Webpage-MTH320-Course Portfolio-Fall 2020

Ayman Badawi

Table of contents
Table of contents 1
${ }^{1}$ Section : Course Syllabus 3
${ }^{2}$ Section : Academic Integrity Measures 7
${ }^{3}$ Section : Instructor Teaching Material-Handouts 9
3.1 Questions with Solutions, part I of my book AbstractAlgebra Manual (only the part on groups)10
32017 All HWS with Solution 95
3.32017 Exam One with Solution 133
3.42017 Exam Il with Solution 147
252016 All HWs with Solution 153
3.62016 Exam One with Solution 175
372016 Exam Two with Solution 177
32016 Einal Exam with Solution 179
3.9 Notes on $U(n)$ and Invariant Factors 181
4 Section : Worked out Solutions for all Assessment Tools 187
4. EV1-Solution 188
4.2 HW2-Solution 196
4.3 HW3-Solution 203
${ }_{4.5}{ }^{4 .}$ HW5-Solution 208
4.6 HW6-Solution 214
47 Exam One Solution 220
4.8 Exam Two Solution 223
4.9 Final Exam Solution 226
5 Section 5: Assessment Tools-Home Work's (unanswered239
6 Section 5: Assessment Tools-Exams (unanswered) 251
6. Exam 252
6. Exam II 254
6.3 Final Exam 256

1 Section : Course Syllabus

Warning: During this difficult time, "trust" relationship between students and instructor will definitely facilitate our work,
to ensure that this "trust" is not violated, suspicious Respondus reports (after exams) will be sent to the Associate Dean
$\left.\left.\begin{array}{cr}\text { A } & \begin{array}{r}\text { Course Title } \\ \text { \& Number }\end{array} \\ \hline \text { B } & \begin{array}{r}\text { Pre/Co- } \\ \text { requisite(s) }\end{array} \\ \hline \text { C } & \begin{array}{r}\text { Number of } \\ \text { credits }\end{array} \\ \hline \text { D } & \text { Faculty Name }\end{array} \right\rvert\, \begin{array}{r}\text { Term/Year } \\ \text { E Instructor } \\ \text { Information }\end{array}\right\}$

I Course Learning
 Outcomes

J Textbook and
other
Instructional
Material and Resources

MTH 320: Abstract Algebra

Prerequisite: MTH 221
3
Ayman Badawi
Fall 2020

Instructor	Office	Telephone	Email
Ayman Badawi	Nab $262 /$ Home	abadawi@aus.edu	

Office Hours: UTR 15:00-16:00. Others by appointment, just email me .
Covers semi-groups, monoids, groups, permutation groups, cyclic groups, Lagrange's Theorem, subgroups, normal subgroups, quotient groups, (external) direct product of groups, homomorphism and isomorphism theorems, Cayley's Theorem, and introduction to rings and fields (if times allowed).

Upon completion of the course, students will be able to:

1. Demonstrate knowledge and understanding of groups, subgroups, order of an element in finite groups, Lagrange Theorem, and to construct proofs to groups. Exam I, final
2. Demonstrate knowledge and understanding of the concept of cosets of a subgroup of a group, normal subgroups, quotient groups, symmetric groups, cyclic groups and their properties. Exam I, Exam II, Final
3. Demonstrate knowledge and understanding of direct product of groups. Exam II, Final
4. Demonstrate knowledge and understanding of the concept of group homomorphism and isomorphism. Exam II, Final
5. Demonstrate knowledge and understanding of the method on classification of finite abelian groups. Final

Class Notes (Very Crucial and it should be the main source for this course).

Materials on I-Learn. Personal Webpage (for old HW's, Exam, Finals):
http://www.ayman-badawi.com/MTH\ 320.htm
(Optional not required) Contemporary Abstract Algebra, Seventh Edition by Joseph A. Gallian

SCHEDULE

CHAPTER	NOTES
01: Introduction to groups, semi-groups and monoids	- Introduction to the Course
02: Groups	- Examples and that include the symmetric group
03: Finite groups, subgroups	- LaGrange theorem and its application
04: subgroups and cosets	- Definition and properties
06: Order of an element in a group	- Definition and its connection with LaGrange theorem
08: Cyclic groups	Definition and its properties
09: Cyclic groups	- More properties of cyclic groups
10: Review	- Over the above material
11: Permutation group	- Definition and examples
13: Permutation group	- Write an element as disjoint cycles and determine the order of an element, and discuss even permutations
14: Normal subgroups and quotient groups	- Definition and properties
16: Group homomorphism and isomorphism	Definition and examples
17: Group homomorphism and isomorphism	- First isomorphic Theorem and its uses
18: External and internal direct product of groups	- Definition, examples, and properties
22: External and internal direct product of groups	- More properties, determine the order of an element of a direct product of groups and determine when a direct product of groups is cyclic
- Classification of finite abelian groups	- Just explain the method without proofs
- Presentations and Course Revision	-
Final Exam	COMPREHENSIVE

2 Section : Academic Integrity Measures

Academic Integrity Measures in Online Exams
List the measures taken to ensure the academic integrity of the exam.

Homework's 1-6, each HW was posted on I-Learn. Students were given one week to ten days to solve the questions. All questions are essay.

Students used lockdown browser for exams one, two and final exam. All questions are essay. Students submitted their solution in a folder that I created on I-learn. The outcome (scores) was not significantly different from a normal in-class exams (see the scores of the students in the excel-sheet)

I am completely satisfied with the outcome of MTH320.

3 Section : Instructor Teaching Material-Handouts

HW One: Abstract Algebra, MTH 320,Fall 2017

Ayman Badawi

QUESTION 1. examples of groups

(i) Let $D=\{(a, b) \mid a \in\{1,7\}$ and $b \in\{0,2,4,6\}\}$. Define * on D such that for every $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right) \in D$ we have $\left(x_{1}, y_{1}\right) *\left(x_{2}, y_{2}\right)=\left(x_{1} \cdot x_{2}, x_{1} \cdot y_{2}+x_{2} \cdot y_{1}\right)$, where means multiplication module 8 and + means addition module 8. Construct the Carey's table for ($\mathrm{D},{ }^{*}$). Now by staring at the table, you should conclude that D is an abelian group. Note that D is associate since ($\left.Z_{8}, \cdot\right)$ and $\left(Z_{8},+\right)$ are associate (so no need to check that unless you insist!).
a. What is $e \in D$?
b. If $a=(7,4) \in D$, then what is a^{-1} ?
c. If $a=(1,6) \in D$, then what is a^{-1} ?
d. If $a=(1,2) \in D$, then what is $|a|$?
(ii) Let $D=\{6,12,18,24\}$. Define * on D such that for every $a, b \in D$ we have $a * b=a \cdot b$, where - means multiplication module 30. Construct the Caley's table of (D, \cdot). By staring at the table you should conclude that (D, \cdot) is an abelian group (Since $\left(Z_{30}, \cdot\right)$ is associate, we conclude that (D, \cdot) is associate).
a. What is $e \in D$?
b. Let $a=12$ What is $|a|$?.
c. Let $k=|12|$, find a^{2}, a^{3}, a^{4}. What can you conclude about $\left\{a, a^{2}, a^{3}, a^{4}\right\}$
d. Let $k=|24|$, find a^{2}, a^{3}, a^{4}. Is this different from (c)?
(iii) Give me an example of a group $(D, *)$ such that D has an element $a \in D$ where $a^{2} * b=b * a^{2}$ for every $b \in D$, but $a * c \neq c * a$ for some $c \in D$. [Hint: There are many examples, for example let $D=\{f: \mathbb{R} \rightarrow \mathbb{R}$ such that f is continuous and bijective $\}$, and let $*=o$. From class notes we know that (D, o) is monoid. Since every f in D is bijective, we conclude that $f^{-1} \in D$ for every $f \in D$. Hence (D, o) is a non-abelian group, now find a and c in D]

Faculty information

Ayman Badawi, Department of Mathematics \& Statistics, American University of Shariah, P.O. Box 26666, Shariah, United Arab Emirates.
E-mail: abadawi@aus.edu, www.ayman-badawi.com

We construct cayley's Table for $(D, *)$

$*$	$(1,0)$	$(1,2)$	$(1,4)$	$(1,6)$	$(7,0)$	$(7,2)$	$(7,4)$	$(7,6)$
$(1,0)$	$(1,0)$	$(1,2)$	$(1,4)$	$(1,6)$	$(7,0)$	$(7,2)$	$(7,4)$	$(7,6)$
$(1,2)$	$(1,2)$	$(1,4)$	$(1,6)$	$(1,0)$	$(7,6)$	$(7,0)$	$(7,2)$	$(7,4)$
$(1,4)$	$(1,4)$	$(1,6)$	$(1,0)$	$(1,2)$	$(7,4)$	$(7,6)$	$(7,0)$	$(7,2)$
$(1,6)$	$(1,6)$	$(1,0)$	$(1,2)$	$(1,4)$	$(7,2)$	$(7,4)$	$(7,6)$	$(7,0)$
$(7,0)$	$(7,0)$	$(7,6)$	$(7,4)$	$(7,2)$	$(1,0)$	$(1,6)$	$(1,4)$	$(1,2)$
$(7,2)$	$(7,2)$	$(7,0)$	$(7,6)$	$(7,4)$	$(1,6)$	$(1,4)$	$(1,2)$	$(1,0)$
$(7,4)$	$(7,4)$	$(7,2)$	$(7,0)$	$(7,6)$	$(1,4)$	$(1,2)$	$(1,0)$	$(1,6)$
$(7,6)$	$(7,6)$	$(7,4)$	$(7,2)$	$(7,0)$	$(1,2)$	$(1,0)$	$(1,6)$	$(1,4)$

(a) $e=(1,0) \quad \because(1,0) * a=a *(1,0)=a \forall a \in D .4$
(b) $a=(7,4) \Rightarrow a^{-1}=(7,4) \because(7,4) *(7,4)=(1,0)=e$. (From Cayley's Table)
(c) $\quad a=(1,6) \Longrightarrow a^{-1}=(1,2) \quad \because(1,6) *(1,2)=(1,2) *(1,6)=(1,0)$ (From Cayley's Table)
cd) $a=(1,2)$. By construction

$$
\begin{aligned}
& a * a=(1,2) *(1,2)=(1,4) \\
& a^{3}=(1,4) *(1,2)=(1,6) \quad 1 \because a^{3}=a^{2} * a \\
& a^{4}=(1,6) *(1,2)=(1,0) \quad 1 \because a^{4}=a^{3} * a
\end{aligned}
$$

$\therefore a^{4}=(1,0)=e$ and 4 is the smallest positive Integer such that this is true.

$$
\therefore|a|=|(1,2)|=4 \text {. }
$$

we Construct Cayley's Table for $(D, *)$
$\frac{4}{4}$

$\$ 30$	6	12	18	24
6	6	12	18	24
12	12	24	6	18
18	18	6	24	12
24	24	18	12	6

(a) $e=6 \quad \because 6 * a=a * 6=a \quad \forall a \in D$.

$$
\text { i.e. } 6 * a=a * 6=a \quad \forall a \in D \text {. }
$$

(b)

$$
a=12 . \quad \begin{array}{ll}
a^{2}=a * a=12 * 12=24 \\
& a^{3}=a^{2} * a=24 * 12=18 \\
& a^{4}=a^{3} * a=18 * 12=6
\end{array}
$$

Q Since 4 is the smallest positive integer ' n 'such that

$$
a^{n}=e=6, \quad|a|=4 .
$$

(c)

$$
a=12 . \quad k=|a|=|12|=4
$$

From (b) above: $a^{2}=24, a^{3}=18, a^{4}=6$

$$
\begin{aligned}
& \text { From }(b) \text { above: } a^{2}=24, a=18, a^{1}=6 \\
& \therefore\left\{a, a^{2}, a^{3}, a^{4}\right\}=\{12,24,18,6\}=\{6,12,18,24\}=D .
\end{aligned}
$$

we get ' D ' back.
$\therefore\left\{a, a^{2}, a^{3}, a^{4}\right\}$ is a group with order ' $k '^{\prime}=4$.
(d)

$$
\begin{aligned}
& a=24 . \quad \Rightarrow a^{2}=a * a=24 * 24=6 \\
& a^{3}=a^{2} * a=6 * 24=24 \\
& a^{4}=a^{3} * a=24 * 24=6
\end{aligned}
$$

$\left\{a, a^{2}, a^{3}, a^{4}\right\}=\{24,6,24,6\}=\{6,24\} \left\lvert\, \begin{aligned} & \because \text { we do not repeat } \\ & \text { elements in } a \text { set }\end{aligned}\right.$.

This is a group with 2 elements. Also, $k=|a|=2$.

$*_{30}$	6	24
6	6	24
24	24	6

\rightarrow This is different from (C) in the cense that there are only 2 elements and not 4 .
\rightarrow However, here $k=|a|=2$ and the corder of the finite group is 2 .
(ww) Example 1: Consider $D=\{f: \mathbb{R} \rightarrow \mathbb{R} \mid f$ is Continuous \& Bijective $\}$

* $=0$ (function composition)

It is clear that Δ is a group with operation ' 0 '.
Let: $a: a(x)=-x \quad b: b(x) \in D$ is any function in D.

$$
c: c(x)=2^{x} \text { not in } a \text { ? take } C(x)=x+1
$$

Then: $a^{2} * b=a * a * b=(a * a) * b$ [groups are Assocaticic]

$$
=e * b=b
$$

$$
\text { and } b * a^{2}=b * a * a=b *(a * a)
$$

$$
\begin{aligned}
& =b * a * a=b *(a * a) \\
& =b * e=b[\because a * a=a(a(x))=a(-x)=-(-x) \\
& =x=e]
\end{aligned}
$$

$x / 2$

$$
\therefore a^{2} * b=b * a^{2} \quad \forall b \in D
$$

$$
\begin{aligned}
& x+1 \\
& a * c=a(c(x))=a\left(2^{x}\right)=2^{x}-x-1 \\
& c * a=c(a(x))=c(-x)=2^{-x}-x+1
\end{aligned}
$$

However:
i. $\exists c \in D$ st $a * c \neq c * a$.

Example 2: $(D, *)=\left(U\left(R^{2 \times 2}\right) \times x\right)$

$$
\therefore a^{2} * b=e * b=\phi \text { and } b
$$

HW One: Abstract Algebra, MTH 320,Fall 2017
Ayman Badawi

QUESTION 1. Consider the following subsets of $\left(Z_{8},+\right)$: $H_{0}=0+\{0,4\}=\{0,4\}, H_{1}=1+\{0,4\}=\{1,5\}, H_{2}=$ $2+\{0,4\}=\{2,6\}, H_{3}=3+\{0,4\}=\{3,7\}$ Let $D=\left\{H_{0}, H_{1}, H_{2}, H_{3}\right\}$. Define $*$ on D such that $H_{i} * H_{k}=(i+k)+H_{0}$, where + means addition module 8. Construct the Caley's table of $(D, *)$. Stare at the table, you should conclude that $(D, *)$ is an abelian group. [note that ($D, *$) is associate since $(Z 8,+)$ is associative] Find e. For each $d \in D$ find d^{-1}. [Comments: observe What is $H_{i} \cap H_{k}, i \neq k$? where $0 \leq i, k \leq 3$. What is $H_{0} \cup H_{1} \cup H_{2} \cup H_{3}$?]
QUESTION 2. (i) Let $(D, *)$ be a group and $a, b \in D$. What is $(a * b)^{-1}$? Prove your claim.
(ii) Let $(D, *)$ be a group such that $x^{2}=e$ for every $x \in D$. Prove that D is abelian
(iii) Let $n \geq 2$ be a positive integer. Recall that $U(n)=\left\{a \in Z_{n}^{*} \mid \operatorname{gcd}(a, n)=1\right\}$. We know that $|U(n)|=\phi(n)$. Prove that $(U(n),$.$\left.) is a groupl Note that we proved in class that \left(Z_{n}^{*}\right),.\right)$ is a group if and only if n is prime, so use similar proof and the fact I gave you that if $\operatorname{gcd}(a, n)=1$, then $a^{\phi(n)}=1 \operatorname{in} Z_{n}\left(\right.$ i.e., $\left.a^{\phi(n)} \equiv 1(\bmod n)\right)$
(iv) Let $k=|U(9)|$. What is k ? Is there an element in $U(9)$ that has order k ? if yes find such one.
(v) Let $k=|u(8)|$. What is k ? Is there an element in $U(8)$ that has order k ? if yes find such one.

QUESTION 3. (i) Let $(D, *)$ be a group and fix $a, b \in D$. Convince me that the equation $a * x=b$ has a unique solution in D. What is the solution?
(ii) Let $\left(D_{n}, o\right)$ be the symmetric group on n-gon. We know that $|D|=2 n$ (note that $n \geq 3$ is a positive integer). Fix $a, b, c \in D_{n}$, where a is a rotation, b and c are reflection.
a. Prove that $b o a$ is a reflection.[Your proof should not exceed 2 lines]. $\frac{4}{4}$
b. ((a) and (i) might be helpful) Let $R=\left\{R_{1}, R_{2}, \ldots, R_{n}\right\}$ be the set of all rotations in D_{n}, Prove that $\left\{b\right.$ o $R_{1}, b \circ R_{2}$, is the set of all reffections. [This is a nice result, it means in order to get all reflections, you only need to find one reflection, say b, and then just composite b with each rotation]
c. Prove that $b o c$ is a rotation (note b, care reflections)[Remember that Yousef claimed that!. Now in view of (i) and (b), you should give an Algebraic-Proof that should not exceed 3 lines]
d. Consider $\left(D_{5}, o\right)$. Let $R_{1}=R_{72}=(12345), b=(R e)_{1}=\left(\begin{array}{ll}2 & 5\end{array}\right)(34)$ be a reflection. Note that $R_{2}=$ $R_{1}^{2}=R_{1} o R_{1}$, and in general $R_{i}=R_{1}^{i}=R^{i-1} o R_{1}=R_{i-1} \circ R_{1}$. So you can find all the rotations (without sketching!). Now use the idea in (b) to calculate all reflections.[I will mention more on Monday about this part]

QUESTION 4. Let $(D, *)$ be a group and $a \in D$ such that $|a|=n<\infty$. Let m be a positive integer such that $\operatorname{gcd}(m, n)=1$. Prove that $\left|a^{m}\right|=n$. So if $|a|=11$, what can you conclude about $\left|a^{i}\right|$, where $2 \leq i \leq 10$?

Faculty information
Ayman Badawi, Department of Mathematics \& Statistics, American University of Sharjah, P.O. Box 26666, Sharjah, United Arab Emirates. E-mail: abadawi@aus.edu, www.ayman-badavi.com

Answer 1) $D=\left\{H_{0}, H_{1}, H_{2}, H_{3}\right\}=\{\{0,4\},\{1,5\},\{2,6\},\{3,7\}\}$.

