f1:

�
a b c
c a b

�
= f2

Nowwedo f2 � f1

f2 � f1:

�
a b c
a b c

�
= f3

Since f2 � f1= (f1 � f1) � f1= f3= e;

we conclude that jf1j= 3

(Since it took 3 binary operations to get e)

jf1j= 3 Since f1 � f1 � f1= e

jf2j= 3 Since f2 � f2 � f2= e

jf3j= 1 Since f3= e

2
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jf4j= 2 Since f4 � f4= e

jf5j= 2 Since f5 � f5= e

jf6j= 2 Since f6 � f6= e

We have thus found the order of each of the six elements in the group.

(iii) Show that (H; �) is a non-Abelian group.

The definition of an Abelian group is that for all Takeelements in a group, the binary operator
acting on the elements results in the same outcome, which is another element in the group, regard-
less of the order the operator is acted.

Mathematically, Let (D; �)be a group. Then: 8a; b 2D, a � b = b � a 2D.

To prove that this group is non-Abelian, we need to find just one example where this commutivity
does not hold. We can simply refer to the Caley's table to see this.

f1 � f4= f6

f4 � f1= f5

Clearly we have shown that f4 � f1=/ f1 � f4, and thus the commutative property does not hold for
all elements in this group. Therefore, the group is safely concluded to be non-Abelian.

Question 2:

Let C be the set of complex numbers. We know that (C�;�) is a group under multiplication. Let
n be some fixed positive integer, n> 2, and let H be the set of all the roots of the polynomial
xn − 1. i.e.

H = fx 2 C�jxn − 1 = 0g

Prove that (H;�) is a subgroup of (C�;�).

Firstly, we take advantage of the fact that H is a finite subset of C. If we take this into considera-
tion, then we can use a result introduced in the lectures that tells us that if we have a finite subset
of a �larger� set, if the larger set is a group, then the subset, under the same binary operator, will
also be a group iff it is closed.

In our case, we know that (C�; �) is a group, and H � C�. Then we need to show that (H;�) is
closed for it to be a subgroup. We proceed as follows:

Let a; b 2H a and b are chosen randomly
a satisfies: an − 1= 0

b satisfies: bn − 1= 0

an = bn = 1

Wewant to show that a � b 2H

(a � b)n − 1= (an)� (bn)− 1

=(1 � 1)− 1

=0

Therefore: (a � b)n − 1= 0

And thus a � b 2H

H is closed:

3
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We have shown that H is closed under the binary operation �. Since it is a finite subset, it is then
concluded that (H;�) is a subgroup of (C�;�).

Question 3:

Consider the group (Z20;+). Find j1j; j6j; j14j; j15j; j17j; j12j.

We first find j1j and observe the fact that k = 1k. Then we can proceed and find the rest.

1+ 1 +1 + :::: +1 (20 times) = 20
20mod20= 0

Therefore; j1j= 20

Note that by a result introduced in the lectures, if we have some a in a group where the order of a
is finite, then jakj= m

gcd (k; m)
. We also know that for some k 2Z20; 1

k = k (As per the instructions

of the question, but we can also observe this fact very easily).

Using these results, we can go on to find the orders of the remaining five elements.

j6j= j16j= j1j
gcd (j1j; 6)

=
20

gcd (20; 6)

=
20
2

= 10

Therefore; j6j= 10

j14j= j114j= 20
gcd (20; 14)

=
20
2

= 10

j15j= j115j= 20
gcd (20; 15)

=
20
5

= 4

j17j= j117j= 20
gcd (20; 17)

=
20
1

= 20

j12j= j112j= 20
gcd (20; 12)

=
20
4

= 5

Question 4:

Let H = f2; 4; 6; 8; 10; 12g. Let � be the binary operation: multiplication modulo 14. Construct the
Caley's table for (H; �)

4

106



�14 2 4 6 8 10 12
2 4 8 12 2 6 10
4 8 2 10 4 12 6
6 12 10 8 6 4 2
8 2 4 6 8 10 12
10 6 12 4 10 2 8
12 10 6 2 12 8 4

Table 2.

Obviously, this is an Abelian group because 8a; b 2 H, a � b = b � a.
(i) What is e?

for some d; e 2H, we have that d � e = e � d= d. What element do we have in H such that

(d � e)(mod14) = d?

This element is 8. Notice that, as an example, (2 �8)mod14=16mod14=2. Another example would
be (12 � 8)mod14= 96mod14= 12.

Obviously; e= 8

(ii) For each a 2H, find a−1.

2−1= 4 Since (2 � )mod14=8

4−1= 2 Since (4 � 2)mod14= 8

6−1= 6 Since (6 � 6)mod14= 8

8−1= 8 Since (8 � 8)mod14= 8

10−1= 12 Since (10 � 12)mod14=8

12−1= 10 Since (12 � 10)mod14=8

(iii) Find j6j and j10j

(6 � 6)mod14= 8; therefore j6j= 2

Using a calculator, we can see that

1; 000; 000mod14= 8

10 � 10 � 10 � 10 � 10 � 10= 1000000

Therefore; j10j= 6

Question 5:

Part 1:

Let a; b be elements in a group, (D; �) such that a � b = b � a. Given that jaj = n; jbj = m, where n;
m=/ 1 and gcd (n;m) =1, let x = a � b. Prove that jxj= n m.

Hints:

if a � b= b � a; then (a � b)n = an � bn

if a � b=/ b � a;weCANNOTconclude (a � b)n = an � bn

5
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Let k; n;m be positive integers

1. If njkm and gcd (n;m) =1, then njk.

2. If njk andmjk and gcd (n;m) =1, then we conclude that nmjk

In the question, we are given the following facts: gcd (n;m)= 1, jaj=n, jbj= m.

x =a � b
Let us take k = jxj (i:e:xk = e); k 2Z+

Assume k to be the smallest positive integer
such thatxk = e

(a � b)k = (a)k � (b)k = e

Weknow an = e and bm = e

By some result introduced in the lectures, we know that if jaj=n, and ak = e, then njk. So we can
conclude the following:

njk; k is divisible by n
k
n

=� � 2Z+

In otherwords; k =�n

Furthermore;mjk
k
m

= 2Z+

In otherwords; k = �m

By the hint given to us in the question, we know that if njk and mjk, then nmjk (Given that
gcd (n; m)= 1). In other words, k = nm, for some  2Z+.

(a � b)mn =amn � bmn

=(an)m � (bn)m

an = bn = e

Therefore: em � em = e � e = e

Hence k jmn

Since k jmn andmnjk, we can logically conclude that k = mn. In this case, we can easily see the
following:

jxj= k = nm

xk =xmn = e

6
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Part 2:

Find two elements in Question 1, f and k in (H; �) s.t. jf j= 2 and jk j=3, but jf � k j=/ 6.

Let us take f = f4; jf4j=2, and k = f1; jf1j=3.

f4 � f1= f5

jf5j=2 =/ 6

Hence we can clearly see that despite the fact that gcd (2;3)=1, we cannot claim that jf4� f1j=6,
in fact we have proven for it to be 2. This is because the group in Question 1 is NON-Abelian
and we cannot say that a � b = b � a 8a; b 2 H.

7
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4.2 HW2-Solution



MTH320 - Abstract Algebra I

HW #2 (Solutions)

----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

September 29th, 2020

Question 1:

Let A= f1; 2; 3g andD be the power set of A, i.e., D is the set of all subsets A (note that jD j = 23 = 8). 
Define ��� on D to mean a � b = (a − b) [ (b − a) 8a; b 2 D. Then (D; �) is an Abelian group. 
Since D is the set of all subsets of A, then:

D = f?; f1g; f2g; f3g; f1; 2g; f1; 3g; f2; 3g; f1; 2; 3gg

The Caley's Table:

a � b ? f1g f2g f3g f1; 2g f1; 3g f2; 3g f1; 2; 3g
? ? f1g f2g f3g f1; 2g f1; 3g f2; 3g f1; 2; 3g

f1g {1} ? f1; 2g f1; 3g f2g f3g f1; 2; 3g f2; 3g
f2g f2g f1; 2g ? f2; 3g f1g f1; 2; 3g f3g f1; 3g
{3} f3g f1; 3g f2; 3g ? f1; 2; 3g f1g f2g f1; 2g
{1,2} f1; 2g f2g f1g f1; 2; 3g ? f2; 3g f1; 3g f3g
{1,3} f1; 3g f3g f1; 2; 3g f1g f2; 3g ? f1; 2g f2g
{2,3} f2; 3g f1; 2; 3g f3g f2g f1; 3g f1; 2g ? f1g

f1; 2; 3g f1; 2; 3g f2; 3g f1; 3g f1; 2g f3g f2g f1g ?

Table 1.

(i) What is e 2D?

Obviously e is the element where for some a 2 D, a � e = a. In other words, (a − e) [ (e − a) = a.
The only element with this property is ?. For any a, a �?= a. As an example:

f1; 2; 3g �?= [f1; 2; 3g−?][ [?− f1; 2; 3g] = f1; 2; 3g

(ii) For each a 2D;find a−1

Again, we will simply use the Caley's table to find the inverse of each of the 8 elements in D. We
proceed as follows:

f1g−1= f1g Since f1g � f1g =?; same argument for all
f2g−1= f2g
f3g−1= f3g

f1; 2g−1= f1; 2g
f1; 3g−1= f1; 3g
f2; 3g−1= f2; 3g

f1; 2; 3g−1= f1; 2; 3g
?−1=?

1
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As a matter of fact, each element is its own inverse (Again visible from the Caley's table).

(iii) For each a 2D;find jaj
A sample calculation is provided below as to how we get the order of each element. The rest is self
explanatory.

f1g:

f1g � f1g=?
f1g2=?

Therefore jf1gj=2

jf2gj= 2

jf3gj= 2

jf1; 2gj= 2

jf1; 3gj= 2

jf2; 3gj= 2

jf1; 2; 3gj= 2

j?j= 1 Since? is the identity

(iv) The converse of the Lagrange theorem is correct when a group is finite and Abelian, i.e. if
D is anAbelian group; jD j= n; andmjn;ThenD has at least one subgroup with m elements. Now
the above group is Abelian and jD j=8. Give a subgroup, say H, of Dwith 4 elements. Verify that
H is a subgroup by doing the Caley's table. Does D have an element of order 4?