* Cayley's Table:

$*$	H_{0}	H_{1}	H_{2}	H_{3}
	$\{0,4\}$	$\{1,5\}$	$\{2,6\}$	$\{3,7\}$
$H_{0}:\{0,4\}$	$\{0,4\}$	$\{1,5\}$	$\{2,6\}$	$\{3,7\}$
$H_{1}:\{1,5\}$	$\{1,5\}$	$\{2,6\}$	$\{3,7\}$	$\{0,4\}$
$H_{2}:\{2,6\}$	$\{2,6\}$	$\{3,7\}$	$\{0,4\}$	$\{1,5\}$
$H_{3}:\{3,7\}$	$\{3,7\}$	$\{0,4\}$	$\{1,5\}$	$\{2,6\}$

$A_{i} * H_{k}=(i+k)+_{s} H_{0}$. we use the fact that $\{a, b\}=\{b, a\}$.
\rightarrow It is clear from the table that $e=H_{0}=\{0,4\}$:
Finding $d^{-1} \forall d \in D$:
\rightarrow Observation:

$$
\begin{aligned}
& H_{i} \cap H_{k}=\phi \quad \forall 0 \leq i, k \leq 3 . \\
& \bigcup_{i=1}^{3} H_{i}=\{0,1,2,3,4,5,6,7\}
\end{aligned}
$$

$\{0,4\}$	$\{0,4\}$
$\left\{\begin{array}{l}41,5\} \\ \{2,6\} \\ \{3,7\} \\ \{3,7\}\end{array}\right.$	$\{2,6\}$
	$\{1,5\}$

$\therefore H_{0}, H_{1}, H_{2}, H_{3}$ form a partition for Z_{8}.
Answer 2:
(i) claim: $(a * b)^{-1}=b^{-1} * a^{-1}$

Proof: $(a * b) *\left(b^{-1} * a^{-1}\right)$

$$
\begin{aligned}
& =a *\left(b * b^{-1}\right) * a^{-1} \quad \because \text { Associativity } \\
& =a * e * a^{-1} \\
& =a * a^{-1} \\
& =e
\end{aligned}
$$

\therefore Since the Inverse is Unique,

$$
(a * b)^{-1}=b^{-1} * a^{-1}
$$

(iv) Given: $x^{2}=e \quad \forall x \in D$.

$$
\begin{equation*}
x * x=e \Rightarrow x=x^{-1} \forall x \in D \tag{1}
\end{equation*}
$$

Consider $a, b \in D . \therefore a * b \in D \because D$ is closed under '*'.
Gard \{a

$$
\begin{aligned}
a * b & =(a * b)^{-1} & & {[\text { From (1) Above }] } \\
& =b^{-1} * a^{-1} & & {[\text { From Q2 (i)] }} \\
& =b * a & & {[\text { From (1) Above }] }
\end{aligned}
$$

$\therefore D$ is Abelian.
(ai) Consider $V(x)=\left\{a \in z_{n}^{*} \mid \operatorname{gcd}(a, n)=1\right\}$.
To Prove: $U(x)$ is a group.
I. CLOSURE: Let $a, b \in U(n) \therefore \operatorname{gcd}(a, n)=\operatorname{god}(b, n)=1$. $\operatorname{gcd}(a, n)=1$ and $\operatorname{gcd}(b, n)=1 \Rightarrow \operatorname{gcd}(a \cdot b, n)=1$ (Here, Mutiplication is normal). (Fact from Number Theory) $\operatorname{gcd}(a * b, x)=\operatorname{gcd}(a b \bmod x, x)=\operatorname{gcd}(a b, x)=1$. (by Euclidean Algorithm)
since $\operatorname{gcd}(a * b, n)=1, a * b \in U(n) \forall a, b \in U(n)$ Hence, $v(n)$ is closed.
II. Associativity: It is clear $\because U(x) \subseteq Z_{n}^{*} \subset Z$.
III. IDENTITY: $e=1$ ^ $e \in U(n) \because \operatorname{gcd}(1, n)=1 \forall n$.
IV. InVERSE: $\operatorname{ged}(a, n)=1 \Rightarrow a^{\phi(n)} \equiv 1$ (Fact)
$\frac{4}{4}$

$$
\begin{gathered}
\therefore a^{\phi(n)}=1=e \quad \forall a \in U(n) \\
a^{\phi(n)}=a^{1+\phi(n)-1}=a^{\prime} * a^{\phi(n)-1}=e \\
A N D a^{\phi(n)}=a^{\phi(n)-1+1}=a^{\phi(n)-1} * a^{\prime}=e
\end{gathered}
$$

coo od
[Note: $a^{\phi(x)-1} \in U(x) \because U(x)$ in closed as proved above].

$$
\therefore \quad \exists a^{-1}=a^{\phi(x)-1} \in U(x) \forall a \in D(=U(x))
$$

(iv)

$$
\begin{align*}
& U(9)=\{1,2,4,5,7,8\} \text { and } k=|U(9)|=6 \tag{3}\\
& \exists a=?
\end{align*}
$$

YES. $\exists a=2 \in U(9)$ s.t. $|a|=k=6$. This is shown as follows:

$$
\begin{array}{ll}
2^{1}=2 & 2^{2}=2 * 2=4 \cdot \\
2^{4}=2^{3} * 2=8 * 2=7 . & 2^{3}=2^{2} * 2=4 * 2=8 \\
2^{6}=2^{5} * 2=5 * 2=1=e . & \therefore|2|=6=k . \\
\text { Excellent!! } &
\end{array}
$$

(v) $U(8)=\{1,3,5,7\}$ and $k=|U(8)|=4$.

No. $|a| \neq k \forall a \in U(8)$. This is shown as follows:
1: $\quad|1|=1 \quad$ (Identity Element)
3: $3^{\prime}=3 \quad 3^{2}=3 * 3=1 \Rightarrow|3|=2$.
5: $5^{\prime}=5 \quad 5^{2}=5 * 5=1 \quad \Longrightarrow|5|=2$.
$7: 7^{\prime}=7 \cdot 7^{2}=7 * 7=1 \Longrightarrow|7|=2$.
\therefore There is no element in $\left.U(n)\right|_{n=8}$ of order ' k '.
$\frac{4}{4}$
Answer 3) (i) $(D, *)$ is a group and $a, b \in D$. We have to prove the existence and uniqueness of the solution to $a * x=b$.

DENY.

$$
\therefore \exists x_{1}, x_{2} \in D \text { s.t. } a * x_{1}=a * x_{2}=b
$$

But, Multiplying by a^{-1} from the left yields:
$\frac{4}{4}$

$$
\begin{aligned}
& \quad a^{-1} * a * x_{1}=a^{-1} * a * x_{2}=a^{-1} * b . \\
& \therefore \quad e * x_{1}=e * x_{2}=a^{-1} * b . \\
& \therefore \quad x_{1}=x_{2}=a^{-1} * b .
\end{aligned}
$$

\therefore Since $x_{1}=x_{2}$, the Solution is unique. and the solution to $a * x=b$ is:

$$
x=a^{-1} * b
$$

(a) $\left(D_{n}, 0\right)$ is the dihedral group of Order $2 n$.

NOTE: I. We define $R=\left\{R_{1}, R_{2}, \ldots, R_{n}\right\}$ and $R_{e}=\left\{\left(R_{e}\right),\left(R_{e}\right)_{2}, \ldots,\left(R_{n}\right)\right\}$ II. It is clear that $R \cup\left(R_{e}\right)=D_{n}$ and $R \cap R_{e}=\phi$.
III. Also, $|R|=\left|R_{e}\right|=n \cdot \therefore \forall 1 \leq i, j \leq r, i \neq j \Rightarrow R_{i} \neq R_{j}$

* IV. $R<D_{n}$. since R is a finite subset, it is sufficient to check closure, which is clear.
$\therefore(R, 0)<\left(D_{n}, 0\right)$ [R is a subgroup of $\left.D_{n}\right]$.
(a): TWO LINE PROOF to Prove that $b 0 a$ is a Reflection: $b=d * a^{-1}$.

LINE 1: DENY, $\therefore b * a=d$ is assumed to be a rotation. Then, $b=d * d$.
LINE 2: But $a^{-1}, d \in R$ and R is closed $\Rightarrow b \in R$. CONTRADICTION \int_{0} Excellent $\therefore d \notin R \Longrightarrow d \in(R e)$. (\because of II Above).
$\frac{4}{4}$
(b): Using (a) Above: $\left\{b * R_{1}, b * R_{2}, \ldots, b * R_{n}\right\} \cap R=\phi$.

$$
\therefore\left\{b * R_{1}, b * R_{2}, \ldots, b * R_{n}\right\} \subseteq R e \text {. }
$$

Assume $b * R_{i}=b * R_{j}$ for some $i \neq j$.
Then $b^{-1} * b * R_{i}=b^{-1} * b * R_{j} \Rightarrow e * R_{i}=e * R_{j} \Rightarrow R_{i}=R_{j}$. This is a contradiction because we know $R_{i} \neq R_{j} \forall i \neq j$ as $|R|=n$.

$$
\begin{aligned}
& \therefore b * R_{i} \neq b * R_{j} \forall i \neq j \\
\therefore & \left|\left\{b * R_{1}, b * R_{2}, \ldots, b * R_{n}\right\}\right|=n \text { and }\left\{b * R_{1}, . . b * R_{n}\right\} \subseteq R e . \\
\therefore & \left\{b * R_{1}, b * R_{2}, \ldots, b * R_{n}\right\}=R e \text { is the set of all Reflections. }
\end{aligned}
$$

(c): Using (a) and (b) above:

LINE: $: b, c \in(R e) \Rightarrow \exists k \in R$ set. $c=b * k \cdot \therefore b^{-1} * c=b^{-1} * b * k$
LINE 2:

$$
\begin{aligned}
& c \in(R e) \\
& \therefore b^{-1} * c=e * k=k \Rightarrow b^{-1} * c \in R .[\because k \in R] \\
& \Rightarrow|b|=2 \Rightarrow b=b^{-1} \Rightarrow b^{-1} * c=b * c \in R
\end{aligned}
$$

LINE 3: But, $b \in R_{e} \Rightarrow|b|=2 \Rightarrow b=b^{-1} \Rightarrow b^{-1} * c=b * c \in R$

$$
\therefore b * c \in R \quad \forall b, c \in R e
$$

(d) Consider $\left(D_{5}, 0\right): R_{1}=\left(\begin{array}{lllll}1 & 2 & 3 & 4 & 5\end{array}\right) \wedge\left(R_{e}\right)_{1}=\left(\begin{array}{llll}2 & 5\end{array}\right)\left(\begin{array}{ll}3 & 4\end{array}\right)$

From (b) : we have: $\left(R_{e}\right)_{k}=\left(R_{e}\right)_{1} * R_{k}$.
Using fact that: $R_{k}=R_{k-1} * R_{1}$,

$$
\left(R_{e}\right)_{k}=\left(\left(R_{e}\right)_{1} * R_{k-1}\right) * R_{1}
$$

$\therefore\left(R_{e}\right)_{k}=(R e)_{k-1} * R_{1}$, we use this result as follows:

$$
\begin{aligned}
& \rightarrow\left(R_{2}\right)_{2}=(R e)_{1} \circ R_{1}=\left(\begin{array}{lll}
2 & 5
\end{array}\right)\left(\begin{array}{ll}
3 & 4
\end{array}\right) \circ\left(\begin{array}{llll}
1 & 2 & 3 & 4
\end{array}\right)=\left(\begin{array}{ll}
1 & 5
\end{array}\right)\left(\begin{array}{ll}
2 & 4
\end{array}\right) \\
& \rightarrow\left(R_{e}\right)_{3}=\left(R_{e}\right)_{2} \circ R_{1}=\left(\begin{array}{lll}
1 & 5
\end{array}\right)\left(\begin{array}{ll}
2 & 4
\end{array}\right) \circ\left(\begin{array}{llll}
1 & 2 & 3 & 4
\end{array} 5\right)=\left(\begin{array}{ll}
1 & 4
\end{array}\right)\left(\begin{array}{ll}
2 & 3
\end{array}\right) \\
& \rightarrow\left(R_{e}\right)_{4}=\left(R_{3}\right)_{3} \circ R_{1}=\left(\begin{array}{ll}
1 & 4
\end{array}\right)\left(\begin{array}{ll}
2 & 3
\end{array}\right) \circ\left(\begin{array}{llll}
1 & 2 & 4 & 5
\end{array}\right)=\left(\begin{array}{ll}
1 & 3
\end{array}\right)\left(\begin{array}{ll}
4 & 5
\end{array}\right) \\
& \rightarrow\left(R_{e}\right)_{5}=\left(R_{e}\right)_{4} \circ R_{1}=(13)\left(\begin{array}{ll}
4 & 5
\end{array}\right) \circ\left(\begin{array}{llll}
1 & 3 & 4 & 5
\end{array}\right)=\left(\begin{array}{ll}
1 & 2
\end{array}\right)\left(\begin{array}{ll}
3 & 5
\end{array}\right)
\end{aligned}
$$

$\left\{(R e)_{1},(R e)_{2},(R e)_{3},(R e)_{4},(R e)_{5}\right\}$ is the set of all Reflections for $D_{5} \quad \therefore R_{c}=\{(25)(34),(15)(24),(14)(23),(13)(45),(12)(35)\}$

Answer 4) $\left.|a|=n<\infty \Rightarrow a^{n}=e-a\right)$
$\operatorname{Let}\left|a^{m}\right|=k \Rightarrow\left(a^{m}\right)^{k}=e$-(2)
From (1) and (2): $\left(a^{m}\right)^{k}=e \Rightarrow a^{m k}=e$
$\frac{4}{4}$ Further,

$$
\begin{aligned}
& \text { then, }\left(a^{n}\right)=e \Rightarrow\left(a^{n}\right)^{m}=e^{m}=e \\
& \therefore\left(a^{m}\right)^{k}=e \text { and }\left(a^{m}\right)^{n}=\left(a^{n}\right)^{m}=e
\end{aligned}
$$

$\therefore k / n \quad\left(\because\right.$ order of $\left.a^{m}=k\right)$
$n|k \wedge k| n \Rightarrow n=k$.

$$
\therefore\left|a^{m}\right|=k=n \quad \therefore\left|a^{m}\right|=n
$$

$\operatorname{gcd}(i, 11)=1 \forall 2 \leq i \leq 10 . \therefore|a|=11 \Rightarrow\left|a^{i}\right|=11 \forall 2 \leq i \leq 10$.

HW THREE: Abstract Algebra, MTH 320,Fall 2017

Ayman Badawi

QUESTION 1. (i) (Very useful result) Let $(D, *)$ be a group with $n<\infty$ elements and let $a \in D$. Prove that $a^{n}=e$ for every $a \in D$ [Max 3 lines proof]
(ii) (Nice problem) Let $(D, *)$ be a group such that $|D|=q_{1} q_{2}$ where q_{1}, q_{2} are primes. Assume $a, b \in D$ such that $a^{22}=a^{15}, b^{43}=b^{32}$, and $a * b=b * a$. Find $|D|$. I claim that $D=\left\{c, c^{2}, \ldots, c^{q_{1} q_{2}}=e\right\}$ for some $c \in D$. Prove my claim.[Max 6 lines]
QUESTION 2. (i) (How to check for subgroups) Let ($D, *$) be an abelian group. Fix a positive integer m and let $F=\left\{a \in D \mid a^{m}=e\right\}$. Prove that $\left(F,{ }^{*}\right)$ is a subgroup of D. (Two lines proof. Note that F need not be a finite set. An example of an infinite F will be given during the course)
(ii) (How to check for subgroups) Fix a positive integer n. We know that the equation $x^{n}-1=0$ has exactly n distinct solutions over the complex C. Now let $F=\left\{a \in C^{*} \mid a^{n}-1=0\right\}$. Prove that (F, .) is a subgroup of (C^{*}, .) (Two lines proof. (Note that ($C *$,) is an abelian group)
QUESTION 3. (Radicals). Let $(D, *)$ be a group such that $|D|=n<\infty$. Let m be a positive integer such that $\operatorname{gcd}(n, m)=1$. Let $a \in D$. Prove that there exists an element $b \in D$ such that $b^{m}=a$ (ie., $\sqrt[m]{a} \in D$, where $\sqrt[m]{a}=b \in D$ means $b^{m}=a$)(three lines proof. You may need the fact from number theory or discrete math that says if $g c d(m, n)=k$, then there are two integers w, x in Z such that $k=w m+x n)$
QUESTION 4. Given f_{1}, f_{2}, and f_{3} are bijection functions on a set with 6 elements, where $f_{1}=\left(\begin{array}{ll}3 & 5\end{array}\right), f_{2}=\left(\begin{array}{lll}3 & 1 & 4\end{array}\right)$, and $f_{3}=\left(\begin{array}{ll}645 & 3\end{array}\right)$
a) Find $f_{1} \circ f_{3}$
b) Find $f_{2} \circ f_{1}$
c) Find $f_{3} \circ f_{2}$

QUESTION 5. (i) Given $H=\{0,4,8\}$ is a subgroup of $\left(Z_{12},+\right)$. Find all distinct left costs of H in D.
(ii) Let $(D, *)$ be a group and assume that for some $a, b \in D$, we have $a * b=b * a,|a|=9$ and $|b|=8$
a. Find $\left|a^{6}\right|$
b. Find $\left|b^{3}\right|$
c. Find $\left|a^{6} * b^{3}\right|$
d. Give me an element $c \in D$ such that $|c|=36$ (note that, as I explained in the class, if a group has an element of order k, then the group must have a subgroup of order k, namely $H=\left\{a, a^{2}, \ldots, a^{k}=e\right\}$, where $|a|=k$. So if my claim is right, then D must have a subgroup with 36 elements)

Faculty information

Ayman Badawi, Department of Mathematics \& Statistics, American University of Sharjah, P.O. Box 26666, Shariah, United Arab Emirates. E-mail: abadawi@aus.edu, wwr.ayman-badawi.com

Question 1: (i)
Let $(D, *)$ be agroup, $|D|=n, a \in D$.
prove that $a^{n}=e$
proof:
let $(D, *)$ be agroup, $|D|=n, a \in D$, where $|a| \mid n$ we want to show $a^{n}=e$.
Assume $|a|=k$. since $k \cdot \mid n$ means $n=k * m$.

$$
\begin{aligned}
\Rightarrow \quad \begin{aligned}
n & k_{m} \\
a^{n} & \left.=a^{k}\right)^{m} \\
& H \\
& =(e)^{m} \\
a^{n} & =e \\
\therefore a^{n} & =e
\end{aligned}
\end{aligned}
$$

with elements
$\xrightarrow{\text { Lagrange }} k \mid n \rightarrow$

$$
a^{n}=e
$$

(ii) $\mid D 1=q_{1} q_{2}, q_{1} \& q_{2}$ are prime numbers.
$a^{22}=a^{15} \Rightarrow$ means a^{15} is the inverse af a^{22}.

$$
\begin{aligned}
& a^{22} \cdot a^{-15}=a^{7} \Rightarrow e \Rightarrow|a|=7 \\
& b^{43}=b^{32} \Rightarrow \text { means } b^{43} * b^{-32} \Rightarrow b^{\prime \prime}=e \cdot \Rightarrow|b|=11 \\
& a * b=b \pm a \Rightarrow \text { means the group } D \text { is abelion }
\end{aligned}
$$

Find $|D|=\left\{\right.$? where $D=\left\{c_{1}, c_{2}, \ldots . c_{1,92}^{q_{2}}\right\}$
let $C=a * b$.
$|c|=|a * b| \quad$ because the group of

$$
\begin{aligned}
&|c|=|a| *|b| \\
&=7 * 11 \\
&|c|=77 \\
& \therefore|c|=77 \\
& c^{q, q_{2}}=e \text { given. }
\end{aligned}
$$

(gat between 9,1
$|c|=q_{1} q_{2} \quad$ Where $q_{1} \& q_{2}$ ane primes

$$
\begin{aligned}
& |c|=7 \cdot 11=77 \\
& |c|=101=77 \quad \therefore 101=77
\end{aligned}
$$

Q2 (i) $(D, *)$ an abelian group, $F=\left\{a \in D \mid a^{m}=e\right\}$ prove $(F, *)$ is a subgroup.
Let $a, b \in F_{\text {, we need fo show }\left(a^{-1} * b\right) \in F}$

$$
a^{m}=e, b^{m}=e
$$

we wort to
Find $\left(a^{-1} \neq b\right)^{m}=$?

$$
\begin{aligned}
& =\left(a^{-1}\right)^{m} \nsim(b)^{m} \longrightarrow \begin{array}{c}
\text { because the group is } \\
\text { abelian }
\end{array} \\
& =\left(a^{-1}\right)^{m} \notin e \\
& =\left(a^{m}\right)^{-1} * e \\
& =(e)^{-1} * e \\
& =e^{j} \\
& \therefore\left(a^{-1} * b\right) \in \mp
\end{aligned}
$$

" F is asubgroup of D.
(ii) Question\#(2) $x^{n}-1=0$ has exactly n distinct solution over the Complex C., $F=\left\{a \in C^{*} \mid a^{n}-1=0\right\}$ prove(F.) is a subgroup of $\left(C_{2}^{*}\right)$. Note $\left(C_{,}^{*}\right)$ is abelian group.

* The only axiom you need tocheck to proof that F is a subgroup from c is the clouser.
proof: Let $a, b \in F$

$$
\begin{aligned}
a^{n-1}=0 \quad \Rightarrow a^{n} & =1 \\
b^{n} & =1 .
\end{aligned}
$$

We want to show that $(a * b)^{n} \in F$.

$$
\begin{aligned}
& (a * b)^{2} \\
= & a^{n} * b^{n} \\
= & 1 * 1 \\
= & 1 \\
\therefore & (a * b)^{n} \in F
\end{aligned}
$$

$\therefore F$ is asubgroup of C.

Question 3: $(D, *)$ be agroup, $|D|=n, \operatorname{gcd}(n, m)=1$

Let $a \& b \in D$.

$$
\begin{aligned}
& a^{n}=e \\
& |a|=\underline{k}
\end{aligned}
$$

We need to show that $b^{m}=a$

$$
\begin{aligned}
&(\operatorname{gcd}(m, n)=k) \Rightarrow k=\omega m+x n \\
& k=1 \\
& 1=\omega m+x n \\
& a^{\prime}=a_{a}+x_{n} \\
& a=a^{m} * a^{x n} \\
& a=\left(a^{\omega}\right)^{m} *\left(a^{n}\right)^{x} \\
& e
\end{aligned}
$$

let $b=a^{\omega}$

$$
\begin{aligned}
a & =(b)^{w} * e . \\
\therefore a & =(b)^{w}
\end{aligned}
$$

Question \#(4) Given $f_{1}, f_{2} \& f_{3}$. are bijection functions

$$
f_{1}=(35), f_{2}=(3142), f_{3}=(6453) \text {. }
$$

(a)

$$
\begin{aligned}
f_{1} \circ f_{3} & =(35) 0(6453) \\
& =(364)
\end{aligned}
$$

(b)

$$
\begin{aligned}
f_{2} \circ f_{1}= & (3142) \circ(35) \\
& (14235)
\end{aligned}
$$

(C)

$$
\begin{aligned}
f_{3} \circ f_{2} & =(6453) \circ(3142) \\
& =(153)(264)
\end{aligned}
$$

Question (5): $H=\{0,4,8\}$ subgroup of ($z_{i^{t}}$)
(i)

$$
\begin{array}{ll}
\quad L * H=? \\
H_{1}=2 H_{12}\{0,4,8\}=\{2,6,10\} \\
H_{2}=3+12\{0,4,8\}=\{3,1,11\} \quad & \text { The Trivial coset } \\
H_{3}=5+12\{0,4,8\}=\{5,9,1\} \\
L(H)=\left\{H_{0}, H_{1}, H_{2}, 1 H_{3}\right\}
\end{array}
$$

(ii) \Rightarrow Question (5)
$(D, *)$ is agroup, $a d b \in D$, we have $a * b=b * a$

$$
|a|=9,|b|=8
$$

(a) $\left|a^{6}\right|=\begin{gathered}n=6 \\ n=a\end{gathered}=\frac{9}{\operatorname{gcd}(a, 6=3)}=3 \quad\left|a^{m}\right|=\frac{n}{\operatorname{gcd}(m, n \cdot)}$

So, $\left|a^{6}\right|=3$
(b)

$$
\left|b^{3}\right| \Rightarrow \begin{gathered}
m=3 \\
n=8
\end{gathered} \Rightarrow \frac{8}{\operatorname{gcd}(8,3=1}=\frac{8}{1}=8
$$

So, $\sqrt{\left|b^{3}\right|=8}$
(c) Find $\left|a^{6} * b^{3}\right|=\left|a^{6}\right| *\left|b^{3}\right|=3 * 8=2 \mu$.

$$
\left|a^{6} * b^{3}\right|=2 u=3 * 8=2 u
$$

(d) let $L \& g \in D$.
(d)

$$
\begin{array}{ll}
l|c|=36 \\
c \in D, \mid \alpha * g & , \text { Let }|\alpha|=9 \\
c=|g|=4 \\
|c|=|\alpha * g| & \text { we wi l } \\
\text { Let }
\end{array}
$$

According to the Result that we proved in the class which is $a, b \in D,|a|=m,|b|=n, \operatorname{gcd}(m, n)=1$
the $|a+b|=n m$.

$$
|c|=|d| *|g|
$$

$\rightarrow \begin{gathered}\text { We will choose } \\ 2 \text { numbers }\end{gathered}$ and if the group has andenuts

$$
36=9 * 4
$$ are nelarivelg withorder 36 so , the Subgroup prime, must have an element with thensame order 36 .

but $111=9=\mid 91$ $g c d=1$.
and $\left.|g|=4 .=\left|b^{2}\right|=\frac{|b|}{\operatorname{gcd}(2,|b|)}=\frac{8}{\operatorname{gcd}(2,5)}=\frac{8}{2}=4\right)$
So, $\begin{aligned}|c| & =\left|a * b^{2}\right| \\ c c & =a * b^{2} \mid\end{aligned}$

ANSWER 1: (i) $|D|=n<\infty$. Let $a \in D \cdot|a|=k \Rightarrow k / n$
$\therefore \exists q \in \mathbb{Z}$ sit. $n=k q$ lagrange show that

$$
\therefore a^{n}=a^{k q}=\left(a^{k}\right)^{q}=e^{q}=e \quad \therefore a^{n}=e \forall a \in D
$$

K-lements $\left\{a, a^{2}, \underset{y}{v}, a^{k}=e\right\} \subset D$ with
$(\bar{u}) \quad|D|=n=q_{1} q_{2}$ where q_{1} and q_{2} are prime.
$a^{22}=a^{15} \Rightarrow a^{-15} * a^{22}=a^{-15} * a^{15} \Rightarrow a^{7}=e . \therefore|a|$ divides 7.
since 7 is prime and $a \neq e,|a|=7$.
Similarly, $b^{43}=b^{32} \Rightarrow b^{-32} * b^{43}=b^{-32} * b^{32} \Rightarrow b^{\prime \prime}=e . \therefore|b|$ divides 11.
Since 11 is forme and $b \neq e,|b|=11$.
$a, b \in D \Rightarrow|a| \mid n$ and $|b||n . \therefore 7| n$ and $11 \mid n$.
since $n=q_{1} q_{2}$ AND Prime Factorization is Unique,

$$
n=7(11)=77, \quad \therefore|D|=77
$$

Proof that $D=\left\{c, c^{2}, c^{3}, \ldots, c^{q_{1} q_{2}}=e\right\}$ for some $c \in D$: $\exists c=(a * b) \in D \cdot$ since $\operatorname{gcd}(|a|,|b|)=\operatorname{gcd}(7,11)=1$

AND $\quad a * h=b * a, \quad|c|=|a||b|=7(11)=77=q_{1} q_{2}$
\therefore Consider $L=\left\{c, c^{2}, c^{3}, \ldots, c^{77}=e\right\} \subseteq D$ and $|L|=q, q_{2}$

$$
\therefore L=D . \quad C=a * b .
$$

ANSWER 2 (i) $\left(D_{1} *\right)$ is Abelian. $F=\left\{a \in D \mid a^{m}=e\right\}$
To Prove: $a^{-1} * b \in F_{i}$
$\left(a^{-1}\right)^{m}=\left(a^{m}\right)^{-1}=e^{-1}=e \quad \Longrightarrow a^{-1} \in F$.
Consider $b \in F\left[\therefore b^{m}=e\right]$. $\left(a^{-1} * b\right)^{m}=\left(a^{-1}\right)^{m} *(b)^{m}$. $=e * e=e . / /$.
This is only True because D is Abeliaw.

$$
\therefore a^{-1} * b \in F . \quad \therefore F<D
$$

(a)

$$
\left|a^{6}\right|=\frac{|a|}{\operatorname{gcd}(6,|a|)}=\frac{9}{\operatorname{gcd}(6,9)}=\frac{9}{3}=3
$$

(b)

$$
\left|b^{3}\right|=\frac{|b|}{\operatorname{gcd}(3,|b|)}=\frac{8}{\operatorname{gcd}(3,8)}=\frac{8}{1}=8 / f
$$

(c)

$$
\begin{aligned}
\left|a^{6} * b^{3}\right| & =\left|a^{6}\right| *\left|b^{3}\right| \quad\left[\because \operatorname{gcd}\left(\left|a^{6}\right|,\left|b^{3}\right|\right)=\operatorname{gcd}(8,3)=1\right] \\
& =8(3)=24 \% \text { AND D iA Abelian }
\end{aligned}
$$

(d) CLAIM: $\exists c=a * b^{2}$ s.t. $|c|=36$.

$$
\rightarrow|a|=9 \text { and }\left|b^{2}\right|=\frac{|b|}{\operatorname{ged}(2,|b|)}=\frac{8}{2}=4 .
$$

$$
\rightarrow \operatorname{gcd}\left(|a|,\left|b^{2}\right|\right)=\operatorname{gcd}(9,4)=1
$$

\rightarrow The Group is Abelian.

$$
\therefore|c|=\left|a * b^{2}\right|=|a| *\left|b^{2}\right|=9(4)=36 \text {. }
$$

Hence, D does have a subgroup with 36 Elements.
(ia) $|F|=n<\infty \Rightarrow$ It is sufficient to check closure. $F=\left\{a \in C^{*} \mid a^{n}-1=0\right\}$. Fix $a, b \in F$.

- $a \in F \Rightarrow a^{n}-1=0 \Rightarrow a^{n}=1$. Similarly, $b \in F \Rightarrow b^{n}=1$.
- $a * b \Rightarrow(a b)^{n}-1=a^{n} b^{n}-1$ (Abeliaw Group).

$$
=(1)(1)-1=1-1=0
$$

$\therefore a * b \in F \forall a, b \in F$. Hence $F<D$.

ANSWER 3: $\quad|D|=n . \quad a, b \in D \Rightarrow a^{n}=b^{n}=e$.
Consider: $a^{\prime}=a^{\omega \pi n+x n} \quad(\because \operatorname{gcd}(m, n)=1 \Rightarrow \exists \omega, x \in \mathbb{Z}$ s.t $\omega m+x n=1)$

$$
\begin{aligned}
& =a^{\omega m} * a^{x n}=\left(a^{\omega}\right)^{m} *\left(a^{x}\right)^{x}=\left(a^{\omega}\right)^{m} * e^{x} . \\
\therefore a & =\left(a^{\omega}\right)^{m} \cdot \exists b=a^{\omega} \in D \text { s.t } a=b^{m}
\end{aligned}
$$

ANSWER 4: $f_{1}=\left(\begin{array}{ll}3 & 5\end{array}\right), f_{2}=\left(\begin{array}{lll}3 & 1 & 4\end{array}\right), f_{3}=\left(\begin{array}{llll}6 & 4 & 5 & 3\end{array}\right)$
(a) $f_{1} \circ f_{3}=\left(\begin{array}{ll}3 & 5\end{array}\right) \circ\left(\begin{array}{llll}6 & 4 & 5 & 3\end{array}\right)=\left(\begin{array}{lll}3 & 6 & 4\end{array}\right)$
(b) $f_{2} \circ f_{1}=\left(\begin{array}{lll}3 & 1 & 2\end{array}\right) \circ\left(\begin{array}{ll}3 & 5\end{array}\right)=\left(\begin{array}{lll}1 & 4 & 2\end{array}\right)$
(c)

$$
f_{3} \circ f_{2}=\left(\begin{array}{llll}
6 & 4 & 5 & 3
\end{array}\right) \circ\left(\begin{array}{lll}
3 & 1 & 4
\end{array}\right)=\left(\begin{array}{lll}
1 & 4 & 1 \\
1 & 3
\end{array}\right)(264)
$$

$$
\therefore f_{3} \circ f_{2}=\left(\begin{array}{lll}
1 & 5 & 3
\end{array}\right)\left(\begin{array}{lll}
2 & 6 & 4
\end{array}\right)
$$

ANSWER 5 (i) we repeatedly choose $a \in D \mid H_{i} . H_{0}=\{0,4,8\}$

$$
\begin{aligned}
& a=1 \Rightarrow 1 * H=1 *\{0,4,8\}=\{1,5,9\}=H_{1} \\
& a=2 \Rightarrow 2 * H=2 *\{0,4,8\}=\{2,6,10\}=H_{2} \\
& a=3 \Rightarrow 3 * H=3 *\{0,4,8\}=\{3,7,11\}=H_{3} \\
& \therefore L(H)=\left\{H_{0}, H_{1}, H_{2}, H_{3}\right\} \| \\
& \therefore(\bar{u}) \quad a * b=b * a . \quad|b|=9,|b|=8 .
\end{aligned}
$$

Name TAHA AMEEN.il@O0066555

MTH 320 Abstract Algebra Fall 2017, 1-1

HW THREE: Abstract Algebra, MTH 320,Fall 2017

Ayman Badawi

QUESTION 1. (i) (Very useful result) Let $(D, *)$ be a group with $n<\infty$ elements and let $a \in D$. Prove that $a^{n}=e$ for every $a \in D$ [Max 3 lines proof]
(ii) (Nice problem) Let $(D, *)$ be a group such that $|D|=q_{1} q_{2}$ where q_{1}, q_{2} are primes. Assume that for some $a, b \in D$, where $a \neq e$ and $b \neq e$, we have $a^{22}=a^{15}, b^{43}=b^{32}$, and $a * b=b * a$. Find $|D|$. I claim that $D=\left\{c, c^{2}, \ldots, c^{q_{1} q_{2}}=\right.$ $e\}$ for some $c \in D$. Prove my claim.[Max 6 lines]

QUESTION 2. (i) (How to check for subgroups) Let $(D, *)$ be an abelian group. Fix a positive integer m and let $F=\left\{a \in D \mid a^{m}=e\right\}$. Prove that $\left(F,,^{*}\right)$ is a subgroup of D. (Two lines proof. Note that F need not be a finite set. An example of an infinite F will be given during the course)
(ii) (How to check for subgroups) Fix a positive integer n. We know that the equation $x^{n}-1=0$ has exactly n distinct solutions over the complex C. Now let $F=\left\{a \in C^{*} \mid a^{n}-1=0\right\}$. Prove that ($F,$.) is a subgroup of $\left(C^{*},.\right)$ (Two lines proof. (Note that $(C *,$.$) is an abelian group)$
QUESTION 3. (Radicals). Let ($D, *$) be a group such that $|D|=n<\infty$. Let m be a positive integer such that $\operatorname{gcd}(n, m)=1$. Let $a \in D$. Prove that there exists an element $b \in D$ such that $b^{m}=a$ (i.e., $\sqrt[m]{a} \in D$, where $\sqrt[m]{a}=b \in D$ means $b^{m}=a$)(three lines proof. You may need the fact from number theory or discrete math that says if $\operatorname{gcd}(m, n)=k$, then there are two integers w, x in Z such that $k=w m+x n$)

QUESTION 4. Given f_{1}, f_{2}, and f_{3} are bijection functions on a set with 6 elements, where $f_{1}=\left(\begin{array}{ll}35\end{array}\right), f_{2}=\left(\begin{array}{ll}3 & 142\end{array}\right)$, and $f_{3}=(6453)$
a) Find $f_{1} \circ f_{3}$
b) Find $f_{2} o f_{1}$
c) Find $f_{3} \circ f_{2}$

QUESTION 5. (i) Given $H=\{0,4,8\}$ is a subgroup of $\left(Z_{12},+\right)$. Find all distinct left cosets of H in D.
(ii) Let $(D, *)$ be a group and assume that for some $a, b \in D$, we have $a * b=b * a,|a|=9$ and $|b|=8$
a. Find $\left|a^{6}\right|$
b. Find $\left|b^{3}\right|$
c. Find $\left|a^{6} * b^{3}\right|$
d. Give me an element $c \in D$ such that $|c|=36$ (note that, as I explained in the class, if a group has an element of order k, then the group must have a subgroup of order k, namely $H=\left\{a, a^{2}, \ldots, a^{k}=e\right\}$, where $|a|=k$. So if my claim is right, then D must have a subgroup with 36 elements)

Faculty information

Ayman Badawi, Department of Mathematics \& Statistics, American University of Sharjah, P.O. Box 26666, Sharjah, United Arab Emirates. E-mail: abadawi@aus.edu, www.ayman-badawi.com

HW Four Abstract Algebra, MTH 320,Fall 2017

Ayman Badawi

QUESTION 1. Consider the group $D=\left(\frac{Q}{Z}, \Delta\right)$, as usual for every $a, b \in Q$ we have $\left.(a+Z)\right) \Delta(b+Z)=(a+b)+Z$
(i) We know $x=\frac{8}{12}+Z \in D$. Find $|x|$.
(ii) Let $F=\{y \in D| | y \mid=12\}$. Find $|F|$.
(iii) Fix an integer $m \in N^{*}$ and let $F=\{y \in D| | y \mid=m\}$. Can you guess what is $|F|$?
(iv) For each $n \in N^{*}$, construct a subgroup of D with n elements.