(If mjn, then we must have a subgroup with m elements, but not necessarily an element of order m)

Let us take H = f?; f1; 2g; f1; 3g; f2; 3gg. This subset of D is clearly a subgroup of (D; �). The
Caley's table is shown below:

a � b ? f1; 2g f1; 3g f2; 3g
? ? f1; 2g f1; 3g f2; 3g

f1; 2g f1; 2g ? f2; 3g f1; 3g
f1; 3g f1; 3g f2; 3g ? f1; 2g
f2; 3g f2; 3g f1; 3g f1; 2g ?

Table 2.

From the table we can see that H is indeed a group. In fact, H <D. It satisfies all the properties
of a group (Identity e=?, each element has an inverse, it is closed and associative). Furthermore,
H is an Abelian group since 8a; b 2H; b � a =a � b.
Now we can see that jH j = 4, and 4j8. However, it is evident that 8a 2 H; jaj = 2, except for the
case of a=?, in which case j?j=1. Therefore, we can conclude that if we have mjn; that does not
necessarily imply that we can find a subgroup with m elements that also has elements of order m.

2

112



Question 2:

Let D = f2; 4; 6; 8; 10; 12g. From HW1, we know that D under multiplication modulo 14 is an
Abelian group. Now H =f6;8g is a subgroup of D. Find all the left cosets of H. Since D is Abelian,
H is a normal subgroup of D. Construct the Caley's table for the group (D/H; �).

From HW1, we know that e = 8. We will take the binary operator to be �14. All the left cosets of
of H are as follows:

a �H = fa �h j a 2D;h 2 Hg

2 �H = f2 � 6; 2 � 8g = f12; 2g
4 �H = f4 � 6; 4 � 8g = f10; 4g

6 �H = f6 � 6; 6 � 8g= f8; 6g =H

8 �H = f8 � 6; 8 � 8g= f6; 8g =H

10 �H = f10 � 6; 10 � 8g = f4; 10g
12 �H = f12 � 6; 12 � 8g = f2; 12g

Note that the identity here is:

e = 6 �H = 8 �H = H

We have 3 distinct left cosets of H. These are 2 �H = f2; 12g; 4 �H = f4; 10g and 6 �H = f6; 8g.
These are the elements of the set D/H.

D/H = f2H; 4H; 6Hg

We define �, the binary operator on the set D/H as the following:

8x; y 2 D/H;x� y =(a � b) �H

a; b are two left cosets of H.

Therefore, the Caley's table for (D/H; �) would be:

x � y 2H 4H 6H
2H 4H 6H 2H
4H 6H 2H 4H
6H 2H 4H 6H

Table 3.

What is the identity of (D/H; �)? 6H, since 8x 2D/H;x� 6H = x. We can see from the Caley's
Table that (D/H; �) is closed, associative, each element has an inverse and it is closed. Further-
more, we can see that this group is Abelian because 8x; y 2D/H;x � y = y � x.

3
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Question 3:

Let (D; �) be a group, and H;K are distinct subgroups of D (i.e. H =/ K).

(i) Prove that F =H \K is a subgroup of D [Hint: Let a; b 2F . By class result, you only need to
show that a−1 � b 2F for every a; b 2 F ].

F = H \K

Firstly; sinceH < D;we know that feg2 H

Similarly; sinceK < D; feg 2K

ThereforeH \ K containsATLEAST the identity
Or; in otherwords;H \ K =/ ?

Let a; b 2F

Thismeans that a; b 2H and a; b 2K

SinceH andK are both subgroups;
then a−1 � b 2H and a−1 � b 2K

and since a−1 � b is in bothH andK;

by definition of the intersection;

a−1 � b 2F

ThereforeF =H \ K is a subgroup of D

Since F is a subgroup of D, and F �H;F �K, then we can also directly say that F <H andF <K.
Therefore F is also a subgroup of both H andK.

(ii) Assume that neither K � H nor H �K. Prove that H [K is never a subgroup of D.

We proceed by contradiction, i.e. we assume F =H [ K is a subgroup of D.

H �/ K andK �/ H

we choose a 2 H and b 2 K;but a 2/ K and b 2/ H

but sinceF is a subgroup;

a � b 2F

Meaning that a � b 2H or a � b 2K Bydefinition of the union

a−1 � a � b 2H ! b 2H Contradiction
OR

a � b � b−12 K ! a 2K Also a contradiction

In other words, if we assume the union to be a subgroup, then we would have that an element that
cannot be in one of the subgroups H andK would be in them, which is a contradiction of the fact
that H �/ K andK �/ H.

Therefore, H [K is never a subgroup of D.

4
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(iii) Assume jH j= jK j= m, where m is a prime positive integer. Prove that H \K = feg
The intersection between H andK must be a subgroup, by the result proven in 3(i). This means
that H \K < D. We can also say that H \ K < H andH \K <K. Now,

Since jH j= jK j= m

andH \ K < H

Therefore;byLangrange0s theorem:

jH \ K j jm
The cardinality of H \ K dividesm;

which is the cardinality of H

Butwe know thatm is prime;meaning that:
the only numbers that divide it are 1 andm

So:
jH \K j= m or jH \ K j=1

However:
SinceH is not the sameasK andm is prime;

jH \K j=/ m

So:

jH \ K j=1

SinceH \ K is a groupwith one element;
then the only element it can contain is e

ThereforeH \ K = feg

We have proven that the intersection of two subgroups (which is itself a subgroup) of D contains
only the identity of D.

Question 4:

(a) [CORRECTED] Let (D; �) be a group, H is a normal subgroup of D, and K is a subgroup
of D. Prove that H � K = fh � k jh 2 H; k 2 Kg is a subgroup of D. Note that H is a subgroup of
H �K and K is a subgroup of H �K since H � e=H and e �K =K [Hint: Let a; b2H �K, by a class
result, you only need to show that a−1 � b 2 H �K for every a; b 2 H �K].

Let a; b 2H �K
a = h1 � k1; b = h2 � k2 h1; h22H; k1; k22K

a−1 � b =(h1 � k1)−1 � (h2 � k2)
k1

−1 �h1
−1 �h2 � k2

h1
−1 �h22H SinceH is a subgroup

Leth3= h1
−1 �h22H

Hencea−1 � b = k1
−1 �h3 � k2

5
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SinceH is normal;wehave:
k1

−1 � h3 � k2= h4 � k1−1 � k2
For someh42H

Let k3= k1
−1 � k2

meaning that k32 K

Therefore:
a−1 � b= h4 � k3 2H �K

Therefore, we have proven that for every a; b 2 H �K, a−1 � b 2 H �K. This condition is enough to
satisfy the condition for subgroups, and therefore H �K is a subgroup of D.

(b) [CORRECTED] Consider S3, the symmetric group of an equilateral triangle (As in HW1).
Give a subgroup, say H of S3, that is not a normal subgroup of S3.

�
f1:

�
a b c
b c a

�
; f2:

�
a b c
c a b

�
; f3=e:

�
a b c
a b c

�
; f4:

�
a b c
a c b

�
; f5:

�
a b c
c b a

�
; f6:

�
a b c
b a c

��

This is the symmetric group of an equilateral triangle. Out of these 6 elements, we can form a
subgroup, H that is NOT a normal subgroup of S3. This means that for some a2S3; a �H =/ H �a.
We need to note here that we mustn't fall into this trap: The condition for a normal subgroup is
that we can find some h; k 2 H st 8a 2 S3, a � h = k � a. k and h do not necessarily need to equal
each other for the subgroup to be normal. With that in mind, let us take H = fe; f4g:

H =

�
e:

�
a b c
a b c

�
; f4:

�
a b c
a c b

��

The Caley's table for this subset is:

� e f4
e e f4
f4 f4 e

Table 4.

Clearly, from this Caley's table, we can see that the subset is a subgroup of S3. Now, let us see if
the subgroup is normal. Since being a normal subgroup means: 8a2S3; a �H =H �a, the negation
of the statement means that 9a 2D (at least one)where a �H =/ H � a.
Let us take some random element in S3, which will serve as our a. Take a = f1. Then:

We check to see if a �h= k � a h; k 2H

f1 � f4= f6 FromCaley0sTable inHW1

f4 � f1= f5

f4 � f1=/ f1 � f4

Note that H only has two elements, making it easy to see the other possibilities. Hence:

f4 �H =/ H � f4

And this shows that H is NOT a normal subgroup of S3.

6
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4.3 HW3-Solution



MTH 320 - Abstract Algebra

HW #3 Solutions

----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

October 14th, 2020

Question 1: Let (D; � ) be a group with 130 elements. Given a; b 2 D such that a � b = b � a; jaj = 
10 and jbj = 13, prove that D is an Abelian group. What more can we say about this group?

We are given some a; b 2 D such that jaj = 10 and jbj = 13. By previous result shown in HW1, we 
know that since (D; � ) is a group and we have two elements in D; say a and b, then ja � bj = jaj � jbj 
if gcd (jaj; jbj) = 1 and a � b = b � a.

In our case, we know that gcd (10; 13) = 1, meaning that for some c = a � b 2D; jcj = jaj � jbj = 10 � 13 =
130. This means that the order of the element c is 130, or in other words, there exists an element
inside D such that the order of the element is equal to the cardinality of D itself. Mathematically:

9c 2 D st jcj = 130 = jD j

With this knowledge, we know that c forms up the entirety of the group, D. In other words, 
D =<c > . Every other element in the group, (D; �) can be made by taking c to some power, where 
the power represents the repitition of the binary operation, (�).

This means that D is indeed not only a group, but a cyclic group. Automatically, through the 
discussion introduced in class, we know that if a group is cyclic, then it is also Abelian. Therefore 
we have proven that (D; �) is Abelian, and went an extra step to show that it is alo cyclic.

Question 2:

i. Assume (D; �) is an infinite cyclic group and a 2D st a =/ e. Prove that jaj= 1.

Since (D; �) is an infinite cyclic group, D =<a> for some a2D. Let b2D and assume that
jbj= m. Since we know that b 2D =<a > , then we conclude that b= ak for somek 2Z.

Since jbj= m, we have that bm = e, which means that (ak)m = e. However, this is a contra-
diction because we are saying that akm, where k m is a finite number gives us the identity,
e. Since (D; �) is an infinite cyclic group, we conclude that jaj= 1.

ii. We know that (Z8;+) is cyclic and (Z;+) is cyclic. Prove that Z8�Z is not a cyclic group.
Use the above proof from (i).

Let x=(1; 0)2Z8�Z. Then we know that jxj= lcm (j1j; j0j)= lcm (8; 1)=8. Since x is not
the identity of Z8�Z by our choice, and it is of finite order, we can conclude using (i) that
D is NOT cyclic.