QUESTION 2. Let $(D, *)$ be a group with 12 elements and suppose that $D=\left\{a, a^{2}, \ldots, a^{12}=e\right\}$ (note that D must be abelian). Let $H=\left\{a, a^{4}, a^{8}\right\}$.
(i) Construct the Caley's table of H to convince me that it is a subgroup of D.
(ii) So now we know that $H \triangleleft D$. Find all elements of D / H. Construct the Caley's table of $(D / H, \Delta)$.
(iii) For each $x \in D / H$, find $|x|$.

QUESTION 3. Let $D=\left(U(15)\right.$,.). It is trivial to notice that $H=\{1,14\} \triangleleft D$. Construct the Caley's table of $\left(\frac{D}{H}, \Delta\right)$
QUESTION 4. Let $(D, *)$ be a group, $H \triangleleft D$, and $a \in D$. Suppose that $|a|=n<\infty$. We know that $x=a * H \in D / H$. Let $m=|x|$. Prove that $m \mid n$. Max 2 lines proof. Note that x^{k} mean $a * H \Delta a * H \Delta \cdots \Delta a * H=a^{k} * H$)

Faculty information

Ayman Badawi, Department of Mathematics \& Statistics, American University of Sharjah, P.O. Box 26666, Sharjah, United Arab Emirates, E-mail: abadawi@aus.edu, www.ayman-badawi.com

(1) $D=(\varphi / z, \Delta)$
(i) $x=\frac{8}{12}+\mathbb{Z}$. Io fiend: $|x|$

$$
|x|=\frac{12}{\operatorname{gcd}(8,12)}=\frac{12}{4}=3 .
$$

(Verification):

$$
\begin{aligned}
& x^{\prime}=\frac{8}{12}+\mathbb{Z} \quad x^{2}=\left(\frac{8}{12}+\mathbb{Z}\right) \Delta\left(\frac{8}{12}+\mathbb{Z}\right)=\frac{16}{12}+\mathbb{Z} . \\
& x^{3}=x^{2} \Delta x=\left(\frac{16}{12}+\mathbb{Z}\right) \Delta\left(\frac{8}{12}+\mathbb{Z}\right)=\frac{24}{12}+\mathbb{Z}=2+\mathbb{Z}=\mathbb{Z}
\end{aligned}
$$

(a) $F=\{y \in D| | y \mid=12\}$. No find: $|F|$

- We use fact: $\forall y=\frac{p}{q}+\mathbb{Z}(q \neq 0),|y|=\frac{q}{\operatorname{gcd}(p, q)}=12$
- Clearly, $F=\left\{\frac{1}{12}+\mathbb{Z}, \frac{5}{12}+\mathbb{Z}, \frac{7}{12}+\mathbb{Z}, \frac{11}{12}+\mathbb{Z}\right\}$.
- The numerators are relatively prime. $\therefore \mathrm{gcd}=1 \Rightarrow|y|=12$.
- Although $\left|\frac{2}{24}+\mathbb{Z}\right|=12, \frac{2}{24}+\mathbb{Z}=\frac{1}{12}+\mathbb{Z}$ and we do not repeat elements in a set.

$$
\therefore|F|=4
$$

(wu) $\quad m \in \mathbb{N}^{*}$ and $F=\{y \in D| | y \mid=m\}$, what is $|F|$?

- It is clear that $F=\left\{\left.\frac{p}{m}+\mathbb{Z} \right\rvert\, \operatorname{gcd}(p, m)=1\right\}$.

$$
\therefore \quad|F|=|v(m)|=\phi(m)
$$

(iv) Consider $n \in \mathbb{N}^{*}$. we wish to construct a subgroup of order n.

- If we can find an element -of order ' n ', we are done. - clearly, $\frac{1}{n}+\mathbb{Z} \in D$. and $\left|\frac{1}{n}+\mathbb{Z}\right|=n: \operatorname{gcd}(1, n)=1 \forall n$.

$$
\therefore \quad \forall n \in \mathbb{N}^{*} \quad \exists H=\left\{\left(\frac{1}{n}+\mathbb{Z}\right),\left(\frac{1}{n}+\mathbb{Z}\right)^{2}, \ldots\left(\frac{1}{n}+\mathbb{Z}\right)^{n}=e\right\}<D
$$

This reduces to:
$\forall n \in \mathbb{N}^{*} \quad \exists \quad 4=\left\{\frac{1}{n}+\mathbb{Z}, \frac{2}{n}+\mathbb{Z}, \frac{3}{n}+\mathbb{Z}, \ldots ., \frac{n}{n}+\mathbb{Z}\right\}<D$
(2)

$$
\begin{aligned}
& D=\left\{a, a^{2}, a^{3}, \ldots, a^{12}=e\right\} \\
& H=\left\{a^{4}, a^{8}, a^{12}\right\}
\end{aligned}
$$

(i) Cayley's Table of H.

(ii) Since D is Abeliaw: $H<D \Longrightarrow H \subset D$.

To find: D / H and cayley's Table of $(D / H, \Delta)$
$H=H_{0}=\left\{a^{4}, a^{8}, a^{12}\right\} . \rightarrow$ we repeatedly pick elements in

$$
H_{1}=a_{1} * 4_{0}=\left\{a^{5}, a^{9}, a^{\prime}\right\}
$$

$$
H_{2}=a_{2} * H_{0}=\left\{a^{6}, a^{10}, a^{2}\right\}
$$

$H_{3}=a_{3} * H_{0}=\left\{a^{7}, a^{11}, a^{3}\right\}$

Δ	H_{0}	H_{1}	H_{2}	H_{3}
H_{0}	H_{0}	H_{1}	H_{2}	H_{3}
H_{1}	H_{1}	H_{2}	H_{3}	H_{0}
H_{2}	H_{2}	H_{3}	H_{0}	H_{1}
H_{3}	H_{3}	H_{0}	H_{1}	H_{2}

$\Delta\left(a_{k}\right)$ but not in $\bigcup_{i=0}^{k-1} H_{i}$ to find H_{k}.
\rightarrow we have 4 corsets. This is as Expected $\because \frac{|D|}{|4|}=\frac{12}{3}=4$.

* Sample calculation

$$
\begin{aligned}
H_{1} \Delta H_{2} & =\left(a^{1} * H_{0}\right) \Delta\left(a^{2} * H_{0}\right) \\
& =\left(a^{1} * a^{2}\right) * H_{0} \\
& =a^{3} * H_{0} \\
& =H
\end{aligned}
$$

- (avi) To find: $\forall x \in D / H,|x|:$

$$
\begin{aligned}
& \text { - } H_{0}:\left|H_{0}\right|=1 ; H_{0}=e . \\
& \text { - } H_{2}: \quad H_{2}^{2}=H_{2} \Delta H_{2}=H_{0}=e \text {. } \\
& \therefore\left|H_{2}\right|=2 \\
& \text { - } \mathrm{H}_{2} \text { : } \\
& H_{3}^{2}=H_{2} ; H_{3}^{3}=H_{2} \Delta H_{3}=H_{1} ; H_{3}^{4}=H_{0}=C \text {. } \\
& \therefore\left|r_{3}\right|=4 \\
& \text { (3) } \\
& D=O(15)=\{1,2,4,7,8,11,13,14\} \\
& \text { - } H_{0}=4=\{1,14\}<D \\
& \text { - } H_{1}=2 * H_{0}=\{2,13\} \\
& \text { - } H_{2}=4 * H_{0}=\{4,11\} \\
& \text { - } H_{3}=7 * H_{0}=\{7,8\}
\end{aligned}
$$

Δ	H_{0}	H_{1}	H_{2}	H_{3}
H_{a}	H_{0}	H_{1}	H_{2}	H_{3}
H_{1}	H_{1}	H_{2}	H_{3}	H_{0}
H_{2}	H_{2}	H_{3}	H_{0}	H_{1}
H_{3}	H_{3}	H_{0}	H_{1}	H_{2}

\rightarrow It is clear from cayloy's Table that $(D / H, \Delta)$ is a group ivith identity π_{0}.
(4) $H \triangle D \cdot|a|=n<\infty . \quad x=a * H \in P / H,|x|=m$

To Prove: m / n.
$|x|=m \Rightarrow x^{m}=e_{\Delta}=H$. If we can show that $x^{n}=e_{\Delta}$, then m / n.

$$
\begin{aligned}
& x^{n}=a^{n} * H=e * H=H \quad(\because|a|=n) \\
& \therefore x^{n}=e_{\Delta} \text { II } \quad \therefore m / n .
\end{aligned}
$$

HW FIVE Abstract Algebra, MTH 320, Fall 2017

Ayman Badawi

5

QUESTION 1. a) Let ($D, *$) be a group with a normal subgroup H. Assume that $a * h=h * a$ for every $a \in D$ and for every $h \in H$ (note that we can conclude that $h_{1} * h_{2}=h_{2} * h_{1}$ for every $h_{1}, h_{2} \in H$). Assume that D / H is cyclic. Prove that D is an abelian group. (max 6 lines)
ζ b) Let ($D, *$) be a group. Given $N \triangleleft D$ and $H<D$. Prove that $N H=\{n h \mid n \in N$ and $h \in H\}$ is a subgroup of D and if $H \triangleleft D$, then $N H \triangleleft D$, 5
QUESTION 2. Let $(D, *)$ be a group with 25 elements. Assume that D has a unique subgroup of order 5 . Prove that D is cyclic. (Max 3 lines)

QUESTION 3. a) Convince me that (C^{*}, .) is not cyclic. (Max 2 lines)
b) Convince me that ($Q^{*},$.) is not cyclic. (Max 2 lines)
c) Convince me that $(Q,+)$ is not cyclic. (Max 5 lines)
d) Is $U(18)$ cyclic? explain
e) Is $U(16)$ cyclic? explain

QUESTION 4. a) Prove that S_{17} has an abelian subgroup, say H, with 70 elements. Can you say more about H ?
b) Let $f=\left(\begin{array}{llllllll}1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 3 & 5 & 4 & 1 & 8 & 7 & 6 & 2\end{array}\right) \in S_{8}$. Find $|f|$. Is $f \in A_{8}$? explain
c) Let $n=\max \left\{|f|\right.$, where $\left.f \in A_{9}\right\}$. Find the value of n.
d) Let $f \in S_{n}(n \geq 3)$ be an odd function. Prove that $|f|$ is an even number. (Max one line (maybe 2 lines)

Faculty information

Ayman Badawi, Department of Mathematics \& Statistics, American University of Sharjah_ P.O. Box 26666, Sharjah, United Arab Emirates. E-mail: abadawi@aus.edu, wwr.ayman-badawi.com

Answer 1) (a). Giver: $(D, *)$ is a group. $H \subset D$.

$$
a * h=h * a \quad \forall h \in H, \forall a \in D .
$$

D / H is Cyclic
To Prove: D is Abelian, ie. $a_{1} * a_{2}=a_{2} * a_{1} \forall a_{1}, a \in D$
\rightarrow consider $D / H=\left\{H_{1}, H_{2}, \ldots, H_{k}, \ldots\right\}=\left\langle H_{k}\right\rangle$ where $H_{n}=a_{n} * H$.

$$
\begin{aligned}
& \therefore D / H=\left\{H_{k}^{1}, H_{k}^{2}, H_{k}^{3} \cdots\right\}=\left\{a_{k}^{1} * H, a_{k}^{2} * H, a_{k}^{3} * H, \cdots\right\} \\
& \therefore a, * H=a_{k}^{x} * H
\end{aligned}
$$

$$
\begin{aligned}
& a_{1} * H=a_{k} * H \\
& a_{2} * H=a_{k}^{*} * H \text { for some } x, y \in \mathbb{Z} .
\end{aligned}
$$

$\therefore a_{1} \in a_{k}^{x} * H$ and $a_{2} \in a_{k}^{y} * H \Rightarrow a_{1}=a_{k}^{x} * h_{1}, a_{2}=a_{k}^{y} * h_{2}{ }_{x}$

$$
\begin{aligned}
\therefore \quad a_{1} * a_{2}=a_{k}^{x} * L_{1} * a_{k}^{y} * h_{2} & =a_{k}^{x} * a_{k}^{y} * h_{1} * h_{2} \\
& =a_{k}^{x+y} * h_{1} * L_{2} \\
& =a_{k}^{y+x} * h_{2} * h_{1}(* H \text { is Abelian } \\
& =a_{k}^{y} * a_{k}^{x} * h_{2} * h_{1} \\
i / h_{k} & =a_{k}^{y} * h_{2} * a_{k}^{x} * h_{1} \\
& =a_{2} * a_{1}
\end{aligned}
$$

(b) Given: $N \subset D, H<D$.

To Prove: ${ }^{1} N H<D$, (11) $\triangle D \longrightarrow N H \subset D$.
(I)
$N H=\{n W \mid n \in N$ and $h \in H\}$. we peck tin arbitrary elements of NH: $\alpha=n_{a} h_{b}, \beta=n_{c} h_{d}$.

$$
\begin{aligned}
& \text { if } \beta^{-1} * \alpha \in N H, N H<D \\
& \therefore \beta^{-1} * \alpha=h_{d}^{-1} * n_{c}^{-1} * n_{a} * h_{b} \\
&=h_{d}^{-1} * n_{k}^{1} * h_{b} \mid \because N \text { is a group. } n_{k} \in N . \\
&=n_{k} * h_{k} * h_{b} \cup \mid \because N \triangleleft D \Rightarrow n_{*} * h_{1}=h_{2} * n .
\end{aligned}
$$

$=x_{k} * h_{m} \mid \because H$ is a group $\Rightarrow h_{m} \in H$
But $n_{k} * h_{m} \in N H . \quad \therefore N H<D$
(II)

$$
\begin{aligned}
& H \subset D \longrightarrow N H \subset D \text {, Let } a \in D \\
& a * N H=\left\{a * n_{a} \dot{m}_{b} \mid n_{a} \in N a h_{b} \in H\right\} \\
& \begin{array}{l}
=\left\{a * n_{a} * h_{b}\right\}=\left\{n_{c} * a * h_{b}\right\} \mid: N \& D \\
=\left\{n_{c} * h_{d} * a \mid x_{c} \in N \wedge h_{d} \in H\right\} \quad \mid \because H \subset D \\
=N H * \text { Hefion }
\end{array} \\
& \begin{aligned}
& =\left\{a * x_{a} * h_{b}\right\}=\left\{n_{c} * a * h_{b}\right\} \mid: N \& D \\
h / 5 & =\left\{n_{c} * h_{d} * a \mid x_{c} \in N \wedge h_{d} \in H\right\} \\
& =N H * H A D
\end{aligned} \\
& =N H * \text { (By Definition) } \\
& \therefore N H \not \subset D
\end{aligned}
$$

Answer 02) $(D, *)$ is a group.
Giver: $|D|=25 \quad \exists \mid H<D$ set $|H|=5$
To prove: D\& Cyclic, ie. kaeD sit. $|a|=|D|=25$.
Proof, $h \in H \Rightarrow|h|=1$ cor) 5. $h \neq e \Rightarrow|h|=5$.
$\therefore H=\langle h\rangle$ is Unique.
choose $a \in D|H . \quad| a \mid=5 \cos 25 \quad \because a \neq e$.

$$
|a| \neq 5 \quad \because \quad|a|=5 \longrightarrow<a\rangle=A<D \wedge|A|=5
$$

$\begin{array}{rl}\text { hin. }|a|=25 & A \neq H \quad \text { (contradiction } \\ \therefore<a\rangle=D . \therefore D \text { is cyclic. }\end{array}$
Answer 03: Ca) To show: $\left(c^{*}, *\right)$ is Not Cyclic.
Deny. $\therefore \exists a, a^{-1}$ s. $\left.t<a\right\rangle=\left\langle a^{-1}\right\rangle=c^{\pi}$. (Unique a, a^{-1}).
Win then $\forall c\left(\neq a, a^{-1}\right) \in c^{*},|c|=\infty$.
But $\exists-1 \in c^{\star} 1 \quad i \in C^{\pi}$ s.t $|-1|=2 \wedge|i|=4$.
\checkmark Contradiction!
$\therefore\left(c^{*}, *\right)$ is not cyclic.
(b) $\left(Q^{*}, *\right)$ is not cyclic.

Deny. $\therefore \exists \mid a, a^{-1}$ s.t. $Q^{*}=\langle a\rangle=\left\langle a^{-1}\right\rangle$
$\Rightarrow H \subset \neq e \in Q^{*}, \quad|c|=\infty$.
But $\exists(-1) \in Q^{*}$ s.t $|-1|=2$. Contradiction! in/ in $\therefore\left(9^{*}, *\right)$ cannot be cyclic.
C) To show: $(Q,+)$ is not cyclic.
deny. $\therefore \exists!a, a^{-1}$ st. $Q=\langle a\rangle=\left\langle a^{-1}\right\rangle$.
Case I: $a \neq 0$.

$$
\frac{a}{2} \in Q \forall a \in Q . \quad\left(\frac{a}{2}=\sqrt{a}\right) \text {, whee the }
$$

clearly $\langle a\rangle \subset\left\langle\frac{a}{2}\right\rangle$ ok $3 b \in(2, x)$ sa x cans
i.e. $\frac{9}{2}$ generates all elements that a generates and more. contradiction
Case II: $a=0$.
but $a^{m}=0 \forall m \quad \therefore 0$ cannot be a generator (The Identity carr never be the Generator).
$\therefore(Q, T)$ carnot be cyclic.
(d) yo check: is U(18) Cyclic?

$$
\begin{aligned}
& U(18)=\{1,5,7,11,13,17\} \text { and } \phi(18)=6 \\
& \therefore \forall q \in U(18)|\{e\},|9|=2,3,6
\end{aligned}
$$

clearly, $\exists \| \in U(18)$ s.t. $\left\|^{2}=13(\neq e),\right\|^{3}=17(\neq e), \|^{6}=1=c$.
$\therefore U(18)=\langle 11\rangle$ and $U(18)$ is cyolic.
(e) Do check: Is U(16) cyclic?
$U(16)=\{1,3,5,7,9,11,13,15\}$ and $\phi(16)=8$.
$\therefore \forall a \in U(16)|\{e\},|a|=2,4.8 . \mathrm{c}$
we search for $a \in U(16)$ s.t $|a|=\phi(16)$.
However, $|1|=1,|3|=4,|5|=4,|7|=2,|9|=2,|11|=4,|13|=4$ and $|15|=2 . \quad \therefore \sim[\exists a \in U(16)$ s.t $|a|=\phi(1 b)]$
$\therefore U(16)$ cannot be Cyclic
Answer 4) (a) No Prove: $\exists H<S_{17}$ st $|H|=70$.

$|h|=\operatorname{LCM}(7,10)=70(\because h=\alpha 0 \beta$ as Above, $\alpha \cap \beta=\phi)$.

$$
\begin{equation*}
\therefore \exists H=\langle h\rangle<S_{17} . \quad H=\left\{h, h^{2}, h^{3}, \ldots, h^{70}=e\right\} . \tag{3}
\end{equation*}
$$

H is cyclic. $\therefore H$ is Abelian.

$$
\begin{aligned}
& \quad(b) \quad f=\left(\begin{array}{llllllll}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
3 & 5 & 4 & 1 & 8 & 7 & 6 & 2
\end{array}\right) \\
& f=\left(\begin{array}{lllll}
1 & 3 & 4
\end{array}\right)\left(\begin{array}{llll}
2 & 5 & 8
\end{array}\right)\left(\begin{array}{ll}
6 & 7
\end{array}\right) \circ\left(\begin{array}{lll}
1 & 3
\end{array}\right) \circ\left(\begin{array}{lll}
2 & 8
\end{array}\right) \circ\left(\begin{array}{ll}
2 & 5
\end{array}\right) \circ\left(\begin{array}{ll}
6 & 7
\end{array}\right)=5 \text { 2-Cycles }
\end{aligned}
$$

$\therefore f$ is odd $\Rightarrow f \notin A_{8}$
(c) $n=\max \left\{|f|, f \in A_{q}\right\}$.

Notice: All elements ie n f are Compositions of:

$$
\begin{aligned}
& \left(a_{1}\right) \\
& \left(\begin{array}{lll}
a_{1} & a_{2} & a_{3}
\end{array}\right) \\
& \left(\begin{array}{lllll}
a_{1} & a_{2} & a_{3} & a_{4} & a_{5}
\end{array}\right) \\
& \left(\begin{array}{lllllll}
a_{1} & a_{2} & a_{3} & a_{4} & a_{5} & a_{6} & a_{7}
\end{array}\right) \\
& \left(\begin{array}{lllllllll}
a_{1} & a_{2} & a_{3} & a_{4} & a_{5} & a_{6} & a_{7} & a_{8} & a_{9}
\end{array}\right)
\end{aligned}
$$

The maximum no. of Elements we car have in permutation notation such that there are No overlaps $(\Rightarrow$ as Disjoint Permutation) is $f=\left(\begin{array}{lll}a_{1} & a_{2} & a_{3}\end{array}\right) \circ\left(\begin{array}{lllll}a_{4} & a_{5} & a_{8} & a_{7} & a_{8}\end{array}\right)$. Then $|f|=\operatorname{LCM}(3,5)=15$
\longrightarrow This has to be the Maximum Order.
\longrightarrow In all other cases, compositions can be reduced by writing them as disjoint permutations and 15 is the maximum order for the dey joint case.

$$
\therefore n=15 \text {. }
$$

cd) $f \in S_{n} \mid A_{n}$. yo prove: $|f|$ is Even.

PROOF:
We use the result from previous homework:

$$
\begin{equation*}
H \triangle D, a \in D, x=a * H \in D / H \Rightarrow|x|| | a \mid \tag{-Cl}
\end{equation*}
$$

(i.e. Order of the coset in D / H divides

Order of every representative of this coset in D.)

$$
A_{n} \triangleright S_{n}, f \in S_{n}, \quad \text { Let } x=f \circ A_{n} \Longrightarrow|x|| | f \mid
$$

But x is the set of all odd functions. (From Ci))

$$
\begin{aligned}
& |x|=\left|f \circ A_{n}\right|=2 \cdot \quad\left(\because\left|S_{n} / A_{n}\right|=\frac{\left|S_{n}\right|}{\left|A_{n}\right|}=2 \therefore x \neq e \in S_{n} / A_{n}\right. \\
& \therefore 2||f| \Longrightarrow| f \mid \text { is Even. }
\end{aligned}
$$

HW SIX, Abstract Algebra, MTH 320, Fall 2017

Ayman Badawi

QUESTION 1. Assume ($D, *$) is a group with p^{3} elements for some prime number p. Assume D has a normal cyclic subgroup H with p^{4} elements and D has a normal subgroup F with p elements such that $F \nsubseteq H$. Prove that D is abelian but not cyclic.

QUESTION 2. (VERY IMPORTANT)

Let $(D, *)$ be a group
(i) Let $m \in D$ be fixed and define $f:\left(D_{1} *\right) \rightarrow(D, *)$ such that $f(a)=m * a * m^{-1}$ for every $a \in D$. Prove that f is a group-isomorphism.
(ii) Let $a \in D$ and assume that $|a|=k<\infty$. Prove that $|a|=\left|d * a * d^{-1}\right|$ for every $d \in D$.
(iii) Define $f:(D, *) \rightarrow(D, *)$ such that $f(a)=a^{2}$ for every $a \in D$. Prove that f is a group-homomorphism if and only if D is abelian.
(iv) Assume that D bas 10 elements and $D=<a>$ for some $a \in D$. Define $f:(D, *) \rightarrow(D, *)$ such that $f(a)=a^{3}$. Find $f(b)$ for every $b \in D$. Convince me that f is a group-isomorphism. Find Range(f) and $\operatorname{Ker}(f)$
(v) Assume that H is a subgroup of D with m (finite) elements. Prove that $d * H * d^{-1}$ is a subgroup of D with m elements. Now, convince me that if F is the only subgroup of D with k element (k is finite), then F must be normal in D.
(vi) Assume $|D|=5^{3} \cdot 7^{2}$. Assume that D has a normal cyclic subgroup, say H, of order 7^{2} and D has a normal abelian subgroup, say F, of order 5^{3}. Up to isomorphism find all possibilities of the group structure of D.
(vii) Assume $|D|=p \cdot q$ for some prime numbers p, q. Assume that D has a normal subgroup, say H, of order p and D has a normal subgroup, say F, of order q. Prove that D is cyclic.

QUESTION 3. (Important) Let $S=\{0,1,3, \ldots, 17\}$. Then we view S_{18} as the set of all bijective functions from S
ONTO S, and recall that $\left(\delta_{18}, o\right)$ is a group. Let $D=\left\{f:\left(Z_{18},+\right) \rightarrow\left(Z_{18},+\right) \mid f\right.$ is a group-isomorphism $\}$. Hence $D \subset S_{18}$.
(i) Let $K:\left(Z_{18},+\right) \rightarrow\left(Z_{18},+\right)$ such that $K(1)=1^{5}=5$. Is $K \in D 7$ EXPLAIN. Find $K(a)$ for every $a \in Z_{18}$. If $K \in D$, then find $|K|$.
(ii) Prove that (D, o) is a cyclic subgroups of S_{18} with exactly 6 elements. Hence $D=<f>$ for some $f \in D$. Give me such f.

Faculty information

Ayman Bedawi, Deparment of Mathementics \& Statistics, American University of Sharjah, P.O. Box 26666, Sharjah, United Arab Emirates. E-mail: abadari laus .edn, srev, ayman-baduri.com

ANSWER 1:
Given: $|D|=p^{5} . \quad H \triangleleft D ;|H|=p^{4} ; H$ is Cyclic.

$$
F \triangle D ;|F|=p ; F \neq H
$$

Lo Prone: D is Abelian and Not cyclic.
strategy: we show $D \cong Z_{p} \times Z_{p}$:
Proof: $|F|=p \Rightarrow F$ is Cyclic: p is prime.
clearly, $F \cap H=\{e\} \quad|\because| F \mid=p, F \neq 4$.
and $\left.F * H=D \quad|\because| F * H\left|=\frac{|F||H|}{|F \eta H|}=|F|\right| H \right\rvert\,=p^{\prime} p^{4}=p^{5}$

$$
\therefore D \cong H \times F
$$

But, $H \cong \mathbb{Z}_{p^{4}}$ and $F \cong \mathbb{Z}_{p}$

$$
\therefore D \cong \mathbb{Z}_{p^{4}} \times \mathbb{Z}_{p} . \quad \text { Since ged }\left(p, p^{q}\right)=p \neq 1
$$

D is Abelian but not Colic.
ANSWER 2
Ci): Step I: showing that f is a homomorphism

$$
\begin{aligned}
& f(a * b)=m *(a * b) * m^{-1} \\
& =m * a *\left(m^{-1} * m\right) * b * m^{-1}
\end{aligned}
$$

Leta
$\operatorname{ker}(f)-(\sqrt{f})=\left(m * a * m^{-1}\right) *\left(m * b * m^{-1}\right)$
$\left.\begin{array}{l}\text { Then } \\ f(a)=e\end{array}\right\} V=f(a)$ * $f(b)$.
$f(a)=e$
$m a m^{-1}=e$$\quad$ step II: Equal Cardinality
Clear, as $|D|=|D| \rightarrow x^{a} \partial \partial^{n}$ ra ch $^{a^{k e}}$
ave Step III: ONTO: $\forall x\left(=m * a_{i} * m^{-1}\right) \in \operatorname{Range}(f)$
$k(e r f)=\exists a_{i} \in \operatorname{Bomain}(f)$ s.t. $f\left(a_{i}\right)=x$.
$\{p\} \quad \therefore f$ is an Isomorphism
("u) $a \in D,|a|=k<\infty$. To show: $|a|=\left|d * a * d^{-1}\right|, d \in D$. (2)
Proof: Consider the Group Isomorphism $f: D \longrightarrow D$
s.t. $f(a)=d * a * d^{-1}$ for any $d \in D$.

By Property of Isomorphisms,

$$
n / 4|f(a)|=|a| \quad \Rightarrow\left|d * a * d^{-1}\right|=|a|
$$

(au) $f: D \rightarrow D ; f(a)=a^{2}$. Io Prove: Homomorphism \leftrightarrow Abelian.
Proof: PART 1: Assume f is a Homomorphism. Show D is Abeliaw.

$$
\begin{align*}
* a, b \in b: & f(a * b)=(a * b) *(a * b) \tag{1}\\
\text { and } & f(a) * f(b)=(a * a) *(b * b) . \tag{2}
\end{align*}
$$

But (1) and (2) are Equal : f is a homomorphism

$$
\therefore \quad a * b * a * b=a * a * b * b
$$

$\Rightarrow \quad b * a=a * b \quad /$ deft and Right cancellation $\therefore D$ is Abelian.
V/ל PART 2: Assume D is Abeliaw. Show fir a thomomozphism.

$$
\begin{aligned}
& f(a * b)=(a * b) *(a * b)=a *(b * a) * b=a *(a * b) * b \\
& \therefore f(a * b)=(a * a) *(b * b)=f(a) * f(b) \\
& \therefore f \text { is a Homoonorphism. }
\end{aligned}
$$

(iv) $D=\langle a\rangle ;|D|=|a|=10 ; f(a)=a^{3}$.

M/ Yo shoo: f is a Group somorphism

$$
\text { since }\langle a\rangle=\left\langle a^{3}\right\rangle,\left|:\left|a^{3}\right|=\frac{|a|}{\operatorname{gcd}(-3,10)}=\frac{|a|}{1}=10\right.
$$

Both $\langle a\rangle=D$
AND $\left\langle a^{3}\right\rangle=f(D)$ are Seomorphic to \mathbb{I}_{10} and therefore $\therefore b=a^{i} \Rightarrow f(b)=a^{3 i} \forall b$, Isomorphic to each other.
$\therefore f$ is a Group Isomorphism.
Yo Find: Range (f) and $\operatorname{Ker}(f)$
Since f so one-to-cone: $\operatorname{Ker}(f)=\{e\}$
Since \mid Range $(f)|=|D| /|\operatorname{ker}(f)|$ Range $(f)=D$
(v) $H<D,|H|=m$. To Prove: $d * H * d^{-1}<D$. since $d \mathrm{H}^{-1}$ is finite, it is sufficient to show closure. Let $x, y \in d H d^{-1} \Rightarrow x=d * h_{i} * d^{-1}, y=d * h_{j} * d^{-1}$ then $x * y=\left(d * L_{i} * d^{-1}\right) *\left(d * \operatorname{lig}_{j} * d^{-1}\right)$
$\begin{aligned} & h / h=d *\left(h_{i} *\right. \\ &=d *\left(h_{k}\right) * d^{-1} \\ & \therefore d * H * d^{-1} \text { is a group. }\end{aligned}$
Consider the isomorphism $f(h)=d * h * d^{-1}$.
The or $H \cong d H d^{-1} \Rightarrow\left|d * H * d^{-1}\right|=|H|=m$.
Part II: Let $|F|=k$. If there are no other subgroups of order k, then F is normal:
Proof: $F<D$. Further $\quad d * F * d^{-1}<D$ \& $\left|d * F \neq d^{-1}\right|=|F|$. But, this group is Unique $\Rightarrow F=d * F * d^{-1}$
$\therefore F * d=d * F \Rightarrow F$ is normal
(vi) $|D|=5^{3} 7^{2},|H|=7^{2}$ Coychic), $|F|=5^{3}$ (Abelian)
M / G
clearly, $H \cong \mathbb{Z}_{7^{2}}$
and $\left.\left.F \cong \mathbb{Z}_{5^{3}} \operatorname{COR}\right) \mathbb{Z}_{5^{2}} \times \mathbb{Z}_{5} \operatorname{COR}\right) \mathbb{Z}_{5} \times \mathbb{Z}_{5} \times \mathbb{Z}_{5}$
\therefore classification:
(1) $D \cong \mathbb{Z}_{7^{2}} \times \mathbb{Z}_{5^{3}}$
(OR) (2) $D \cong Z$

$$
\mathbb{Z}_{7^{2}} \times \mathbb{Z}_{5^{2}} \times \mathbb{Z}_{5}(O R)(3) \cong \mathbb{Z}_{7^{2}} \times \mathbb{Z}_{5} \times \mathbb{Z}_{5} \times \mathbb{Z}_{5}
$$

(vi) $|D|=p q, H \subset D,|H|=p, F \& D,|F|=q$

To prone: D is cyclic
clearly, $H \notin F$ and $F \neq H \quad(\because|F|,|H|$ are prime $)$

$$
H \cap F=\{e\} \Rightarrow|H F|=\frac{|H||F|}{|H \cap F|}=\frac{p q}{1}=p q
$$

$\therefore H F=D$ and $H \cap F=\{e\}$.
// $D \cong F \times H \cong \mathbb{Z}_{q} \times \mathbb{Z}_{p} \quad(\because$ Find H are Cyclic).
Further, $\operatorname{gcd}(q, p)=1 \because q$ and p are prime.
$\therefore D$ is cyclís
ANSNER 3: Ci $S=\{0,1,2,3, \ldots, 17\} ; D=\left\{f:\left(\mathbb{Z}_{18},+\right) \rightarrow\left(\mathbb{Z}_{18},+\right)\right\}$

$$
\begin{aligned}
& \therefore K=\left(\begin{array}{lllllllllllllllll}
0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15 & 16 \\
17 \\
0 & 5 & 10 & 15 & 2 & 7 & 12 & 17 & 4 & 9 & 14 & 1 & 6 & 11 & 16 & 3 & 8 \\
13
\end{array}\right)
\end{aligned}
$$

clearly, k ir cove -to -one and onto. $k(a * b)=k\left(1^{i} * 1^{j}\right)$

$$
=k\left(1^{i+j}\right)=5^{i+j}=5^{i} * 5^{j}=K(a) * K(b)
$$

\therefore th is a Group Isomorphism.
$\therefore K=\left(\begin{array}{lll}157171311\end{array}\right)(210141684)\left(\begin{array}{lll}3 & 15\end{array}\right)\left(\begin{array}{ll}612\end{array}\right)$

$$
\Rightarrow|K|=\operatorname{Lcm}(6,6,2,2)=6 . \quad \therefore|k|=6
$$

(IT) There are exactly $\phi(18)=6$ generators of \mathbb{Z}_{18}.
\therefore There are 6 possible Remorphisms: $f(1)=x, x \in U(18)$.
$\therefore|D|=6$. From (i) above, $\exists k \in D$ et $|k|=6$.

$$
\therefore D=\langle k\rangle,
$$

Two solutions back to
back
1. By Yousuf
2. By Tana

Exam I: Abstract Algebra, MTH 320,Fall 2017

back

1. By Yousuf
2. By Tana

Ayman Badawi
Score $=\frac{63}{63}$

QUESTION 1. Let $D, *$) be a group.
(i) (5 points). Assume that $a * b=b * a$ for some $a, b \in D$. Prove that $a * b^{-1}=b^{-1} * a$.