1
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iii. Let (H; �) and (K; �)be cyclic groups st jH j=m and jK j= n. Let D =H � K. Prove that D
is cyclic iff gcd (m;n)= 1.

=)
AssumeD is cyclic; show gcd (m;n)= 1

let h 2 H; k 2K

Weknow that sinceD = H �K; then jD j= jH j �jK j
ie jD j= mn

SinceH is cyclic; it has exactly'(m) elements of orderm

Similarly;K has exactly '(n) elements of ordern

(From class result)

Weare assuming that D is cyclic; ie 9a 2 D st jaj= jD j a = (h; k)

jaj= j(h; k)j=m � n

Weknow that the concept of order suggests the LEAST
positive number st am�n = e; leading us to the fact that:

lcm (m;n) =m � n

gcd (m;n)=
m �n

lcm (m;n)
=

mn

mn
= 1

(=

Assume gcd (m; n)= 1; show thatD is cyclic

gcd (m;n) =
mn

lcd(m;n)
) lcd(m;n)= mn

Let h 2 H and k 2K

SinceH andK are both cyclic groups; then9h 2H st jhj=m = jH j
and similarly;9k 2K st jk j= n = jK j

jD j=mn (Byprevious proof)

Let a = (h; k)2 D

jaj= lcm (m;n) Bydefinition of D

jaj= n m

Therefore;9a 2 D st jaj= jD j= jH j � jK j= mn

And henceD is cyclic; D =<a >

iv. Let D =(Z8;+)� (Z15;+). Then, by (iii), D is cyclic. How many generators does D have?
Find all subgroups of D with 20 elements. How many elements of order 40 does D have?

Since gcd (8;15)=1;D iscyclicand jD j= jZ8j�jZ15j. We know that Z8has'(8)=4generators
and similarly, Z15has'(15)=8 generators. This means that the number of generators for D
is exactly 4�8=32, since each pair of two generators from Z8andZ15 can form a generator
for D.

2
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We know that jD j = 15� 8 = 120. This means that the total number of elements in D is
120. By a class result, we know that since 20j120, then there exists a unique subgroup of
D where the cardinality is 20. In other words, this subgroup contains exactly 20 elements,
and it is the only one that does.

There is exactly one subgroup, H, of D with 20 elements. Choose one element in D with
order 20. For example, choose x = (2; 3). jxj = 20. Thus H = <(2; 3) > =F � K, where
F = f0; 2; 4; 6g <Z8 (subgroup of Z8) and K = f0; 3; 6; 9; 12g<Z15 (subgroup of Z15).

To find the number of elements in D that have order 40, we consider the following:

Let d= (h; k) 2D

h 2Z8; k 2Z15

st lcm (jhj; jk j)= 40 8d 2D

jhj= 8; jk j= 5 or jhj= 5; jk j= 8

In either case;
the number of elementswith order 5: '(5)

the number of elementswith order 8: '(8)

Therefore:
the number of elementswith order 40: '(5)� '(8)

=4 � 4

=16

v. Let (D; �) be a group. Given that D has exactly 10 distinct subgroups, each with 13 elements,
how many elements of order 13 does D have?

We know that we have 10 distinct subgroups with 13 elements in each. Let us consider the
following:

ConsiderH <D (H is a random subgroup of D)

jH j= 13
Wewant to find an element; h 2 H st jhj= 13

8h 2 H; jhj= 13 because jH j is prime
and jhjdivides jH j

Therefore;we conclude thatH = <h > (Cyclic)
and thusH has '(13) elementswith 13 elements

'(13)= 12

Weknow froma previousHWthat the intersection
of two subgroups that both have prime order is feg:

HenceD has exactly 10 subgroups;
and so it has 10� 12 elements of order 13

=120 elements

Question 3:

a) Let f =
�

1 2 3 4 5 6 7 8 9
4 7 6 8 9 2 3 1 5

�
2S9:Find jf j.

3

120



We have an element in the symmetric group of size 9, such that f =
�

1 2 3 4 5 6 7 8 9
4 7 6 8 9 2 3 1 5

�
.

In order to find the order of f , we need to consider the following:

f = ( 1 4 8 ) � ( 2 7 3 6 ) � ( 5 9 )

And so we know that jf j= lcm (3; 4; 2)= 12.

Therefore: jf j= 12

b) Let f = ( 1 3 7 ) � ( 1 2 4 5 ) � ( 2 3 1 6 )2S7. Find jf j.
Similar to part (a), we can simply proceed as follows:

f =

�
1 2 3 4 5 6 7
6 7 2 5 3 4 1

�

f =( 1 6 4 5 3 2 7 )

Since we have now written f is the composition of disjoint cycles, we can use the result used
in part (a):

jf j= 7

Question 4: Let (D; �) be a group st jD j=77. Given that H is a normal subgroup of D st jH j=7,
suppose that D has exactly one subgroup with 11 elements. Prove that D is a cyclic group. Think
about D/H.

Let a2D;a=/ e. By Lagrange's theorem, jaj=7; 11or77. Let F be the unique subgroup of D with
11 elements. Choose b2/ F and b2/ H. Since F is a unique subgroup with 11 elements, then jbj=/ 11.
Therefore, jbj = 7 or 77. We say that jbj = 7 because there is no uniqueness for the subgroup H,
implying that even if b 2/ H, it could still belong to another subgroup with 7 elements.

Let us assume that jbj = 7. b � H is an element of the group D/H (H CD, and thus D/H is a
group), and b �H =/ H (Because b 2/ H). Furthermore, because jbj= 7; we have that b7= e 2 D.

We conclude that (b �H)7=e �H =H 2D/H. Thus jb �H j=7. However, we have that jD/H j=11,
and by Lagrange's theorem, that means that 7j11. This is not possible since 7 does not divide 11.
This leaves us with one option, and that is jbj= 77.

Since we have found an element in D that has the same order as the number of elements in the
group, we can conclude the following:

D = <b >

Therefore, D is a cyclic group.

4
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Homework Four, MTH 320 , Fall 2020, Due date: October 29, 2020, by
MIDNIGHT, email your Solution as a PDF to abadawi@aus.edu

Ayman Badawi

QUESTION 1. Let Dn (n ≥ 3) be the set of all symmetries on n− gon (see class notes). We know from class notes that
(Dn, o) is a group with exactly 2n elements (exactly n elements are rotations and exactly n elements are reflections, note
e = R360 and R−1

a = Ra for every reflection Ra ∈ Dn. ). It is clear that the composition of two rotations is a rotation in
Dn.

(i) (give a short proof, but clear-cut). Prove that the composition of a rotation with a reflection is a reflection in Dn

(nice!) (i.e, assume that R is a rotation and Ra is a reflection, prove that R o Ra = Rb for some reflection Rb in
Dn. )

Proof. Let R be a rotation and E be a reflection. Assume that R o E = R1 for some rotation R1. Hence E =
R1 oR−1, a contradiction since the composition of two rotations is a rotation. Thus R o E = F for some reflection
F . (note, similarly EoR = H for some reflection H . )

(ii) (give a short proof, but clear-cut).Prove that the composition of two reflections is a rotation in Dn (i.e, assume that
Ra, Rb are reflections in Dn, prove that Ra o Rb = R for some rotation R in Dn. ).

Proof Assume that F1 F2 = F3, where F1, F2, F3 are some reflections. Since number of rotations = number of
reflections, by (i) we conclude {F1 o R1, F1 o R2, ..., F1 o Rn} = set of all reflections. Thus F1 o Ri = F3 for some
rotation Ri. Since F1 o F2 = F3 and F1 o Ri = F3, we conclude that Ri = F2, impossible. Thus F1 o F2 is a
rotation.

QUESTION 2. (a) Assume (D, .) is a group such that a2 = e for every a ∈ D. Prove that D is an abelian group.
Proof. Let a ∈ D. Since a2 = e, we conclude that a−1 = a. Let a, b ∈ D. Since, a.b ∈ D, we have (a.b)2 = e. Thus

(1)(a.b)−1 = a.b

Hence
(2)(a.b)−1 = b−1.a−1 = b.a

. Thus (1) and (2) implies a.b = b.a.
(b) Assume that (D, .) is a group such that (ab)2 = a2b2 for every a, b ∈ D. Prove that D is an abelian group.
Proof. (a.b)2 = a.b.a.b = a.a.b.b. Hence a−1.(a.b.a.b).b−1 = a−1.(a.a.b.b).b−1. Thus b.a = a.b.

QUESTION 3. a) Let (D, .) be a group and a ∈ D such that |a| = n < ∞. Prove that |b.a.b−1| = |a| = n for every
b ∈ D.

Proof. Let m = |b.a.b−1|. Note that (b.a.b−1)n = b.a.b−1.b.a.b−1. · · · .b.a.b−1 (n times) = b.an.b−1 = b.e.b−1 = e.
Hence m | n. Since |b.a.b−1| = m, we have (b.a.b−1)m = b.a.b−1b.a.b−1. · · · .b.a.b−1 = b.am.b−1 = e. (m times). Thus
am = b.b−1 = e. Thus n | m. Since m | n and n | m, we conclude that n = m.

b) Let (D, .) be a group and H be a subgroup of D such that |H| = m <∞.
i) Prove that |a.H.a−1| = |H| = m for every a ∈ D. [Hint : Let a ∈ D and construct a function f : H →

a.H.a−1 such that f(b) = a.b.a−1. Show that f is 1-1 and onto , (easy)]
Proof. Let a ∈ H . Define f : H → a.H.a−1 such that f(h) = a.h.a−1. We show f is ONTO. Let d ∈ a.H.a−1.

Then d = a.h1.a
−1 for some h1 ∈ H . Thus f(h1) = a.h1.a

−1. We show f is one-to-one. Assume f(h1) = f(h2). Thus
a.h1.a

−1 = a.h2.a
−1. Hence h1 = h2.

ii) Let a ∈ (D, .). Prove that a.H.a−1 is a subgroup of D [ Hint: Let x, y ∈ a.H.a−1, show that x.y ∈ a.H.a−1].
Proof. Let x, y ∈ a.H.a−1. Since a.H.a−1 is a finite set, by a class-notes result, we show x.y ∈ a.H.a−1. Thus

x = a.h1.a
−1 and y = a.h2.a

−1. Hence x.y = a.h1.a
−1.a.h2.a

−1 = a.h1.h2.a
−1 ∈ a.H.a−1. Thus a.H.a−1 is a

subgroup of D.
iii) Assume H is unique (i.e., H is the only subgroup of D with m elements). Prove that H is a normal subgroup

of D (nice! and easy, make use of (i) and (ii))
Proof. Let a ∈ D. Hence by (i) and (ii), a.H.a−1 = H . Thus a.H = H.a. Since a.H = H.a for every a ∈ D, we

conclude that H is a normal subgroup of D.