From the question we have $a * b=b * a$
$\Rightarrow b^{-1} * a * b * b^{-1}=b^{-1} * 2 * a \times b^{-1}$
$\Rightarrow b^{-1} * a=a * b^{-1}$
(ii) (5 points). Let $C=\{x \in D \mid x * y=y * x \forall y \in D\}$. (ie., each elernent in C commutates with every element in D). Prove that C is a normal subgroup of D (Hint: you may need to use part (i))

 used to do the sinplifitentiment in 0 this wag

D / c is cyclic $\Rightarrow D / c=\langle a * c\rangle$ for som $a \in D=0$ 是
\Rightarrow every elimart ix $\in D$ can be written as $x=a^{i} * c$ for some $i \in Z$ and $c \in \mathbb{C}$. This is due to the fact that the union of the coset give you the group (if comentoble).
\Rightarrow let $x, y \in D \Rightarrow x * y=a^{i_{1}} * c_{1} * a^{i_{2}} * c_{2}$

$$
=a^{i_{1}} * a^{i_{2}} * c_{1} * c_{2}
$$

$$
\begin{aligned}
& =a^{i_{2}} * c_{2} * a^{i_{1}} * c_{1} \\
& =4 * x
\end{aligned}
$$

$$
=y * x
$$

Note that c_{1}, c_{2} comate with every eliment and $a^{i_{1}} * a^{i_{2}}=a_{i_{1}}^{i_{1}} i_{2}$.

$$
=a^{i_{i}} * a^{i_{1}} .
$$

QUESTION 2. Let $D=\left(Z_{0},+\right) \times\left(Z_{3},.\right)$
(i) (3 points). Fine $|(5,2)|$.

$$
\begin{aligned}
& \text { in } z_{6}:|5|=\mid 11=6 \\
& \text { in } z_{5}^{*}:|2|=4
\end{aligned} \quad \Rightarrow|(5,2)|=\operatorname{lcm}(6,4)=12
$$

(ii) (6 points). Construct two subgroups of D. say H_{1} and H_{2}, such that each has 4 elements and $H_{1}=F_{1} \times F_{2}$. $H_{2}=L_{1} \times L_{2}$ for some subgroups F_{1}, L_{1} of $\left(Z_{6},+\right)$ and some subgroups F_{2}, L_{2} of $\left(Z_{5}^{*},.\right)$.
let $F_{1}=\{0,3\}, F_{2}=\{\$, 4\}$,

$$
L_{1}=\{0\}, L_{2}=\{1,2,3,4\}
$$

$\Rightarrow F_{1} \times F_{2}$ is a subgroup of order 4 $L_{1} \times L_{2}$ is a subgroup of order 4

(iv) (4 points). Construct a subgroup of D, say H, such that H has 4 elements, but there is no subgroup N_{1} of $\left(Z_{6}+\right)$ and there is no subgroup N_{2} of $\left(Z_{5}^{*},.\right)$ such that $H=N_{1} \times N_{2}$.

$$
H=\&(3,2)\rangle=\{(3,2),(0,4),(3,3),(0,1)\} \text { is of order }
$$

4 and cant be constrationg in mintipisying 2 sinberpecs.
For if $H=N_{1} \times N_{2}$, then $\left|N_{2}\right|=\left|z_{5}^{+}\right|=a_{n}^{4} n$ $\left|N_{1}\right| \geq 2$. Hence $|H| \geq q$, Impossible
since $|H|=4$.

QUESTION 3. (i) (4 points). Is $\left(Z_{7}^{*},.\right)$ group-isomorphic to $(U(9)$, $)$? If yes, then prove it. If no, then tell me why not?
$\left(Z_{7}{ }^{*} \cdot\right)=\langle 3\rangle \cong\left(Z_{6},+\right) \quad$ and $\quad U(9) \cong\left(z_{6},+\right)$
\downarrow
Since $|3|=6$

$$
9=3^{2} \text { and, is odd l } \Rightarrow U(9) \text { is cyclic }
$$

Since booth are cyclic with 6 eliment we they are isomor phis

$$
\text { i.e }\left(z_{7},{ }^{*}\right) \cong\left(z_{6}, t\right) \cong(U(9) .)
$$

(ii) (4 points). Is $\left(Z_{j 1} \ldots\right)$ group-isomorphic to $(U(75),$.$) ? If yes, then prove it. If no, then tell me why not?$

No it is not *** while $75=3 \times 55^{2} U(75)$ is not cyclic
\Rightarrow then are not isomorphic
(iii) (6 points). Let $f=\left(\begin{array}{lllllllll}1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 3 & 7 & 4 & 9 & 8 & 2 & 6 & 5 & 1\end{array}\right) \in S_{9}$. Find $|f|$. Is $f \in A_{9}$? explain

$$
\begin{aligned}
& f=\left(\begin{array}{llll}
1 & 3 & 4 & 9
\end{array}\right)(\delta 5)(627) \Rightarrow|f|=\operatorname{lcm}(4,2,3)=12
\end{aligned}
$$

$\Rightarrow f$ can be written as $10(2$ cycles) $\Rightarrow f \in A g$.
(iv) (σ points). Let $(D, *)$ be a group. Assume that $a * b=b * a$ for some $a, b \in D,|a|=n$, and $|b|=m$. Let $u=l c m[n, m]$. Prove that D has a cyclic subgroup with u elements. (Hint: You may need the fact: if $d=g c l(n, m)$, then $\operatorname{gcd}\left(\frac{n}{d}, m\right)=1$ OR $\operatorname{gcd}\left(n, \frac{m}{d}\right)=1$).
et $d=\operatorname{gd}(m, m)$ and let $\operatorname{gad}\left(\frac{n}{d}, m\right)=1$ (the same way can be done with add $\left.(n, m)=1\right)$

$$
\Rightarrow\left|a^{d}\right|=\frac{n}{\operatorname{ged}(h, y)}=\frac{n}{d} \text { and since }|b|=m \text { and } a+b=b+a \text { and }
$$

we have $\left|a^{d} * b\right|=\frac{n}{d} \times m=\frac{n m}{d}=\operatorname{lcm}(m, n) \quad \operatorname{acd}\left(\frac{n}{d}, m\right)=1$
$\Rightarrow\left\langle a^{d} * b\right\rangle$ is a cystic subgroup of D with $u=\operatorname{ccm}(m, n)$ aliment in case $\operatorname{gcd}\left(\frac{m}{d}, n\right)=1$ we take $\left\langle a * b^{d}\right\rangle$.

QUESTION 4. (i) (6 points). Is there a group-homomorphism $f:\left(Z_{18},+\right) \rightarrow\left(Z_{9},+\right)$ such that f is nontrivial and f is not ONTO? If yes, then construct such f and find Range (f) and $\operatorname{Ker}(f)$. If such f does not exist. EXPLAIN.

$$
f\left(1^{i}\right)=1^{3 i} \Rightarrow f\left(1^{i_{1}} 1^{i_{2}}\right)=f\left(1^{i_{1} i_{2}}\right)=1^{3 i_{1}+3 i_{2}}=1^{3 i_{1}} *_{2}^{3 i_{2}}
$$

$\Rightarrow f$ is a homomorphism

$$
\text { Range }(f)=\langle 3\rangle=\{3,6,0\} \quad, \operatorname{ker}(f)=\{3,6,9,12,15,0\}
$$

Yes, there is.

(ii) (6 points). Let $(D, *)$ be a group with 155 elements. Assume that H is a normal subgroup of D with 5 elements. Prove that H is the only subgroup of D with 5 elements. If $a \in D \backslash H$ and $|a| \neq 31$. prove that D is cyclic.

* Deny that H is the only sub group of D with 5 aliment \Rightarrow $\exists \mathrm{H}_{2}$ such that $\left|\mathrm{H}_{2}\right|=\left|\mathrm{H}_{3}\right|=5$ andaince 5 is prime then both are
 yet 25×155 (contradiction) $\Rightarrow H$ is the only sub group of order 5 .
* It has the only elimints of order $5 \Rightarrow a \in D \backslash H \Rightarrow|a| \neq 5,|a| \neq 1$ and since $|a| \neq 31$ the only rememin dividieprot 155 is 155 itself $\Rightarrow|a|=\mid g s \Rightarrow D=\langle a\rangle$ is cyclic.
(iii) (Bonus 7 points). Let H be a subgroup of a group ($D, *$). Assume that for each $a \in D \backslash H$, we have $x_{1} * x_{2} * x_{3} * x_{4} \in$ $a * H$ for every $x_{1}, x_{2}, x_{3}, x_{4} \in a * H$ (note that x_{1}, \ldots, x_{4} need not be distinct). Prove that H is a normal subgroup of D.
 First: olasonve $a \in a \times H=A^{3}$ a $a^{4} \in a$
$\Rightarrow a^{3}=n \in H$. Hence $n^{-1}=a^{-3} \in H$.

$$
\begin{aligned}
& \Rightarrow a^{3}=n \in H \text {. Hence } n^{-1}=a^{-3} \in H . \\
& \operatorname{Nav} \frac{(a * h) *\left(a \times h \times a^{-3}\right) * a^{2}}{4 \text { elements ina*H }}=a * h_{2}\left(\text { some } h_{2} \in H\right)
\end{aligned}
$$

$\Rightarrow h \times(a \times h) \times a^{-1}=h_{2}$ (cancel a from both sides)

$$
\begin{aligned}
& \Rightarrow h \times(a \times h) \times a, \\
& \Rightarrow(a \times h) \times a^{-1}=h^{-1} \times h_{2}=h_{1} \in H \\
& \Rightarrow \quad a \times h=h_{1} \times a \text {. Done. }
\end{aligned}
$$

$$
\Rightarrow \quad a * h=h_{1} * a \text {. Done. }
$$

Ayman Badawi, Department of Mathematics \& Statistics, American University or Shariah, Po. Box 26666, Shariah, United Arab Emirates. Email: abadawi@aus.edu, wrs.ayman-badawi.com

To show $C \Delta D$ we show that $\forall a \in D$ 促 (ii) continues
$a * C=E_{*}$ here
\Rightarrow let $a \in D, c \in C$ show that $a * C * a^{-1} \in C$.

$$
a * c * a^{-1}=a * a^{-2} * c=\mathbb{c} \in C . \Rightarrow c \Delta D .
$$

Exam I: Abstract Algebra, MTH 320,Fall 2017
Ayman Badawi

$$
\text { Score }=\frac{60}{63}
$$

QUESTION 1. Let $D, *$) be a group.

$$
\begin{aligned}
& \text { (i) (5 points). Assume that } a * b=b * a \text { for some } a, b \in D . \text { Prove that } a * b^{-1}=b^{-1} * a \\
& a * b=b * a \Rightarrow a * b * b^{-1}=b * a * b^{-1} \\
& \therefore a * e=b * a * b^{-1} \Rightarrow a=b * a * b^{-1} \\
& \text { //i/ } \therefore b^{-1} * a=\left(b^{-1} * b\right) * a * b^{-1} \\
& \text { / } \quad b^{-1} * a=a * b^{-1}
\end{aligned}
$$

(ii) (5 points). Let $C=\{x \in D \mid x * y=y * x \forall y \in D\}$. (ie., each element in C commutates with every element in D). Prove that C is a normal subgroup of D (Hint: you may need to use part (i))
[. We show $c<D$. Let $a, b \in c \quad \therefore a * x=x * a, b * x=x * b \forall x \in L$
Do Prove: $b^{-1} * a \in c$. i.e $\left(b^{-1} * a\right) * x=x *\left(b^{-1} * a\right) \forall x \in L$
Proof:

$$
\begin{aligned}
\left(b^{-1} * a\right) * x & =b^{-1} * x * a \quad(\because a * x=x * a \\
& =x *\left(b^{-1} * a\right) \quad
\end{aligned}
$$

$\therefore C \Perp D$. Io prone: $x * C=C * x \forall x \in D$.
Proof: $x * C=\left\{x * c_{1} \mid c_{1} \in C\right\}$. But $x * c_{1}=c_{1} * x$

$$
\eta / h L=\{c, * x \mid c, \in C\}=C * x \not C \Delta D
$$

(iii) (5 points). Let C as in (ii). Assume that D / C is cyclic. Prove that D is an abelian group.
D / C is Cyclic. \therefore Since $D / C=\{a * C \mid a \in D\}$ is Cyclic:

element is C commute with every Element. To Show: $a * b=b * a$ $\forall a, b \in D$.
$a_{1} * c=a_{k}^{x} * c$ for some a_{k} (the generator).
$a_{2} * C=a_{k}^{y} * c \quad(\because D / C$ is cyclic).
$\therefore a_{1}=a_{k}^{x} * c_{1}$ for some $c, \in C$.
$a_{2}=a_{k}^{y} * c_{2}$ for sone $c_{2} \in C$.

$$
a_{1} * a_{2}=\left(a_{k}^{x} * c_{1}\right) *\left(a_{k}^{*} * c_{2}\right)=a_{k}^{x} * a_{k}^{y} * c_{1} * c_{2}
$$

(i) (3 points). Fine $|(5,2)|$.

$$
|(5,2)|=\operatorname{LCM}(|5|, \mid 20)
$$

Bit: $5 \in Z_{6} \Rightarrow|5|=6 / /\left(\because|5|=\left|5^{-1}\right|=|1|=6 \because 6=\langle 17\right.$),

$$
2 \in z_{5}^{*} \Rightarrow|2|=4 \|\left({ }^{\prime}=2,2^{2}=4,2^{3}=3,2^{4}=1\right)
$$

$$
1 / 3 \therefore \operatorname{LCM}(6,4)=12
$$

(ii) (6 points). Construct wo subgroups of D, say H_{1} and H_{2}, such that each has 4 elements and $H_{1}=F_{1} \times F_{2}$.
$H_{2}=L_{1} \times L_{2}$ for some subgroups F_{1}, L_{1} of $\left(Z_{6}, \frac{7}{7}\right)$ and some subgroups F_{2}, L_{2} of $\left(Z_{5}^{5},.\right)$.

$$
H_{1}=F_{1} \times F_{2} \quad, \quad H_{2}=L_{1} \times L_{2}
$$

Constructing A_{1};
Pick $\left.F_{1}=\{0,3\}, F_{2}=\{1,4\}\right]{ }^{\text {Note: }} F_{1}<z_{6}, F_{2}<z_{5}^{*}$
$6 F_{1} \times F_{2}<\left(Z_{6},+\right) \times\left(Z_{5}^{*}, \star\right) \Rightarrow H_{1}=F_{1} \times F_{2}<D\left(\begin{array}{l}\text { by Theorem } \\ A<x, B<Y\end{array}\right.$
Constructing A_{2} :
$\left|H_{1}\right|=2 * 2=4$
$\eta||D|=24$. In other words we show D is NOT Cyclic.
(\because Io cannot have element of ster 24) maximum possible Order of aw Element in D.
Let $\mathbb{Z}_{6}=\langle a\rangle,\left(\mathbb{Z}_{5}^{*}, x\right)=\langle b\rangle$ (whey are both cyclic) $\left.\left.\therefore|(a, b)|=\operatorname{Lcm}(|a|,|b|)=\frac{|a||b|}{\operatorname{gcd}(a \mid, b D)} \quad \therefore \right\rvert\, c a, b\right) \mid=12 a t \max \rightarrow \operatorname{ged}(|d|, b b) \operatorname{gct}(b)=2$
 Cyclic. and there is no subgroup N_{2} of $\left(Z_{5}^{*},.\right)$ such that $H=N_{1} \times N_{2}$.

	$(0,1)$
$(0,1)$	$(0,1)$
$(2,3)$	$(2,3)$
$(3,4)$	$(3,4)$
$(5,2)$	$(5,2)$

H must Contain Iolentily

$$
\therefore(0,1) \in H .
$$

$(2,8)(3,4)(5,1)$
Consider Subgroups trinal.):

$$
\begin{aligned}
& \left(\mathbb{Z}_{6},+\right):\{0,3\},\{0,2,4\},\{0,1,2,3,4,5\} ;\{0\} \\
& \left(\mathbb{Z}_{5}^{A}, *\right):\{1,4\},\{1,2,3,4\},\{1\}
\end{aligned}
$$

\therefore We must form a group which in not: $\{0,3\} \times\{1,4\}$ See page 10/13

QUESTION 3. (i) (4 points). Is $\left(Z_{i}\right.$, .) grotp-isomorphic to $(U(9)$,)? If yes, then prove it. If no, then tell me why not YES:
$\left|z_{7}^{*}\right|=\overline{6}$ and $z_{7}^{*}=U(7) . \quad \therefore \phi(7)=7-1=6$
$|U(9)|=\phi(9)=6 \quad \therefore$ Both are $C Y C L I C$ and
BOTH ORDERS $=6$
\therefore Both are Isomorphic to $\left(\mathbb{7}_{6},+\right) \Rightarrow$ They are Isomorphic to each other.
(ii) (t points). Is $\left(Z_{i 1}\right.$, .) group-isomorphic to $(U(75)$, ,)? If yes, then prove it. If no. then tell leach why not?

No. $\left(\mathbb{Z}_{41}^{*}, *\right)=(U(41), *)$ and 41 is prime
$\therefore\left(\mathbb{Z}_{41}^{*}, *\right)$ is Cyclic
$U(75)=U\left(3 * 5^{2}\right)$ is not of the form $p^{m}, 2 p^{m},=2,44$.
$\therefore U(75)$ is NOT Cyclic.
(iii) (6 points). Let $f=\left(\begin{array}{lllllllll}1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 3 & 7 & 4 & 9 & 8 & 2 & 6 & 5 & 1\end{array}\right) \in S_{9}$. Find $|f|$ Is $f \in A_{9}$? explain
$f=\left(\begin{array}{llll}1 & 3 & 4 & 9\end{array}\right)\left(\begin{array}{lll}2 & 7 & 6\end{array}\right)\left(\begin{array}{ll}5 & 8\end{array}\right)$. (Disjoint)

$$
\therefore|f|=\operatorname{LCM}(4,3,2)=12
$$

Rewrite f:

$$
\begin{aligned}
& t=(19) \cdot(1 / 4) \cdot(13) \cdot\left(\begin{array}{ll}
2 & 6
\end{array}\right) \cdot\left(\begin{array}{ll}
2 & 7
\end{array}\right) \cdot\left(\begin{array}{ll}
5 & 8
\end{array}\right) \\
& \\
&
\end{aligned}
$$

$=6$ 2-gycles. $\therefore f \in A_{q}$. It is Ever because it is compose

 Chen $\cot \left(\frac{1}{3}, m\right)=10 \mathrm{O} \operatorname{sed}\left(n, \frac{m}{1}\right)=1$).
$a, b \in D . \quad a * b=b * a . \quad|a|=n,|b|=m, u=\operatorname{lom}(n, m)$
we prone: $\exists x \in D$ st $|x|=u . \therefore\langle u\rangle$ is our Subgroup
Case 1: $\operatorname{gcd}(m, x)=1$.
Then $|a * b|=|a||b|=\alpha$ u for some α.
t/ then $|\langle a * b\rangle|=\alpha u \quad \Rightarrow \exists$ a Subgroup (Unique) of order u inside this. $\because u /(\alpha u)$
Case II: $\operatorname{gcd}(m, n)=d$.

$$
\rightleftharpoons-\frac{\text { Note: } m n=d u}{(\text { contd. on previous page) }}
$$

see page 13/13

QUESTION 4. (i) (6 points). Is there a group-homomorphism $f:\left(Z_{18},+\right) \rightarrow\left(Z_{9},+\right)$ such that f is nontrivial and f is not ONTO? If yes, then construct such f and find Range (f) and $\operatorname{Ker}(f)$. If such f does not exist, EXPLAIN.
\mid Range $(f)\left|\left|\left|\mathbb{Z}_{9}\right|\right.\right.$ and $|$ Rage $\left.(f)\right|\left|\left|\mathbb{Z}_{18}\right| \quad \therefore\right|$ Rang $(f) \mid$ divides 9 and 18 .

$$
\begin{aligned}
& \therefore|\operatorname{Range}(f)|=3 \\
& \left|z_{q} / \operatorname{ker}(f)\right| \cong \operatorname{RONOT} \text { ONTO}(t)
\end{aligned} \Rightarrow \frac{\left|\nabla_{q}\right|}{|\operatorname{ken}(f)|}=3 \Rightarrow|\operatorname{ker}(f)|=6
$$

Since $\mathbb{Z}_{9}, \mathbb{Z}_{18}$ are Cyclic, they have unique Cyclic
subgroups of order 3,6 : $<\frac{9}{13}>$ and $<1_{18}^{18} / 7$
Since $\mathbb{Z}_{9}, \mathbb{Z}_{18}$ are Cyclic, they have unique Cyclic
subgroups of order $3,6:<1^{\frac{9}{3}}>$ and $\left.<1^{18} / 6\right\rangle$
(ii) (6 points). Let ($D, *$) be a group with 155 elements. Assume that H is a normal subgroup of D with 5 elements. Prove that H is the only subgroup of D with 5 elements. If $a \in D \backslash H$ and $|a| \neq 31$, prove that D is cyclic.

$$
\begin{array}{ll}
|D|=155=5 * 31 \quad & H \triangle D,|H|=5 . \\
\hline N \neq 1
\end{array}
$$

Deny. $\because \exists N<D$ st $\mid N /=5 . \quad(N \neq H)$

$$
\begin{aligned}
& \therefore \exists N<D \text { st }|N|=5 .(N \neq H) \\
& \therefore N H<D \text { (By Homework) and }|N H|=\frac{|N||H|}{|N N H|}
\end{aligned}
$$

But $N \cap H=\{e\}$ by assumption $\Rightarrow|N H|=25$
But $25+155$. (By Lagrange, we cannot have a Subgroup of (order 25). \therefore N does not exist $\xrightarrow{\stackrel{\text { see page 12/13 }}{\longrightarrow} \text { (PTO) }}$
(iii) (Bonus 7 points). Let H be a subgroup of a group $(D, *)$. Assume that for each $\in D \backslash H$, we have $x_{1} * x_{2} * x_{3} * x_{4} \in$ $a * H$ for every $x_{1}, x_{2}, x_{3}, x_{4} \in a * H$ (note that x_{1}, \ldots, x_{4} need not be distinct). Prove that H is a normal subgroup of D.
see page 4/13

Faculty information
Ayman Badawi, Department of Mathematics \& Statistics, American University of Shariah. P.O. Box 26666, Shariah, United Arab Emirates. Email: abadawi@aus.edu, чнн.ayman-badawi.com

$$
\begin{aligned}
&=a_{k}^{x+y} * c_{1} * c_{2} \\
&=a_{k}^{y+x} * c_{2} * c_{1} \\
&=a_{k}^{y} * a_{k}^{x} * c_{2} * c_{1} \\
&=a_{k}^{y} * c_{2} * a^{x} * c_{1} \\
&=a_{2} * a_{1} \\
& \therefore a_{1} * a_{2}=a_{2} * a_{1} \quad \forall a_{1}, a_{2} \in D
\end{aligned}
$$

D is Akeliar.
If $L=N_{1} \times N_{2} \rightarrow N_{2}=z_{5}^{+}$, and $\left|N_{1}\right| \geq 2$
$\Rightarrow 1 L \geqq 8$, Impossidie since $1 L=4$
Q2 (iv) \rightarrow Let $x=(3,2) \Rightarrow|x|=4$

Should have structure: $\{e, a, b, a b\}$. But $a^{-1}=a b \Rightarrow a^{2}=\left(a^{2}\right)^{-1}=b$. and $\left(b^{2}\right)^{-1}=a$.

$$
\therefore a^{2}=e \text { cor } a^{2}=b \text { (or) } a^{2}=a b .
$$

\therefore If such a homomorphism Exists:

$$
\begin{aligned}
& \operatorname{Rarge}(f)=\{0,3,6\} \\
& \operatorname{Ker}(f)=\{0,3,6,9,12,15\}
\end{aligned}
$$

we want to maintain that $|f(a\rangle||k a\rangle$ and $f\left(a^{-1}\right)=[f(a)]^{-1}$
\therefore Possible orders of remaining elements in $\#_{18}$:

$$
2,3,6,9,18
$$

clearly: $f(1)=3$. (generator to generator).
In all cases $|f(a)|=3$.
\therefore Only problem can arise when $|a|=2$ in \mathbb{Z}_{18}. This never happens : only $/ 9 /$ in \mathbb{Z}_{18} is 2 and it sis mapped to e_{2}.

$$
\therefore f(1)=3
$$

and $f\left(1^{i}\right)=3^{i}\left(\bmod \left(\frac{6}{6}\right)\right.$.
checking for homomorphiem:

$$
\begin{aligned}
f(a * b) & =f\left(1^{i} * 1^{j}\right)=f\left(1^{i+j}\right) \\
& =3^{i+j} \bmod 6 \\
& =3^{i} * 3^{j} \quad(*=+6) \\
& =f\left(1^{i}\right) * f\left(1^{j}\right) \quad
\end{aligned}
$$

$\therefore H$ is Unique.
Part I:
No prove: $|a| \neq 3 \mid \Longrightarrow D$ is Cyclic
$|D|=155$. Let $a \in D$.

So we have 4 elements
of order 5
$\therefore 7150$ elements in D sit their order is 155 .

Pika any one, call it ' a '.

$$
\begin{gathered}
|a|=155=|0| \\
d \\
D \text { is Cyclic }
\end{gathered}
$$

strategy:
Find an Element of order $\frac{n}{d}$ and an element of order $m(=b)$ Then $\operatorname{gcd}\left(\frac{n}{d}, m\right)=1 \Rightarrow$ we car use same process as case I.
$a^{m /}$ will do."

$$
\because|a|=n \Rightarrow\left|a^{m}\right|=\frac{n}{\operatorname{gcd}(m, n)}=\frac{n}{d}
$$

\therefore Our generator is: $a^{m v} * b$

$$
\begin{aligned}
& \therefore a * b=b * a \Rightarrow a^{m} * b=b * a^{m} \\
& \therefore \operatorname{gcd}\left(\frac{\pi}{d}, m\right)=1 \\
& \therefore\left|a^{m} * b\right|=\left|a^{m}\right||b|=\left(\frac{n}{d}\right)(m)=u \\
& \therefore H=\left\langle a^{m} * b\right\rangle \\
& \left.\quad \therefore \cdot<a^{|b|} * b\right\rangle \text { and }|H|=4
\end{aligned}
$$

3.3 2017 Exam II with Solution

Nama Fa ha Ameen , in 66555

Exam II, Abstract Algebra, MTH 320, Fall 2017
Ayman Badawi

$$
\text { Score }=\frac{}{63}
$$

QUESTION 1. Let $(D, *)$ be a finite group with 245 elements. Assume that D has a normal subgroup with 5 elements and it has also a subgroup with 49 elements. Prove that D is an abelian group. Up to isomorphism, find all possible
structures of D. structures of D.
$|D|=245 . \exists H_{1} \angle D$ st $\left|H_{1}\right|=5$ and $\exists H_{2} \triangle D$ s.t. $\left|H_{2}\right|=49$.
To Prove: D is Abelian.

$$
\begin{aligned}
& H_{1} * H_{2}<D . \quad\left|H_{1} * H_{2}\right|=\frac{\left|H_{1}\right|\left|H_{2}\right|}{\left|H_{1} \cap H_{2}\right|} . \\
& \therefore\left|H_{1} * H_{2}\right|=\frac{\left|H_{1}\right|\left|H_{2}\right|}{1}=245 . \quad \therefore H_{1} * H_{2}=D .
\end{aligned}
$$

But $\left|H_{1} \cap H_{2}\right|=1$.

$$
\because H_{1} \cap H_{2}=\{e\} \text { (or) } H_{1}
$$

$\left(\because\left|H_{1}\right|\right.$ is prime $)$. But $\left|H_{1}\right| \nmid 49$ so $H_{1} \cap H_{2}=\{c\}$
Farther: $A_{1} \cap H_{2}=\{e\}$ (Explained \rightarrow).

$$
\therefore D \cong H_{1} \times H_{2} . \quad\left|H_{1}\right|=5 \Rightarrow \text { Abeliaw } \cdot\left|H_{2}\right|=49=p^{2}(p=7)
$$

$\therefore H_{1} \times H_{2}$ is Abeliaw $\Rightarrow D$ is Abelian. \therefore Abeliaw
$H_{1} \cong \mathbb{Z}_{5}$ and $H_{2} \cong \mathbb{Z}_{49}$ COR) $\mathbb{Z}_{7} \times \mathbb{Z}_{7}\left[\begin{array}{c}\text { Classification } \\ \text { of Abelian groups }\end{array}\right]$

$$
\left.\therefore \quad D \cong \mathbb{Z}_{5} \times \mathbb{Z}_{49} \quad \text { COR }\right) \quad D \cong \mathbb{Z}_{5} \times \mathbb{Z}_{7} \times \mathbb{Z}_{7}
$$

QUESTION 2. Let $(D, *)$ be a finite group with 125 elements. Prove that D is not simple.
$|D|=125$ is a finite group

$$
\begin{gathered}
\therefore|D|=p^{3} \quad \therefore Y C(D) \mid \geq p \\
\therefore \exists H=C(D) \Delta D
\end{gathered}
$$

But the Centre is always a Normal Group.

$$
\therefore|C(D)| \geq p \quad \text { and } \frac{C(D) \Delta D .}{}
$$

If $|C(D)|=5$ cor) $25, \exists 4$ st $|H|=5$ cor 25 $s . t H \subset D$.
If $|C(D)|=125$, the group is Abelian $(P T 0)$

But
coaverse of Lagrange Theorem is True for
Abelian groups.
$\therefore \exists H_{1}, H_{2}$ st $\left|H_{1}\right|=5,\left|H_{2}\right|=25$ and $H_{1} \triangle D, H_{2} \subset D$
(All Subgroups of Abeliaw Groups are Normal)
\therefore In All Cases,
we have normal Subgroups in D which are non-trivial, and not equal to D
$\therefore D$ is never Simple. of H. If No, then explain clearly.
$1 A: 1=360$ A hat elements of
order $2,3,5$ bEys Cauchy.
A_{6} is Simple. If A_{6} had Sig of order 72 , then $\left[A_{6}: H\right]=5$.
$\therefore \exists f: A_{6} \rightarrow S_{5}$ which is a now-trivial homomorphism
$\operatorname{ker}(f) \neq A_{6}, \operatorname{Ker}(f) \neq\{e\} \quad \because A_{6} / \operatorname{Ker}(f) \cong \operatorname{Rang}(f)$ and if $\operatorname{Ker}(f)$
$=\{e\}$ shew $A_{6} /\{e\} \cong L$, where $L<S_{5}$
But $\frac{\left|A_{6}\right|}{|\{e\}|}=360$ and $\left|S_{5}\right|=120$ (Impossible for Subgroup to have more Elements than group). have more elements than group).
$\therefore \operatorname{Ker}(f) \neq\{e\} \neq A_{6}$ and $\operatorname{Ker}(f) \triangleleft A_{6}$. But A_{6} is Simple. Contradiction QUESTION 4. (i) Is $Z_{2} \times Z_{4} \times Z_{12}$ isomorphic to $z_{8} \times Z_{12}$? EXPLAIN

NO. Deny. Then $\mathbb{Z}_{2} \times \mathbb{Z}_{4} \times \mathbb{Z}_{12} \xlongequal{\cong} \mathbb{Z}_{8} \times \mathbb{Z}_{12}$

$$
\Rightarrow \mathbb{Z}_{2} \times \mathbb{Z}_{4} \cong \mathbb{Z}_{8}
$$

But, $\exists a \in \mathbb{Z}_{8}$ st $|a|=8$ but not in $\mathbb{Z}_{2} \times \mathbb{Z}_{4}$. Contradiction
(ii) Let $n=2^{7} \cdot 5^{2} \cdot 7^{3}$. Write $U(n)$ in terms of products of its invariant factors.

$$
\begin{aligned}
& n=2^{7} \times 5^{2} \times 7^{3} \\
& \therefore v(n) \cong \mathbb{Z}_{2} \times \mathbb{Z}_{2} 5 \times \mathbb{Z}_{20} \times \mathbb{Z}_{294} \\
& \quad \mathbb{Z}_{2} \times \mathbb{Z}_{32} \times \mathbb{Z}_{4} \times \mathbb{Z}_{5} \times \mathbb{Z}_{2} \times \mathbb{Z}_{3} \times \mathbb{Z}_{49} \\
& \mathbb{Z}_{2} \times \mathbb{Z}_{2} \times \mathbb{Z}_{4} \times \mathbb{Z}_{23520}
\end{aligned}
$$

(iii) Let F be an abelian group with $3^{4} \cdot 11^{2}$ elements. Up to isomorphism. find all possible structures of F. Partition :

$$
\therefore F \cong \mathbb{Z}_{3^{4}} \times \mathbb{Z}_{11^{2}} \quad(\nabla R) \quad \mathbb{Z}_{3^{4}} \times \mathbb{Z}_{11} \times \mathbb{Z}_{11}
$$

(OR) $\quad \mathbb{Z}_{3^{3}} \times \mathbb{Z}_{3^{\prime}} \times \mathbb{Z}_{1^{\prime}}$ (OR) $\mathbb{Z}_{3^{3}} \times \mathbb{Z}_{3^{\prime}} \times \mathbb{Z}_{11} \times \mathbb{Z}_{11}$

4	2
$3+1$	2
$2+2$	$1+1$
$1+1+2$	
$1+1+1+1$	

(OR) $\quad \mathbb{Z}_{3^{2}} \times \mathbb{Z}_{3^{2}} \times \mathbb{Z}_{11}{ }^{2}$ (OR) $\mathbb{Z}_{3^{2}} \times \mathbb{Z}_{3^{2}} \times \mathbb{Z}_{11} \times \mathbb{Z}_{11}$
COR) $\quad \mathbb{Z}_{3^{2}} \times \mathbb{Z}_{3} \times \mathbb{Z}_{3^{\prime}} \times \mathbb{Z}_{11}{ }^{2}$ (OR) $\mathbb{Z}_{3} 2 \times \mathbb{Z}_{3} \times \mathbb{Z}_{3^{3}} \times \mathbb{Z}_{11} \times \mathbb{Z}_{11}$
CoR) $\mathbb{Z}_{3} \times \mathbb{Z}_{3} \times \mathbb{Z}_{3} \times \mathbb{Z}_{3} \times \mathbb{Z}_{11}{ }^{2}$ COR) $\mathbb{Z}_{3} \times \mathbb{Z}_{3} \times \mathbb{Z}_{3}^{3} \times \mathbb{Z}_{3} \times \mathbb{Z}_{11} \times \mathbb{Z}_{\| 1}$
Let F be an abelian group with $5^{3} \cdot 7$ elements. Assume F has a unique subgroup with 25 elements. Up to
without Constraint: $\left.\mathbb{Z}_{5} 3 \times \mathbb{Z}_{7}(O R) \mathbb{Z}_{5^{2}} \times \mathbb{Z}_{5} \times \mathbb{Z}_{7} \operatorname{CoR}\right) \mathbb{Z}_{5} \times \mathbb{Z}_{5} \times \mathbb{Z}_{5} \times \frac{\mathbb{Z}}{7}$
$\mathbb{Z}_{5^{3}} \times \mathbb{Z}_{7}$ has Unique Subgroup with 25 elements.
but others have more thaw 1 Subgroup with 25 Elements

$$
\therefore \quad F \cong=\frac{\square}{5}
$$

$$
25 \text { y tum }
$$

QUESTION 5. (Bonus) Assume that D is a group with $3^{2017} \cdot 5^{2}$ elements. Assume that D has a unique subgroup, say H with 3 elements and also assume that D / H is a cyclic group. Prove that D is a cyclic group. Assume -that H is a normal subgroup of D such that H has.

Faculty information

$$
3 / n
$$

Ayman Badawi, Department of Mathematics \& Statistics, American University of Shariah, P.O. Box 26666, Shariah, United Arab Emirates. E-mail: abadawi@aus.edu, www.ayman-badawi.com

Ans)

$$
D=3^{2017} \times 5^{2} \text {. Let } p=3, i=5^{2} \text {. }
$$

i.e. $\quad D=p^{n} i$ and $\operatorname{gcd}(p, i)=\operatorname{gcd}\left(3,5^{2}\right)=1$.
D has Unique Subgroup, H st $|H|=3$.
D / h is Cyclic.

$$
\therefore D / H=\langle a * H\rangle \text { for come } a \in D
$$

Consider: $f: D \rightarrow D$ st $f(d)=d^{p}$.
this is clearly teomonorplusion.

$$
\begin{aligned}
& \text { Consider } \\
& \operatorname{Knis} \text { is clearly y teomomorplutin } \\
& \operatorname{Ker}(f)=H \quad\left(\because d^{p}=e \Rightarrow|d|=p \quad \because p \text { is prime }\right) \text {. } \\
& D / \operatorname{Ker} \cong \operatorname{Range} \Rightarrow|D / H|=\frac{|D|}{|H|}=\frac{p^{n} i}{p}=p^{(n-1)} i . \\
& |\operatorname{Range}(f)||D| \Rightarrow p^{n-1)} i \mid p^{n} i \quad(P T O)
\end{aligned}
$$

$$
\left.\therefore|D|=p^{(n-1)} i \quad \operatorname{CoR}\right) \quad|D|=p^{n} i .
$$

we show that $|\Delta|=p^{n}$ i.

In both cases $\Rightarrow \exists$ Unique Subgroup K in D of order $p . \quad \therefore K=H$.
But this K is made of powers of a

$$
\therefore \quad H=\left\{a^{i}, a^{i_{2}}, \ldots, a^{i}\right\}
$$

for any $d \in D$

$$
\begin{aligned}
d * H & =a^{m} * 4 \\
& \Downarrow \\
d & =a^{m} * h \\
& =a^{m} * a^{i_{k}} \quad \text { for some } i_{k} \\
d & =a^{m+i_{k}} \quad \Rightarrow \quad d=a^{x} \quad\left(x=a+i_{k}^{\prime}\right)
\end{aligned}
$$

\therefore D is Cyclic.