QUESTION 4. Let f = (1 2 6) o (6 3 2 5) o (1 6 2 4 5) ∈ S6.
a) Find |f|.
Solution We must write f as disjoint cycles. Hence f = (1 3 6 5 2 4). Thus |f | = 6.
b) Find f−1

f−1 = (4 2 5 6 3 1)
c) Is f ∈ An? explain.
Since f is a 6-cycle, clearly f is an odd permutation (function). Thus f 6∈ An.
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e) Let h ∈ A9 such that |h| is maximum. What is |h|? (think, not difficult) (i.e., if |h| = m, then |b| <= m for every
b ∈ A9)

IDEA: Imagine that we Write h as disjoint cycles, by try and error and staring , we conclude that h is a
composition of a 5-cycle with a 3-cycle. Hence |h| = 15.

QUESTION 5 (Nice, good exercise, see class notes). . Let f : (Z12,+) → (Z9,+) be a non-trivial group homomor-
phism.

a) Find Range(f) and Ker(f).
By class notes, |Range(f)| must be a factor of 9 and 12 (i.e., |Range(f)| must be a factor of |co-domain| and

|domain|). Thus |Range(f)| = 3.
Since (Z9,+) is cyclic, Z9 has exactly one subgroup with 3 elements. Since |3| is 3, we have Range(f) =< 3 >=

{0, 3, 6}.
By class-notes (First-Isomorphism Theorem), we have Z12/Ker(f) ≡ Range(f). Hence |Z12|/|Ker(f)| = |Range(f)|.

Thus |Ker(f)| = 4.
Since (Z12,+) is cyclic, it has a unique subgroup K of Z12 with 4 elements. To find k choose an element in Z12 of

order 4 (for example 13 = 3) Hence K = {0, 3, 6, 9}.
b) What are all possibilities of f(1)? For each possibility of f(1), find f(a) for every a ∈ Z12. [Hint: Note if we

know f(1), then we know f(a) for every a ∈ Z12. Since Z12 =< 1 > and f is a group homomorphism, f(a) = f(1a) =
(f(1))a. By the first isomorphism theorem , we know Z12/Ker(f) is group-isomorphic to Range(f) (see class notes:
K(b + Ker(f)) = f(b). Hence if i + Ker(f) is a left coset of Ker(f). Then K(i + Ker(f)) = f(i). Observe that
each element in a left coset can be chosen as a representative, Thus for every b ∈ i+Ker(f) (we know b + Ker(f) = i +
Ker(f)), we have K(i+Ker(f)) = K(b+Ker(f)) = f(i) = f(b) (i,e., if W is a left coset of Ker(f), then all elements
of W must map to the same number in Z9 ). Now since 1 is a generator of Z12, f(1) must be a generator of Range(f)
(note that Range(f) is a cyclic subgroup of Z9).

Now since Z12 =< 1 >, we conclude that Range(f) =< f(1) >. Hence f(1) = 3 or f(1) = 6 since < 3 >=<
6 >= Range(f). So assume f(1) = 3 = 13.(if you choose, then you can find f(a) for every a ∈ Z12 Note f(a) =
f(1a) = (f(1))a = (13)a = 3.a(mod 9 )

But, here is a different approach :
Now recall from class notes the map K : Z12/Ker(f) → Range(f) = {0, 3, 6} , where K(a + Ker(f)) = f(a).

(Note that this map is well-defined, K is group-homomorphism, 1-1, and onto). For assume that h ∈ a +Ker(f). We
know (class notes) that h+Ker(f) = a+Ker(f). Hence K(a+Ker(f)) = K(h+Ker(f)) = f(h) = f(a)). Since
K is 1-1, each left coset of Z12/Ker(f) maps to one and only one number in RANGE(F).

Now we find the left cosets of Ker(f) (note that Ker(f) has exactly 3 left cosets)
(1) Ker(f), and hence f(a) = 0 for every a in Ker(f).
(2) 1 +Ker(f) = {1, 4, 7, 10}. Thus f(a) = f(1) = 3 for every a ∈ 1 +Ker(f).
(3) 2 +Ker(f) = {2, 5, 8, 11}. Thus f(a) = f(2) = f(12) = (f(1))2 = (13)2 = 6 for every a in 2 + Ker(f).
Similarly, assume f(1) = 6 = 16....YOU DO IT.
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47
QUESTION 1. (6 points) Let (D, .) be a group with 39 elements. Assume that D has a normal subgroup with 3
elements. Prove that D is cyclic.

Proof.(very similar to a HW-problem) Since 39 = 3.13, we know by HW and by class-result that D has an
element a of order 13. Let H =< a >. Hence |H| = 13. Since [H : D] = 3 is the smallest prime factor of |D|, we
conclude that H is a normal subgroup of D. Let F be the given normal subgroup of D with 3 elements. It is clear
that H ∩ F = {e}. Thus D = H · F . Hence D ≈ H ⊕ F by a class result. It is clear that F ≈ Z13 and F ≈ Z3.
Hence D ≈ Z13 ⊕ Z3. Since Z13, Z3 are cyclic groups and gcd(13, 3) = 1, we conclude that D ≈ Z13 ⊕ Z3 ≈ Z39 is
a cyclic group.

QUESTION 2. Let (D, .) be an abelian group with 245 = 5 · 72 elements. Assume that D is non-cyclic.

i) (6 points) Find m1, ..,mk such that D ≈ (Zm1 ,+)⊕ · · · ⊕ (Zmk
,+). SHOW THE WORK.

(similar to a HW-problem) Since D is abelian, D has a normal subgroup, H , with 72 = 49 elements and it has
a normal subgroup F with 5 elements. Since gcd(5, 49) = 1, we conclude that H ∩ F = {e}. Thus D = H · F .
Hence, we know that D ≈ H ⊕ F . It is clear that F ≈ Z5. Since |H| = 72, By a HW-problem we know that either
F ≈ Z49 OR H ≈ Z7 ⊕ Z7. Hence either D ≈ H ⊕ F ≈ Z49 ⊕ Z5 OR D ≈ H ⊕ F ≈ Z7 ⊕ Z7 ⊕ Z5. Assume that
D ≈ Z49 ⊕ Z5. Since gcd(49, 5) = 1, we conclude that D ≈ Z49 ⊕ Z5 ≈ Z245 is cyclic, a contradiction (since it is
given that D is non-cyclic). Thus D ≈ Z7 ⊕ Z7 ⊕ Z5 ≈ Z7 ⊕ Z35. Thus you may choose either (m1 = m2 = 7 and
m3 = 5) OR (m1 = 7 and m2 = 35).

ii) (3 points) How many elements of order 35 does D have?

From (i), we know that D ≈ Z7 ⊕ Z35. Let (a, b) ∈ Z7 ⊕ Z35 such that |(a, b)| = LCM [|a|, |b|] = 35. Since
gcd(35, 7) = 7, we conclude that |(a, b)| = 35 if and only |b| = 35 OR |a| = 7 and |b| = 5. Hence a can be any
element in Z7 and we know that Z35 has exactly φ(35) = 24 elements of order 35 OR a can be any nonzero element
of Z7 and b ∈ Z35 such that |b| = 5. We know that Z35 has exactly φ(5) = 4 elements of order 5. Thus D has
exactly 7 · 24 + 6 · 4 = 168 + 24 = 192 elements of order 35.

iii) (3 points) How many elements of order 7 does D have? For this part, maybe it is easier to use the other
version of D, i.e., D ≈ Z7 ⊕Z7 ⊕Z5. Let (a, b, c) ∈ Z7 ⊕Z7 ⊕Z5 such that |(a, b, c)| = LCM [|a|, |b|, |c|] = 7. Hence
either (a is a nonzero element of Z7 and b ∈ Z7 and c = 0) OR (a = 0 and b is a nonzero element of Z7 and c = 0).
Thus D has exactly 6 · 7 · 1 + 1 · 6 · 1 = 48 elements of order 7.

QUESTION 3. (5 points) Let (D, .) be a non-cyclic-group with 2020 elements. Prove that there are finitely many
groups, say D1, ..., Dm, each with 2020 elements such that D 6≈ Di (i.e., D is not group-isomorphic to Di) for every i,
where 1 ≤ i ≤ m.

The idea is in Caley’s Theorem: We know that every group with 2020 elements is isomorphic to a subgroup of
S2020 by Caley’s Theorem. Since S2020 is a FINITE group, S2020 has FINITELY many subgroups of order 2020.
In particular, S2020 has FINITELY many NON-ISOMORPHIC subgroups of order 2020, say M1, ....,Mk, where
k < ∞. Thus each group of order 2020 is isomorphic to one and only one Mi for some i, 1 ≤ i ≤ k. We may
assume that D ≈M1. Then D 6≈Mi for every i, 2 ≤ i ≤ k. Thus if L a group with 2020 elements and L 6≈ D, then
L ≈Mi for some i, 2 ≤ i ≤ k. Hence D is not isomorphic to exactly k − 1 groups of order 2020.

QUESTION 4. Let f : (Z6,+)⊕ (Z6,+)→ (Z6,+) such that f((a, b)) = 2 · (a+ b−1) (note that b−1 means the inverse
of b under addition mod 6, and in 2 · (a+ b−1), the "+" means addition mod 6 and "·" means multiplication mod 6 .

i) (3 points) Show that f is a group-homomorphism.

Trivial: Let (a, b), (c, d) ∈ (Z6,+)⊕ (Z6,+). We show f((a, b)⊕ (c, d)) = f(a, b) + f(c, d). (note that in general
(a · b)−1 = b−1 · a−1, here "·" is + mod 6, and Z6 is abelian. Hence (a+ b)−1 = b−1 + a−1 = a−1 + b−1)

Now f((a, b)⊕(c, d)) = f(a+c, b+d) = 2(a+c+(b+d)−1) = 2a+2c+2b−1+2d−1 = 2(a+b−1)+2(c+d−1) =
f(a, b) + f(c, d).

ii) (3 points) Find the range of f .

We know |Range(f)| is a factor of 6. Since Z6 is cyclic, we know that Z6 has unique subgroup of order 2 and
it has unique subgroup of order 3. It is clear that 1 6∈ Range(f). Hence Range(f) 6= Z6. Since f(1, 0) = 2 ∈
Range(f), we conclude that Range(f) = {0, 2, 4} is the unique subgroup of Z6 with 3 elements.
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iii)(5 points) Find ker(f).
We know that (Z6 ⊕ Z6)/Ker(f) ≈ Range(f). Hence 36/|Ker(f) = 3. Thus |Ker(f)| = 12. So we need

to find 12 elements in Z6 ⊕ Z6, say (a, b), such that 2(a + b−1) = 0 in Z6. So if we set a + b−1 = 0, we get
that b = a. Thus (0, 0), (1, 1), (2, 2), (3, 3), (4, 4), (5, 5) ∈ Ker(f), but we still need to find 6 more elements. By
staring at 2(a + b−1) = 0 in Z6, we see that if a + b−1 = 3 in Z6, then 2(a + b−1) = 0 in Z6. By Setting
a + b−1 = 3 and solving for b, we get b−1 = 3 + a−1. Hence b = (3 + a−1)−1 = 3−1 + a = 3 + a in Z6. Thus
(0, 3), (1, 4), (2, 5), (3, 0), (4, 1), (5, 2) ∈ Ker(f).

Hence Ker(f) = {(0, 0), (1, 1), (2, 2), (3, 3), (4, 4), (5, 5), (0, 3), (1, 4), (2, 5), (3, 0), (4, 1), (5, 2)}

QUESTION 5. Let D = (Aut(Z20), o). [ Recall: Aut(Z20) is the group of all group-isomorphism from (Z20,+) onto
(Z20,+) under composition.]

i) (3 points) Is D cyclic? explain?

One lecture (1 hours and 15 minutes) was only on Aut(Zn). We know Aut(Z20) ≈ U(20). Since 20 = 22 · 5, we
conclude that U(20) is not cyclic by class-result. Thus (Aut(Z20), o) is not cyclic.

ii) (4 points) Construct a non-cyclic subgroup of D, say (H, o), of D such that |H| = 4.
See my lecture on Aut(Zn). We constructed a group-isomorphism K : ((U(20), .) (note "." is multiplication

module 20)→ (Aut(Z20), o) such that k(a) = fa for every a ∈ U(20), where fa ∈ Aut(Z20) and fa : (Z20,+) →
(Z20,+) such that fa(b) = ab in Z20 for every b ∈ Z20. Since U(n) is abelian, we conclude that Aut(Zn) is abelian.
Hence one way to construct a noncyclic-subgroup of Aut(Z20) with 4 elements: Construct two subgroups H,F
of Aut(Z20) such that |H| = |F | = 2. Then L = H o K will be a noncyclic subgroup with 4 elements since
H ∩ F = {e}.

Hence choose a = 9 ∈ U(20). Then |a| = 2. Since K(9) = f9 : Z20 → Z20, where f9(b) = 9b in Z20 for every
b ∈ Z20, we conclude |f9| = 2. Note that the identity, e, in Aut(Z20) is the identity map I : Z20 → Z20 such that
I(b) = b for every b ∈ Z20. Thus H = {I, f9} is a subgroup of Aut(Z20) with 2 elements.

Choose a = 11 ∈ U(20). Then |11| = 2. Thus (similar to the case above), K = {I, f11} is a subgroup of
Aut(Z20) with 2 elements. Thus H o K = {I, f9, f11, f19} is a non-cyclic subgroup of Aut(Z20) with 4 elements
(note that (f9 o f11)(b) = f9(11b) = 99b = 19b for every b ∈ Z20.

QUESTION 6. Let n = 16 · 9 and D = U(n).

(i)(4 points) Find m1, ..,mk such that D ≈ (Zm1 ,+)⊕ · · · ⊕ (Zmk
,+). SHOW THE WORK.

By the last lecture (before the exam), we know that U(24 · 32) ≈ U(24) ⊕ U(32). Also we know that U(2m)
(m ≥ 3) ≈ Z2 ⊕ Z2(m−2) and U(pn) (p is prime, p 6= 2 and n ≥ 1) ≈ Zp−1 ⊕ Zp(n−1) ≈ Zpn−p(n−1) .

Hence U(24 · 32) ≈ U(24)⊕ U(32) ≈ Z2 ⊕ Z4 ⊕ Z2 ⊕ Z3 ≈ Z2 ⊕ Z2 ⊕ Z12.
So you may choose either (m1 = 2,m2 = 4,m3 = 2 and m4 = 3) OR (m1 = m2 = 2 and m3 = 12)

(ii) (2 points) Let a ∈ D such that |a| is maximum. Find |a|.
Let (b, c, d) ∈ Z2 ⊕ Z2 ⊕ Z12 such that |(b, c, d)| = LCM [|b|, |c|, |d|] = k such that k is maximum. By staring

k = 12. Since U(24 · 32) ≈ Z2 ⊕ Z2 ⊕ Z12. we conclude that |a| = k = 12.
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4.6 HW6-Solution
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Here is one way to do it (algorithm) 
 
D = Z_2 (oplus) Z_4 (oplus) Z_{80} 
 
|(a, b, c)| = LCM[|a|, |b|, |c|] = 4. 
 
LCM[1, 4, 1] = 4. There are exactly 1 X phi(4)X 1 = 2  of these elements 
LCM[1, 4, 2] = 4 .  There are exactly 1 X phi(4)X phi(2) = 2  of these elements 
LCM[1, 4, 4] = 4 . There are exactly 1 X phi(4)X phi(4) = 4  of these elements 
LCM[1, 1, 4] = 4. There are exactly 1 X 1X phi(4) = 2  of these elements 
LCM[1, 2, 4] = 4. There are exactly 1 X phi(2)X phi(4) = 2  of these elements 
LCM[2, 1, 4] = 4. There are exactly  phi(2)X1Xphi(4) = 2 of these elements 
LCM[2, 2, 4] = 4. There are exactly  phi(2)Xphi(2)Xphi(4) = 2 of these elements 
LCM[2, 4, 1] = 4. There are exactly  phi(2)Xphi(4)X1 = 2 of these elements 
LCM[2, 4, 2] = 4. There are exactly  phi(2)Xphi(4)Xphi(2) = 2 of these elements 
LCM[2, 4, 4] = 4 There are exactly phi(2)X phi(4)X phi(4) = 4  of these elements 
 
Total of elements of order 4  is  24 elements
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Let x = (a, b, c) of maximum order.  Since U(2^6.5^2) = Z_2 (olpus) Z_4 (oplus) Z_80  and 2 |4|80, we 
know Max Order of x = Max LCM[|a|, |b|, |c|] = 80
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4.7 Exam One Solution



ii) Left cosets of H
We know number of all left cosets
of H is |D|/|H| = 20/5 = 4.
So we have
H
1+ H = {5, 9, 13, 17, 1}, 2 + H = {6,
10, 14, 18, 2}, 3 + H = {7, 11, 15,
19, 3}

Q2(ii) Let F be the unique subgroup of D with 5 elements and M = D/H.
Let a in D - (F U H). Then a*H not equal to H. Since |M| = 5, |a*H| = 5.
Thus 5 must divide |a|. Since a is not in F and F is unique, |a| = 13 or
65. Since 5 does not divide 13, |a| is not 13. Thus |a| = 65. Hence D is
cyclic.
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= {(0, 5), (0, 10), (0,
15), ...., (3, 5), (3, 10),...
(3, 30)}
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4.8 Exam Two Solution



Name—————————————–, ID ———————–

MTH 320, Fall 2020, 1–2 © copyright Ayman Badawi 2020

Solution-MTH 320, Exam II, Fall 2020

Ayman Badawi

47
QUESTION 1. (6 points) Let (D, .) be a group with 39 elements. Assume that D has a normal subgroup with 3
elements. Prove that D is cyclic.

Proof.(very similar to a HW-problem) Since 39 = 3.13, we know by HW and by class-result that D has an
element a of order 13. Let H =< a >. Hence |H| = 13. Since [H : D] = 3 is the smallest prime factor of |D|, we
conclude that H is a normal subgroup of D. Let F be the given normal subgroup of D with 3 elements. It is clear
that H ∩ F = {e}. Thus D = H · F . Hence D ≈ H ⊕ F by a class result. It is clear that F ≈ Z13 and F ≈ Z3.
Hence D ≈ Z13 ⊕ Z3. Since Z13, Z3 are cyclic groups and gcd(13, 3) = 1, we conclude that D ≈ Z13 ⊕ Z3 ≈ Z39 is
a cyclic group.

QUESTION 2. Let (D, .) be an abelian group with 245 = 5 · 72 elements. Assume that D is non-cyclic.

i) (6 points) Find m1, ..,mk such that D ≈ (Zm1 ,+)⊕ · · · ⊕ (Zmk
,+). SHOW THE WORK.

(similar to a HW-problem) Since D is abelian, D has a normal subgroup, H , with 72 = 49 elements and it has
a normal subgroup F with 5 elements. Since gcd(5, 49) = 1, we conclude that H ∩ F = {e}. Thus D = H · F .
Hence, we know that D ≈ H ⊕ F . It is clear that F ≈ Z5. Since |H| = 72, By a HW-problem we know that either
F ≈ Z49 OR H ≈ Z7 ⊕ Z7. Hence either D ≈ H ⊕ F ≈ Z49 ⊕ Z5 OR D ≈ H ⊕ F ≈ Z7 ⊕ Z7 ⊕ Z5. Assume that
D ≈ Z49 ⊕ Z5. Since gcd(49, 5) = 1, we conclude that D ≈ Z49 ⊕ Z5 ≈ Z245 is cyclic, a contradiction (since it is
given that D is non-cyclic). Thus D ≈ Z7 ⊕ Z7 ⊕ Z5 ≈ Z7 ⊕ Z35. Thus you may choose either (m1 = m2 = 7 and
m3 = 5) OR (m1 = 7 and m2 = 35).

ii) (3 points) How many elements of order 35 does D have?

From (i), we know that D ≈ Z7 ⊕ Z35. Let (a, b) ∈ Z7 ⊕ Z35 such that |(a, b)| = LCM [|a|, |b|] = 35. Since
gcd(35, 7) = 7, we conclude that |(a, b)| = 35 if and only |b| = 35 OR |a| = 7 and |b| = 5. Hence a can be any
element in Z7 and we know that Z35 has exactly φ(35) = 24 elements of order 35 OR a can be any nonzero element
of Z7 and b ∈ Z35 such that |b| = 5. We know that Z35 has exactly φ(5) = 4 elements of order 5. Thus D has
exactly 7 · 24 + 6 · 4 = 168 + 24 = 192 elements of order 35.

iii) (3 points) How many elements of order 7 does D have? For this part, maybe it is easier to use the other
version of D, i.e., D ≈ Z7 ⊕Z7 ⊕Z5. Let (a, b, c) ∈ Z7 ⊕Z7 ⊕Z5 such that |(a, b, c)| = LCM [|a|, |b|, |c|] = 7. Hence
either (a is a nonzero element of Z7 and b ∈ Z7 and c = 0) OR (a = 0 and b is a nonzero element of Z7 and c = 0).
Thus D has exactly 6 · 7 · 1 + 1 · 6 · 1 = 48 elements of order 7.

QUESTION 3. (5 points) Let (D, .) be a non-cyclic-group with 2020 elements. Prove that there are finitely many
groups, say D1, ..., Dm, each with 2020 elements such that D 6≈ Di (i.e., D is not group-isomorphic to Di) for every i,
where 1 ≤ i ≤ m.

The idea is in Caley’s Theorem: We know that every group with 2020 elements is isomorphic to a subgroup of
S2020 by Caley’s Theorem. Since S2020 is a FINITE group, S2020 has FINITELY many subgroups of order 2020.
In particular, S2020 has FINITELY many NON-ISOMORPHIC subgroups of order 2020, say M1, ....,Mk, where
k < ∞. Thus each group of order 2020 is isomorphic to one and only one Mi for some i, 1 ≤ i ≤ k. We may
assume that D ≈M1. Then D 6≈Mi for every i, 2 ≤ i ≤ k. Thus if L a group with 2020 elements and L 6≈ D, then
L ≈Mi for some i, 2 ≤ i ≤ k. Hence D is not isomorphic to exactly k − 1 groups of order 2020.

QUESTION 4. Let f : (Z6,+)⊕ (Z6,+)→ (Z6,+) such that f((a, b)) = 2 · (a+ b−1) (note that b−1 means the inverse
of b under addition mod 6, and in 2 · (a+ b−1), the "+" means addition mod 6 and "·" means multiplication mod 6 .

i) (3 points) Show that f is a group-homomorphism.

Trivial: Let (a, b), (c, d) ∈ (Z6,+)⊕ (Z6,+). We show f((a, b)⊕ (c, d)) = f(a, b) + f(c, d). (note that in general
(a · b)−1 = b−1 · a−1, here "·" is + mod 6, and Z6 is abelian. Hence (a+ b)−1 = b−1 + a−1 = a−1 + b−1)

Now f((a, b)⊕(c, d)) = f(a+c, b+d) = 2(a+c+(b+d)−1) = 2a+2c+2b−1+2d−1 = 2(a+b−1)+2(c+d−1) =
f(a, b) + f(c, d).

ii) (3 points) Find the range of f .

We know |Range(f)| is a factor of 6. Since Z6 is cyclic, we know that Z6 has unique subgroup of order 2 and
it has unique subgroup of order 3. It is clear that 1 6∈ Range(f). Hence Range(f) 6= Z6. Since f(1, 0) = 2 ∈
Range(f), we conclude that Range(f) = {0, 2, 4} is the unique subgroup of Z6 with 3 elements.
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iii)(5 points) Find ker(f).
We know that (Z6 ⊕ Z6)/Ker(f) ≈ Range(f). Hence 36/|Ker(f) = 3. Thus |Ker(f)| = 12. So we need

to find 12 elements in Z6 ⊕ Z6, say (a, b), such that 2(a + b−1) = 0 in Z6. So if we set a + b−1 = 0, we get
that b = a. Thus (0, 0), (1, 1), (2, 2), (3, 3), (4, 4), (5, 5) ∈ Ker(f), but we still need to find 6 more elements. By
staring at 2(a + b−1) = 0 in Z6, we see that if a + b−1 = 3 in Z6, then 2(a + b−1) = 0 in Z6. By Setting
a + b−1 = 3 and solving for b, we get b−1 = 3 + a−1. Hence b = (3 + a−1)−1 = 3−1 + a = 3 + a in Z6. Thus
(0, 3), (1, 4), (2, 5), (3, 0), (4, 1), (5, 2) ∈ Ker(f).

Hence Ker(f) = {(0, 0), (1, 1), (2, 2), (3, 3), (4, 4), (5, 5), (0, 3), (1, 4), (2, 5), (3, 0), (4, 1), (5, 2)}

QUESTION 5. Let D = (Aut(Z20), o). [ Recall: Aut(Z20) is the group of all group-isomorphism from (Z20,+) onto
(Z20,+) under composition.]

i) (3 points) Is D cyclic? explain?

One lecture (1 hours and 15 minutes) was only on Aut(Zn). We know Aut(Z20) ≈ U(20). Since 20 = 22 · 5, we
conclude that U(20) is not cyclic by class-result. Thus (Aut(Z20), o) is not cyclic.

ii) (4 points) Construct a non-cyclic subgroup of D, say (H, o), of D such that |H| = 4.
See my lecture on Aut(Zn). We constructed a group-isomorphism K : ((U(20), .) (note "." is multiplication

module 20)→ (Aut(Z20), o) such that k(a) = fa for every a ∈ U(20), where fa ∈ Aut(Z20) and fa : (Z20,+) →
(Z20,+) such that fa(b) = ab in Z20 for every b ∈ Z20. Since U(n) is abelian, we conclude that Aut(Zn) is abelian.
Hence one way to construct a noncyclic-subgroup of Aut(Z20) with 4 elements: Construct two subgroups H,F
of Aut(Z20) such that |H| = |F | = 2. Then L = H o K will be a noncyclic subgroup with 4 elements since
H ∩ F = {e}.

Hence choose a = 9 ∈ U(20). Then |a| = 2. Since K(9) = f9 : Z20 → Z20, where f9(b) = 9b in Z20 for every
b ∈ Z20, we conclude |f9| = 2. Note that the identity, e, in Aut(Z20) is the identity map I : Z20 → Z20 such that
I(b) = b for every b ∈ Z20. Thus H = {I, f9} is a subgroup of Aut(Z20) with 2 elements.

Choose a = 11 ∈ U(20). Then |11| = 2. Thus (similar to the case above), K = {I, f11} is a subgroup of
Aut(Z20) with 2 elements. Thus H o K = {I, f9, f11, f19} is a non-cyclic subgroup of Aut(Z20) with 4 elements
(note that (f9 o f11)(b) = f9(11b) = 99b = 19b for every b ∈ Z20.

QUESTION 6. Let n = 16 · 9 and D = U(n).

(i)(4 points) Find m1, ..,mk such that D ≈ (Zm1 ,+)⊕ · · · ⊕ (Zmk
,+). SHOW THE WORK.

By the last lecture (before the exam), we know that U(24 · 32) ≈ U(24) ⊕ U(32). Also we know that U(2m)
(m ≥ 3) ≈ Z2 ⊕ Z2(m−2) and U(pn) (p is prime, p 6= 2 and n ≥ 1) ≈ Zp−1 ⊕ Zp(n−1) ≈ Zpn−p(n−1) .

Hence U(24 · 32) ≈ U(24)⊕ U(32) ≈ Z2 ⊕ Z4 ⊕ Z2 ⊕ Z3 ≈ Z2 ⊕ Z2 ⊕ Z12.
So you may choose either (m1 = 2,m2 = 4,m3 = 2 and m4 = 3) OR (m1 = m2 = 2 and m3 = 12)

(ii) (2 points) Let a ∈ D such that |a| is maximum. Find |a|.
Let (b, c, d) ∈ Z2 ⊕ Z2 ⊕ Z12 such that |(b, c, d)| = LCM [|b|, |c|, |d|] = k such that k is maximum. By staring

k = 12. Since U(24 · 32) ≈ Z2 ⊕ Z2 ⊕ Z12. we conclude that |a| = k = 12.
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Q8. Assume that D has a subgroup H such that [H :D] = n, where
2 <= n <=4. Then there is a nontrivial group homomorphism
 F : D ---> S_n. Since D is simple, Ker(F) = {e} or Ker(F) = D.
Since F is nontrivial, Ker(F) not = D. Thus Ker(F) = {e}. Thus by
the first-isomorphism Theorem, D is isomorphic to Range(F) =
subgroup of S_n, which is impossible, since |D| >= 60 and |S_n|
<= 24. Thus D does not have a subgroup H such that
1 < [H:D] <= 4.
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5 Section 5: Assessment Tools-Home Work’s
(unanswered)
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5.1 HW I



Name—————————————–, ID ———————–

MTH 320, Fall 2020, 1–1 © copyright Ayman Badawi 2020

Homework One, MTH 320 , Fall 2020, Due date: Sept 14 by MIDNIGHT, email
your Solution as a PDF to abadawi@aus.edu

Ayman Badawi

QUESTION 1. Let H be the set of all symmetries on an equilateral triangle (see class notes). Construst the Caley’s table
of (H, o). By staring at the table, you should conclude that (H, o) is a group.

(i) For each f ∈ H , find f−1

(ii) For each f ∈ H , find |f | (note fm here means f o f o f o · · · of (m times))

(iii) Show that (H, o) is a non-abelian group (i.e., show that f o k 6= k o f for some f, k ∈ H)

QUESTION 2. Let C be the set of all complex numbers. It is clear that (C∗, X) is group under multiplication. Fix a
positive integer n ≥ 2 and let H be the set of all roots of the polynomial xn − 1 (i.e., H = {x ∈ C∗ | xn − 1 = 0} ).
Prove that (H,X) is a subgroup of (C∗, X). [Hint : note that H is a finite subset of C∗.]

QUESTION 3. Consider the group (Z20,+) Find |1|, |6|, |14|, |15|, |17|, |12| [Hint: first find |1|, then observe that k = 1k

(for example 8 = 18)], then use a class-result to find the order of the remaining elements]

QUESTION 4. Let H = {2, 4, 6, 8, 10, 12} and "." be the multiplication modulo 14. Construct the Caley’s Table of
(H, .). By staring at the table you will observe that (H, .) is an abelian group.

(i) What is e ∈ H?

(ii) For each a ∈ H , find a−1.

(iii) Find |6|, |10|.

QUESTION 5. (1) Let a, b be elements in a group (D, .) such that a · b = b · a. Given |a| = n, |b| = m, where n,m 6=∞
and gcd(n,m) = 1. Let x = a · b. Prove |x| = nm. [Hint: (you need to know these facts, you might need them later on
in the course) (1) If a · b = b · a, then (a · b)n = an · bn, if a · b 6= b · a, then we cannot CLAIM that (a · b)n = an · bn. (2)
Let k, n,m be positive integers: (a) if n | km and gcd(n,m) = 1, then n | k. (b) if n | k and m | k and gcd(n,m) = 1,
then nm | k].

(2) In Question 1 (above), find two elements f, k in (H, o) such that |f | = 2 and |k| = 3, but |f o k| 6= 6 (note that
gcd(2, 3) = 1). So the hypothesis a · b = b · a in (1) is very crucial.
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5.2 HW II



Name—————————————–, ID ———————–

MTH 320, Fall 2020, 1–1 © copyright Ayman Badawi 2020

Homework Two, MTH 320 , Fall 2020, Due date: Sept 29 (Tuesday) by
MIDNIGHT, email your Solution as a PDF to abadawi@aus.edu

Ayman Badawi

QUESTION 1. Let A = {1, 2, 3} and D be the power set of A, i.e., D is the set of all subsets of A (note that |D| = 23 =
8). Define "." on D to mean a · b = (a − b) ∪ (b − a) for every a, b ∈ D. Then (D, .) is an abelian group (optional, you
may verify this by doing the Caley’s Table, but it is not a must)

(i) What is e ∈ D?

(ii) For each a ∈ D, find a−1

(iii) For each a ∈ D, find |a|.
(iv) (nice), I told you that the converse of Lagrange Theorem is correct when a group is finite and abelian (I allow you

to use this fact), i.e., if D is abelian group, |D| = n, and m | n. Then D has at least one subgroup with m elements.
Now the above group is abalian and |D| = 8. Give me a subgroup, say H , of D with 4 elements. Verify that H is a
subgroup by doing the Caley’s table. Does D have an element of order 4? so what do you learn from this question?
Answer: if m|n, then we must have a subgroup with m elements, but not necessarily an element of order m.

QUESTION 2. Let D = {2, 4, 6, 8, 10, 12}. From HW-One, we know that D under multiplication modulo 14 is an
abelian group (see HW-One (Question 4)). Now H = {8, 6} is a subgroup of D. Find all left cosets of H . Since D is
abelian, H is a normal subgroup of D. Construct the Caley’s Table of the group (D/H, ∗).

QUESTION 3. Let (D, .) be a group, H,K are distinct subgroups of D, i.e., H 6= K

(i) Prove that F = H ∩ K is a subgroup of D [Hint: Let a, b ∈ F , by a class result, you only need to show that
a−1 · b ∈ F for every a, b ∈ F .]

(ii) Assume that neither K ⊂ H nor H ⊂ K. Prove that H ∪K is never a subgroup of D.

(iii) Assume |H| = |K| = m, where m is a prime positive integer. Prove that H ∩K = {e}.

QUESTION 4. (a) Let (D, .) be a group, H is a normal subgroup of D, and K is a subgroup of D. Prove that H ·K =
{h · k | h ∈ H, k ∈ K} is a subgroup of D. Note that H is a subgroup of H · K and K is a subgroup of H · K since
H · e = H and e ·K = K [Hint: Let a, b ∈ H ·K, by a class result, you only need to show that a−1 · b ∈ H ·K for every
a, b ∈ H ·K.]

(b)Conside S3 the symmetric group of an equilateral triangle as in HW-one. Give me a subgroup, say H , of S3 that is
not a normal subgroup of S3.
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5.3 HW III



Name—————————————–, ID ———————–

MTH 320, Fall 2020, 1–1 © copyright Ayman Badawi 2020

Homework Three, MTH 320 , Fall 2020, Due date: October 14 (Wednesday) by
MIDNIGHT, email your Solution as a PDF to abadawi@aus.edu

Ayman Badawi

QUESTION 1. Let (D, .) be a group with 130 elements. Given, a, b ∈ D such that a · b = b · a, |a| = 10 and |b| = 13.
Prove that D is an abelian group. Can you say more about D?

QUESTION 2. (i) Assume (D, .) is an infinite cyclic group and a ∈ D such that a 6= e. Prove that |a| =∞.

(ii) We know (Z8,+) is cyclic and (Z,+) is cyclic. Prove that Z8 ⊕ Z is not a cyclic group. [Hint: use (i) above!].

(iii) Let (H, .), (K, ∗) be cyclic groups such that |H| = m and |K| = n. Let D = H ⊕K. Prove that D is cyclic if and
gcd(m,n) = 1[Hint: First assume that D is cyclic. Show gcd(m,n) = 1. Second direction: Assume gcd(m,n) = 1.
Show that D is cyclic.]

(iv) Let D = (Z8,+)⊕ (Z15,+). Then by (iii), D is cyclic. How many generators does D have? Find all subgroups of
D with 20 elements. How many elements of order 40 does D have?

(v) Let (D, .) be a group. Given that D has exactly 10 distinct subgroups, each has 13 elements. How many elements
of order 13 does D have?

QUESTION 3. (a) Let f =

(
1 2 3 4 5 6 7 8 9
4 7 6 8 9 2 3 1 5

)
∈ S9. Find |f |.

(b) Let f = (1 3 7) o (1 2 4 5) o (2 3 1 6) ∈ S7. Find |f |.

QUESTION 4. Let (D, .) be a group such that |D| = 77. Given that H is a normal subgroup of D such that |H| = 7.
Suppose that D has exactly one subgroup with 11 elements. Prove that D is a cyclic group. [Hint : Think about D/H !]
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5.4 HW IV



Name—————————————–, ID ———————–

MTH 320, Fall 2020, 1–1 © copyright Ayman Badawi 2020

Homework Four, MTH 320 , Fall 2020, Due date: October 29, 2020, by
MIDNIGHT, email your Solution as a PDF to abadawi@aus.edu

Ayman Badawi

QUESTION 1. Let Dn (n ≥ 3) be the set of all symmetries on n− gon (see class notes). We know from class notes that
(Dn, o) is a group with exactly 2n elements (exactly n elements are rotations and exactly n elements are reflections, note
e = R360 and R−1

a = Ra for every reflection Ra ∈ Dn. ). It is clear that the composition of two rotations is a rotation in
Dn.

(i) (give a short proof, but clear-cut). Prove that the composition of a rotation with a reflection is a reflection in Dn

(nice!) (i.e, assume that R is a rotation and Ra is a reflection, prove that R o Ra = Rb for some reflection Rb in
Dn. )

(ii) (give a short proof, but clear-cut).Prove that the composition of two reflections is a rotation in Dn (i.e, assume that
Ra, Rb are reflections in Dn, prove that Ra o Rb = R for some rotation R in Dn. )

QUESTION 2. (a) Assume (D, .) is a group such that a2 = e for every a ∈ D. Prove that D is an abelian group.
(b) Assume that (D, .) is a group such that (ab)2 = a2b2 for every a, b ∈ D. Prove that D is an abelian group.

QUESTION 3. a) Let (D, .) be a group and a ∈ D such that |a| = n < ∞. Prove that |b.a.b−1| = |a| = n for every
b ∈ D.

b) Let (D, .) be a group and H be a subgroup of D such that |H| = m <∞.
i) Prove that |a.H.a−1| = |H| = m for every a ∈ D. [Hint : Let a ∈ D and construct a function f : H →

a.H.a−1 such that f(b) = a.b.a−1. Show that f is 1-1 and onto , (easy)]
ii) Let a ∈ (D, .). Prove that a.H.a−1 is a subgroup of D [ Hint: Let x, y ∈ a.H.a−1, show that x.y ∈ a.H.a−1].
iii) Assume H is unique (i.e., H is the only subgroup of D with m elements). Prove that H is a normal subgroup

of D (nice! and easy, make use of (i) and (ii))

QUESTION 4. Let f = (1 2 6) o (6 3 2 5) o (1 6 2 4 5) ∈ S6.
a) Find |f|.
b) Find f−1

c) Is f ∈ An? explain.
e) Let h ∈ A9 such that |h| is maximum. What is |h|? (think, not difficult) (i.e., if |h| = m, then |b| <= m for every

b ∈ A9)

QUESTION 5 (Nice, good exercise, see class notes). . Let f : (Z12,+) → (Z9,+) be a non-trivial group homomor-
phism.

a) Find Range(f) and Ker(f).
b) What are all possibilities of f(1)? For each possibility of f(1), find f(a) for every a ∈ Z12. [Hint: Note if we

know f(1), then we know f(a) for every a ∈ Z12. Since Z12 =< 1 > and f is a group homomorphism, f(a) = f(1a) =
(f(1))a. By the first isomorphism theorem , we know Z12/Ker(f) is group-isomorphic to Range(f) (see class notes:
K(b + Ker(f)) = f(b). Hence if i + Ker(f) is a left coset of Ker(f). Then K(i + Ker(f)) = f(i). Observe that
each element in a left coset can be chosen as a representative, Thus for every b ∈ i+Ker(f) (we know b + Ker(f) = i +
Ker(f)), we have K(i+Ker(f)) = K(b+Ker(f)) = f(i) = f(b) (i,e., if W is a left coset of Ker(f), then all elements
of W must map to the same number in Z9 ). Now since 1 is a generator of Z12, f(1) must be a generator of Range(f)
(note that Range(f) is a cyclic subgroup of Z9).
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5.5 HW V



Name—————————————–, ID ———————–

MTH 320, Fall 2020, 1–1 © copyright Ayman Badawi 2020

HW5, MTH 320, Due date: November 26, Thursday by MIDNIGHT + 4 more
hours, email your Solution as a PDF to abadawi@aus.edu

Ayman Badawi

PLEASE when you write something /make it brief/ clear/ try to avoid writing something that you do not
understand

QUESTION 1. Let D be the set of all functions with continuous 4th derivative, a1, a2 be some nonzero fixed real
numbers. We know that (D,+) is an abelian group. Define K : (D,+)→ (D,+) such that k(y(x)) = a1y

(4) + a2y
(2).

(i) Convince me that K is a group-homomorphism,

(ii) Given f(x) = cos(2x)e3x ∈ Range(K). Given h(x) ∈ D such that K(h(x)) = f(x). Let m(x) ∈ D such that
K(m(x)) = f(x). Prove that m(x) = h(x) + g(x), for some g(x) ∈ Ker(K). i.e., by doing this question, you will
understand why the general solution, yg, to a linear diff. equation with constant coefficients is yh + yp (where yh is
the homogeneous part and yp is the particular part.) [hint: Use D/Ker(k) is group-isomorphic to Range(K)]

QUESTION 2. Let (D, .) be an abelian group with 125 elements, m ≥ 2 be a fixed positive integer. Set F = {am | a ∈
D}. Find all possibilities of |F | [Hint: Can you say something about F ?]. Do we need abelian here? explain.

QUESTION 3. Let D be a group with 32.52 elements. Given |C(D)| ≥ 15. Prove that D is an abelian group[ Hint:
Straight forward if you use two theorems that I told you about in the lectures]

QUESTION 4. Given (D, .) is a group with 60 elements, a ∈ D such that |C(a)| = 15. Find |Conjugate(a)|.

QUESTION 5. (NICE)
(1) Let D be a group with p2 elements. Prove that D ≈ Zp2 or D ≈ Zp ⊕ Zp. [Hint: What do you know about a

group with p2 elements? Use the result if H,K are normal subgroups of D, where D = H.K and H ∩K = {e}, then
D ≈ H ⊕K.]

(2) Let D be an abelian group with p3 elements such that D has a unique subgroup with p2 elements. Prove that D is
cyclic. [Hint: Assume not, use the hint as in (1), find H, K such that D ≈ H ⊕K , then prove that H ⊕K has more than
one subgroup with p2 elements, a contradiction]

QUESTION 6. Let p1, p2 be distinct prime integers and D be a group such that |D| = p1p2. Prove that D is not a simple
group [Recall that D is simple if and only if {e} is the only proper normal subgroup of D, then use a class result (straight
forward)]

QUESTION 7. Let D be a group with 75 elements. Given D has a subgroup with 25 elements and a normal subgroup
with 3 elements. Prove that D is abelian

QUESTION 8. Let f : (Q,+)→ (Q,+) be a group-homomorphism such that f(3) = −3.
1) Prove that f(1/m) = −1/m for every m ∈ Z \ {0}
2) Prove that f(x) = −x for every x ∈ Q.[ Note that Q is the set of all rational numbers and Z is the set of all

integers]

QUESTION 9. Let f : (Z15,+) → (Z10,+) be a group homomorphism such that f(2) = 2. For each left coset of
Ker(f), say H , find f(h) for each h ∈ H .
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5.6 HW VI



Name—————————————–, ID ———————–

MTH 320, Fall 2020, 1–1 © copyright Ayman Badawi 2020

HW 6, MTH 320, Due date: Any time before or at Dec 13, Sunday by
MIDNIGHT + 4 more hours, email your Solution as a PDF to abadawi@aus.edu

Ayman Badawi

PLEASE when you write something /make it brief/ clear/ try to avoid writing something that you do not
understand

Remark 1. We know U(n) is group under multiplication mod n and Zn is group under addition mod n. So now we can
solve linear equations over Zn.

Example: Solve for x :
3x+ 7 = 4 in Z8

.
3x = 4 + 7−1 in Z8 (7−1 means inverse of 7 under addition mod 8)

3x = 4 + 1 = 5

note 3 ∈ U(8), hence x = 3−1 · 5 in Z8 (3−1 means inverse of 3 under multiplication mod 8)

x = 3 · 5 = 7 in Z8(since 3−1 = 3 in U(8))

Note that if a ∈ U(n), b ∈ Zn, and c ∈ Zn, then ax+ b = c has only one solution in Zn.

Note that if a 6∈ U(n), then ax+ b = c might have more than one solution or no solutions.

For example: 2x+ 1 = 3 has two solutions in Z8, x = 1, and x = 5.

For example 2x+ 1 = 4 has no solutions in Z8.

I expect that you know how to solve ax+ b = c, when a ∈ U(n).

QUESTION 1. Solve for x: 5x+ 3 = 8 in Z12.

Write b in terms of a, where a, b ∈ Z9: a−1 + 4b = 6 in Z9. (a−1 is the inverse of a under addition mod 9)

QUESTION 2. We know D = U(26 · 52) ≈ Zm1 ⊕ · · · ⊕ Zmw , where m1,m2, ...,mw are the invariant factors of D.

(i) Find m1, ...,mw.

(ii) How many elements of order 4 does D have?

(iii) How many elements of order 5 does D have?

iv) Let a ∈ D such that |a| is maximum. Find |a|.

QUESTION 3. Given D ≈ Z6 ⊕ Z4 ⊕ Z10 and F ≈ Z2 ⊕ Z6 ⊕ Z20. Convince me that D ≈ F .

Let L = Z2 ⊕ Z10 ⊕ Z12. Then |L| = |D| = |F | = 240. Convince me that L ≈ D ≈ F .

QUESTION 4. (i) Up to isomorphic, classify all finite abelian groups with 25 · 53 elements.

(ii) up to isomorphic, classify all non-cyclic finite abelian groups with 25 · 53 elements such that each has an element
of order 200 = 23 · 52. Write each group in terms of its invariant factors.
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6.1 Exam I



Name—————————————–, ID ———————–

MTH 320, Fall 2020, 1–1 © copyright Ayman Badawi 2020

Exam-One, MTH 320

Ayman Badawi

QUESTION 1. i) Let H be an abelian group with 33 elements. Prove that H is cyclic.
ii) Let D be a group with 65 elements. Suppose that D has a normal subgroup with 13 elements and a unique

subgroup with 5 elements. Prove that D is cyclic.

QUESTION 2. Consider the group (Z20,+)

(i) Construct a subgroup H of Z20 that contains exactly 5 elements.

(ii) Find all distinct left cosets of H .

QUESTION 3. Let D = Z6 × Z35
i) Is D cyclic? explain.
ii) Find a generator of D.
ii) How many elements of order 15 does D have?
iii) construct a subgroup of D that has exactly 14 elements.

QUESTION 4. Let A = (1 2 5) o (6 5 2) o (3 8 6 10)
i) Find |A|
ii) Is A even or odd? explain.
ii) Find |A o (10 2 3)|.

QUESTION 5. Let f : (Z16,+)→ (Z12,+) be a non-trivial group homomorphism.
i) Find Range(f).
ii) Find Ker(f).
iii) Give me one possibility for f(1), let us call it b. Using f(1) = b, find f(a) for every a ∈ Z16.
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6.2 Exam II



Name—————————————–, ID ———————–

MTH 320, Fall 2020, 1–1 © copyright Ayman Badawi 2020

MTH 320, Exam II, Fall 2020

Ayman Badawi

47
QUESTION 1. (6 points) Let (D, .) be a group with 39 elements. Assume that D has a normal subgroup with 3
elements. Prove that D is cyclic.

QUESTION 2. Let (D, .) be an abelian group with 245 = 5 · 72 elements. Assume that D is non-cyclic.

i) (6 points) Find m1, ..,mk such that D ≈ (Zm1 ,+)⊕ · · · ⊕ (Zmk
,+). SHOW THE WORK.

ii) (3 points) How many elements of order 35 does D have?

iii) (3 points) How many elements of order 7 does D have?

QUESTION 3. (5 points) Let (D, .) be a non-cyclic-group with 2020 elements. Prove that there are finitely many
groups, say D1, ..., Dm, each with 2020 elements such that D 6≈ Di (i.e., D is not group-isomorphic to Di) for every i,
where 1 ≤ i ≤ m.

QUESTION 4. Let f : (Z6,+)⊕ (Z6,+)→ (Z6,+) such that f((a, b)) = 2 · (a+ b−1) (note that b−1 means the inverse
of b under addition mod 6, and in 2 · (a+ b−1), the "+" means addition mod 6 and "·" means multiplication mod 6 .

i) (3 points) Show that f is a group-homomorphism.

ii) (3 points) Find the range of f .

iii)(5 points) Find ker(f).

QUESTION 5. Let D = (Aut(Z20), o). [ Recall: Aut(Z20) is the group of all group-isomorphism from (Z20,+) onto
(Z20,+) under composition.]

i) (3 points) Is D cyclic? explain?

ii) (4 points) Construct a non-cyclic subgroup of D, say (H, o), of D such that |H| = 4.

QUESTION 6. Let n = 16 · 9 and D = U(n).

(i)(4 points) Find m1, ..,mk such that D ≈ (Zm1 ,+)⊕ · · · ⊕ (Zmk
,+). SHOW THE WORK.

(ii) (2 points) Let a ∈ D such that |a| is maximum. Find |a|.
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6.3 Final Exam



Name—————————————–, ID ———————–

MTH 320, Fall 2020, 1–1 © copyright Ayman Badawi 2020

Final-Exam, MTH 320, Fall 2020

Ayman Badawi

Score = 48
QUESTION 1. (6 points) Let F = (1 3 2 4) o (1 2 3) o (4 5)

(i) Is F ∈ A5? Explain

(ii) Find |F |
(iii) Find F−1

QUESTION 2. (6 points) (up to isomorphic) classify all noncyclic abelian group with 36 elements, such that each has
unique subgroup with 9 elements. Write down the invariant factors of each group.

QUESTION 3. (6 points) Let F : Z5 ⊕ Z5 → Z5 such that F (a, b) = a−1 + 2b (note that a−1 means inverse of a under
addition mod 5 and 2b means 2 times b mod 5)

(i) Show that F is a group homomorphism.

(ii) Find Ker(F )

(iii) For each left cosets, say L, of Ker(f), find F (w) for every w ∈ L.

QUESTION 4. (6 points)
(i) We know that (Aut(Z24), o) ≈ Zm1 ⊕ · · · ⊕ Zmw

, where m1, ...,mw are the invariant factors of Aut(Z24). Find
m1, ...,mw.

(ii) Construct a subgroup, H , of Aut(Z24) such that |H| = 4. Is it possible that H is cyclic? Explain.

QUESTION 5. (4 points) Give me an example of a group (D, .) such that D has a normal subgroup H such that D/H
is cyclic, but D is not abelian.

QUESTION 6. (4 points) (up to isomorphic) classify all abelian group with 72 elements.

QUESTION 7. (4 points) We know U(360) ≈ Zm1 ⊕ · · · ⊕Zmw
, where m1, ...,mw are the invariant factors of U(360).

Find m1, ...,mw. [Note 360 = 23 · 32 · 5]

QUESTION 8. (4 points) Let D be a simple group such that |D| ≥ 60. Prove that D does not have a subgroup H such
that 1 < [H : D] ≤ 4 (Recall that [H : D] = |D|/|H|)

QUESTION 9. (4 points) Let F : D → L be a group homomorphism and H be a subgroup of Range(F ). Prove that
K = {a ∈ D | F (a) ∈ H} is a subgroup of D and Ker(F ) ⊆ K.

QUESTION 10. (4 points) Let D be a group such that |D| = 65. Assume that D has a normal subgroup with 5 elements.
Prove that D is cyclic.
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