QUESTION 1. (i) Let $(S . *)$ be a group. Fix $a, b \in S$. Show that if $a * b=a * c$ for some $c \in S$, then $b=c$. Also show that if $b * a=c * a$, then $b=c$.
(ii) Let $(S, *)$ be a group. Fix $a, b \in S$. Show that the equation $a * x=b$ has unique solution and find x. Note the $x * a=b$ has also unique solution, but only show it for $a * x=b$.
(iii) Let $(S, *)$ be a group and assume $|a|=12$ for some $a \in S$. For what values of $m(1 \leq m \leq 12)$ do we have $\left|a^{m}\right|=12$? For what values of $m(1 \leq m \leq 12)$ do we have $\left|n^{m y}\right|=4$?
(iv) Let $(S, *)$ be a group and assume $|a|=6$ for some $a \in S$. Let $F=\left\{e, a, u^{2}, \ldots, a^{5}\right\}$. Construct the Coley's table of ($F, *$). By staring at the table you should observe that F is a group and hence a subgroup of S.
(v) Convince me that if n is not prime, then $\left(Z_{n}^{*}, X_{n}\right)$ is never a group.
(vi) Convince me that if n is prime, then $\left(Z_{n}^{\cdot}, X_{n}\right)$ is a group. [hint: recall Fermat little Theorem. if p is prime and $p \nmid m$ (meaning p is not a factor of m), then $m^{(p-1)}($ mod $p)=1$.]
(vii) Let $F=\{3,6,9,12\}$, and $*=$ multiplication module 15 . Convince me that $(F, *)$ is a group by constructing the Coley's table. What is e in F ? Find the inverse of each element of F. INTERESTING!!!!
(viii) Consider (D_{5}, φ). We know that D_{5} has 10 elements, Let s_{1} be one of the reflections (we know that D_{5} has 5 reflections). Let $a=R_{72}$. Convince me that $\left\{a \quad o s_{1}, a^{2} o s_{1} \cdot a^{3} \circ s_{1}, n^{4} o s_{1}, a^{5} \circ s_{1}\right\}=$ the set of all reflections in D_{5} [Hint: may be you need to use (i)]

Submit your solution on Tuesday September 20, 2016 at 2pm. Faculty information

Ayman Badawi, Department of Mathematics \& Statistics. American University of Shariah. PO. Box 26666, Shariah, Linted Arab Emirates.
question 1 i) Let (S, x) be a group. Fix $a, b \in S$. Show that if $a \times b=a$ for some $c \in S$, then $b=c$. Also show that if $b * a=c \times a$ then $b=c$
Proof: If $a * b=a * c$. Then,
$b=e a b=\left(a^{-1} * a\right) b$
$=a^{-1}(a \times b)=a^{-1}(a \times c)$

$$
=a^{\prime}\left(\operatorname{la*}\left(a^{-1} * a\right) c=e \times c=c\right.
$$

Hence $b=c$

Proof: If $b * a=c * a$. Then
G/Gd

$$
\begin{aligned}
b & =b * e=b\left(a * a^{-1}\right) \\
& =(b * a) a^{-1}=(c * a) a^{-1} \\
& =c\left(a * a^{-1}\right)=c * e=c
\end{aligned}
$$

Hence $b=c$
ii) Let (S, x) be a group. Fix $a, b \in S$. Show that the equation $a * x$ has a unique solution. Find x.
Proof:

$$
\begin{aligned}
& a * x=b \\
& x=e * x \\
& =\left(a^{-1} * a\right) x \\
& =a^{-1}(a x)=a^{-1} * b
\end{aligned}
$$

Hence $x=a^{-1} * b$
Proof of uniqueness:
Suppose m is also a solution to $a * x=b$. Then,

$$
\begin{gathered}
a * m=b=a * x \\
m=x
\end{gathered}
$$

Hence the equation $a * x=b$ has a unique solution
iii) Let. $(S, *)$ be a group and assume $|a|=12$ for some $a \in S$.

$$
\begin{array}{ll}
\left|a^{1}\right|=\frac{12}{\operatorname{gcd}(1,12)}=12 & \left|a^{1}\right|=\frac{12}{\operatorname{gcd}(1,12)}=12 \\
\left|a^{2}\right|=\frac{12}{\operatorname{gcd}(2,12)}=\frac{12}{2}=6 & \left|a^{8}\right|=\frac{12}{\operatorname{gcd}(8,12)}=\frac{12}{4}=3 \\
\left|a^{3}\right|=\frac{12}{\operatorname{gcd}(3,12)}=\frac{12}{3}=4 & \left|a^{9}\right|=\frac{12}{\operatorname{gcd}(9,12)}=\frac{12}{3}=4 \\
\left|a^{4}\right|=\frac{12}{\operatorname{gcd}(4,12)}=\frac{12}{4}=3 & \left|a^{10}\right|=\frac{12}{\operatorname{gcd}(1,12)}=\frac{12}{2}=6 \\
\left|a^{5}\right|=\frac{12}{\operatorname{gcd}(5,12)}=12 & \left|a^{4}\right|=\frac{12}{\operatorname{gcd}(11,12)}=12 \\
\left|a^{4}\right|=\frac{12}{\operatorname{gcd}(6,12)}=\frac{12}{6}=2 & \left|a^{12}\right|=\frac{12}{\operatorname{gcd}(12,12)}=1
\end{array}
$$

inLet $(S, *)$ be a group and assume $|a|=6$ for some a es. Let $F:\left\{e, a, a^{2}, \ldots a^{3}\right\}$. Construct the Coley's table of $(F, *)$.
Given $|a|=6$

$$
\begin{array}{ll}
|a|: n \Rightarrow a^{n}=e & F=\left\{e, a, a^{1}, a^{2}, \ldots a^{5}\right\} \\
|a|=6 \Rightarrow a^{6}=e
\end{array}
$$

Caley's Table of $(F, *)$

(v) Convince me that if n is not prime, then $\left(Z_{n}^{*}, X_{n}\right)$ is never a group.

$$
\begin{aligned}
& Z_{n}=\{0,1,2,3, \ldots n-1\} \\
& Z_{n}^{*}=\{1,2,3, \ldots n-1\}
\end{aligned}
$$

Suppose n is not prime, then
$n=p q$, where $1<p<n$ and
Hence p in $q=0 \quad 1<q<n$
Since. $p q .=0 .(\bmod n) \rightarrow \sum_{n}^{*}$ and 0 is not in $2 n^{*}$
Hence $\left(Z_{n}^{*}, X_{n}\right)$ is never a group.

vi Convince me that if n is prime, then $\left(Z_{n}^{n}, X_{n}\right)$ is a gr. $Z_{n}{ }_{n}=\{1,2,3,4, \ldots p-1\}$
$e=1$ $a^{p-1}=1 \quad(\bmod p)$

1) Closure: Let $a, b \in z_{n}^{*}$. Show $a_{n} b \in Z_{n}^{\infty}$. Suppose $a{ }_{n} b=0$. Then $n|a b \Rightarrow n| a \operatorname{or} b \mid b(\sin t e n$ is s - grime) but tia and nib, because $1 \leq a, b \leq n-1 \sim$
Thus $a_{n} b \neq 0$. Hence $a_{n} b \in Z_{n}^{*}$.
2) Invest; Let $a \in Z_{n}^{*}$. Sincent we know $a^{n-1}(\bmod n)=1$. Thus a. $a^{n-2}(\bmod (n))=l$ Hence

$$
a^{-1}=a^{n-2}(\bmod (n)) \in 2_{n}^{\infty}
$$

vii Let $F=\{3,6,9,12\}$, and $*=$ multiplication module is. Convi me that ($F, *$) is a group by constructing the Caley's Te What is ℓ in F ? Find the inverse of each element of F.

Given that $F=\{3,6, q, 12\}$ and $*=$ operation $(a * b) \bmod 15$. remainder of $(a \times b) / 15$

$*$	3	6	9	12
3	9	3	12	6
6	3	6	9	12
9	12	9	6	3
12	6	12	3	9

- All elements in the table are the elements of F. * \rightarrow binary operator on F.
for any a, b, c in F it is clear $a *\left(b^{*} c\right)=(a * b) * c$ 4 identity $=e=6$
inverse of 3 is 12
inverse of 6 is 9
inverse of 9 is 6
inverse of 12 is 3
viii Consider ($D_{s}, 0$). We know D_{s} has: 10 elements. Ley S_{f} be one of the reflections. Let $a=R_{32}$. Convince me that $\left\{a_{0} \cdot s_{1}, a^{2} \cdot s_{1}, a^{3} \cdot s_{1}, a_{4}^{4} \cdot s_{1}, a_{0.5}^{5}\right\}_{i}=$ the set of all reflections in D_{3}.

If r is a rotation R_{0} and s is any reflection then D_{s} can b_{1} written as $\left\{1, r, r^{2}, r^{3}, r_{1}^{4}, a: s_{1}, a_{1+}^{2} s_{1} ; \dot{d}^{3} \cdot s_{i}, a^{4} \cdot s_{1} ; a_{0}^{s}, s_{i}\right\}$

$$
\begin{aligned}
& \begin{array}{l}
a_{2}^{2} R_{144}=\left(\begin{array}{lllll}
1 & 2 & 3 & 4 & 5 \\
3 & 4 & 5 & 1 & 2
\end{array}\right)=\left(\begin{array}{llll}
1 & 3 & 5 & 2
\end{array}\right) \\
a^{3}=R_{216}=\left(\begin{array}{llll}
1 & 2 & 3 & 4 \\
4 & 5 & 1 & 2
\end{array}\right)=\left(\begin{array}{llll}
1 & 4 & 2 & 5
\end{array}\right)
\end{array} \\
& a^{4}=R_{248}=\left(\begin{array}{lllll}
1 & 2 & 3 & 4 & 5 \\
5 & 1 & 2 & 3 & 9
\end{array}\right)=\left(\begin{array}{llll}
1 & 5 & 4 & 3
\end{array}\right) \\
& a^{5}=R_{360}=\left(\begin{array}{llll}
1 & 2 & 3 & 4 \\
\left(R_{0}\right) \\
1 & 2 & 3 & 4
\end{array}\right)=(1)
\end{aligned}
$$

Let: fo be the reflection between lo \qquad

$$
f_{0}=\left\{\begin{array}{llll}
1 & 2 & 3 & 4 \\
1 & 5 & 4 & 3
\end{array}\right\}=(25),(34)
$$

f_{1} be the reflection in line b_{1}

$$
f_{1}=\left\{\begin{array}{lllll}
1 & 2 & 3 & 4 & 5 \\
3 & 2 & 1 & 5 & 4
\end{array}\right\}=(5: 3)(455)
$$

f_{2} be the reflection in line L_{2}

$$
f_{2 \cdot} \cdot\left\{\begin{array}{ccccc}
1 & 2 & 3 & 4 & 5 \\
5 & 4 & 3 \ldots & 2 & 1
\end{array}\right\}(15)(24)
$$

f_{2} be the reflection in lime L_{3}

$$
f_{3}=\left\{\begin{array}{lllll}
1 & 2 & 3 & 4 & 5 \\
2 & 1 & 5 & 4 & 3
\end{array}\right\}\left(\begin{array}{ll}
1 & 2
\end{array}(35)\right.
$$

f_{4} be the reflection in line L_{4} :

$$
f_{4}=\left\{\begin{array}{lllll}
1 & 2 & 3 & 4 & 5 \\
4 & 3 & 2 & 1 & 5
\end{array}\right\}(14)(23)
$$

Let s be a reflection given by $f 1$.

$$
\begin{aligned}
& a_{s}=\left(\begin{array}{llll}
1 & 2 & 3 & 4
\end{array}\right)(13)(45)=(14)(23)=f_{4}, \\
& a_{s}^{2}=(13524)(13)(45)=(15)(24)=f_{2} \\
& a^{3} s=(14253)(13)(45)=(25)(35): f_{0} \\
& a^{4} S=(15432)(13)(45)=(12)(35)=f_{3} \\
& a^{5} s=(1)(13)(45)=(13)(45)=f_{1}
\end{aligned}
$$

$\left.S \pi / 2 \Rightarrow a \cdot s, a^{2} \cdot s, a^{3} \circ s, a^{a} s, a^{s} s\right\}$ is: the set of Reflector of D_{s}
yes

MTH 320 Alstract Algebra Fall 2016, 1-1

HW TWO, MTH 320, Fall 2016

Ayman Badawi

QUESTION 1. (i) Given $(S, *)=<a>$ for some $a \in S$ and S has exactly 24 elements. Let $F=\{b \in S \mid S=\}$. Write the elements of F in terms of a. How many elements does F have?

Let $S=\left\{(a, b) \mid a \in Z_{3}^{*}, b \in Z_{3}\right\}$. Define * on S such that $\operatorname{if}\left(x_{1}, x_{2}\right),\left(y_{1}, y_{2}\right) \in S$, then $\left(x_{1}, x_{2}\right) *\left(y_{1}, y_{2}\right)=$ $\left(x_{1} y_{1}(\bmod 3), x_{1} y_{2}+x_{2} y_{1}(\bmod 3)\right)$. Then $(S, *)$ satisfies the associative property (do not prove this). Construct the Caley's table of $(S, *)$. By staring at the table: Is S a group? if yes, what is e ? what is the inverse of each element? Is S cyclic? If yes, find $a \in S$ such that $S=\langle a\rangle$.
Let D be a group with 47 elements. Prove that D is abelian? Can you say more?
(i) Let D be a group, H_{1}, H_{2} be two subgroups of D such that $H_{1} \nsubseteq H_{2}$ and $H_{2} \nsubseteq H_{1}$. Prove that $H_{1} \cup H_{2}$ is never a subgroup of D.
(v) Let D be a group, and H_{1}, H_{2} be two subgroups of D. Prove that $H_{1} \cap H_{2}$ is a subgroup of D.
(vi) Let $(S, *)$ be a an abelian group with identity e. Fix an integer $n \geq 2$, and let $F=\left\{a \in S \mid a^{n}=e\right\}$. Prove that $(F, *)$ is a subgroup of S. Assume $n=11$. Prove that either $F=\{e\}$ or F has at least 11 elements.
Construct the Caley's table for $(U(9), .9)$. Is $U(9)$ is cyclic? If yes, then find $a \in U(9)$ such that $(U(9), .9)=<a>$.

Submit your solution on Tuesday October 4, 2016 at 2pm. Faculty information

Ayman Badawi, Department of Mathematics \& Statistics, American University of Sharjah, P.O. Box 26666, Sharjah, United Arab Emirates. E-mail: abadawi@aus.edu, wur.ayman-badawi.com

Question. 1
(i)

$$
\begin{gathered}
\text { GIVEN: }(S, *)=\langle a\rangle \text { for some } a \in S \\
|S|=24 \text { exactly } \\
F=\{b \in S \mid S=\langle b\rangle\}
\end{gathered}
$$

\rightarrow Elements of F in terms of a

$$
S=\left\{a, a^{2}, a^{3}, \ldots, a^{24}=e\right\}
$$

Required to find: All elements in S that have an order of 24
Find all m such that $\left|a^{m}\right|=\frac{24}{\operatorname{gcd}\left(m_{12} 4\right)}=24$

$$
\operatorname{gcd}(m, 24)=1
$$

Hence, $m=\{1,5,7,11,13,17,19,23\}$

$$
F=\left\{a, a^{5}, a^{7}, a^{11}, a^{13}, a^{17}, a^{19}, a^{23}\right\}
$$

\rightarrow How many elements does F have?

$$
|F|=8
$$

ViL
(ii) $\mathcal{G I V E N : ~} S=\left\{(a, b) \mid a \in \mathbb{Z}_{3}^{*}, b \in \mathbb{Z}_{3}\right\}=\{(1,0),(1,1),(1,2),(2,0),(2,1)$,

$$
\left(x_{1}, x_{2}\right) *\left(y_{11} y_{2}\right)=\left(x_{1} y_{1}(\bmod 3), x_{1} y_{2}+x_{2} y_{1}(\bmod 3)\right)
$$

\rightarrow Construct the Coley's table

$*$	$(1,0)$	$(1,1)$	$(1,2)$	$(2,0)$	$(2,1)$	$(2,2)$
$(1,0)$	$(1,0))$	$(1,1)$	$(1,2)$	$(2,0)$	$(2,1)$	$(2,2)$
$(1,1)$	$(1,1)$	$(1,2)$	$(1,0))$	$(2,2)$	$(2,0)$	$(2,1)$
$(1,2)$	$(1,2)$	$(1,0))$	$(1,1)$	$(2,1)$	$(2,2)$	$(2,0)$
$(2,0)$	$(2,0)$	$(2,2)$	$(2,1)$	$(1,0))$	$(1,2)$	$(1,1)$
$(2,1)$	$(2,1)$	$(2,0)$	$(2,2)$	$(1,2)$	$(1,1)$	$(1,0)$
$(2,2)$	$(2,2)$	$(2,1)$	$(2,0)$	$(1,1)$	$(1,1,0)$	$(1,2)$

\rightarrow Is s a group?
ClOSURE: By staring CH the Coley's table, the closure cation is satisfied ASSOCIATVE: Given in the question, and hence, schisfled
IDENTITY: clear then $e=(1,0)$ since

$$
a *(1,0)=(1,0) * a=a \quad \forall a \in S
$$

INVERSE:

$$
\begin{array}{|l|}
\hline(1,0) \text { with Hself } \\
(1,1) \text { and }(1,2) \\
(2,0) \text { with } \text { Hself } \\
(2,1) \text { and }(2,2) \\
\hline
\end{array}
$$

\rightarrow Is S cyclic?

$$
|(1,0)|=1
$$

$$
|(1,1)|=3
$$

$|(2,2)|=\begin{array}{r}67 \text { be the } \\ \text { generators }\end{array}$ generators
\rightarrow Check:

$$
|(1,2)|=3
$$

$$
|(2,0)|=2
$$

$$
|(2,1)|=6 \rightarrow \text { could }
$$

$$
\begin{aligned}
& S=\left\{(2,1),(2,1)^{2}=(1,1),(2,1)^{3}=(2,0),\right. \\
&\left.(2,1)^{4}=(1,2),(2,1)^{5}=(2,2),(2,1)^{6}=(1,0)\right\} \\
&=\left\{(2,2),(2,2)^{2}=(1,2),\left(2,21^{3}=(2,0),\right.\right. \\
&(2,2)^{4}=(1,1),(2,2)^{5}=(2,1),(2,2)^{6}=(1,0) \\
& \therefore S \text { is cyclic } \Rightarrow S=\langle(2,1)\rangle=\langle(2,2)\rangle
\end{aligned}
$$

(viii) GIVEN: D is a group

$$
|D|=47
$$

\rightarrow Show that D is an abelian group:
We notice that IDI is a prime number.
Let $a \in D$, such that a is not the identity $(a \neq e)$.
We know that the cyclic group generated by a is a sulograp of $D \Rightarrow<a \geq \leq D$
By lagrange, the order of $\langle a\rangle$ divides $|D|$
$\Rightarrow|=a\rangle|\mid 47$

$$
\begin{aligned}
& \text { an legrainge, the } \\
& \Rightarrow 1=a>1 \mid<47
\end{aligned}
$$

$47 \frac{1}{1}$ prime \Rightarrow the divers of 47 are 1 and Heels
Since $a \neq e \Rightarrow \mid<a>1>1$, and hence, $\mid<a>1$ must be $t \rightarrow \rightarrow$ tan you say more?
Hence $=\langle a\rangle \Rightarrow \frac{\rightarrow \text { an you say more? }}{\frac{\text { D }}{\text { by cyclic }} \text { and generated }}$
We prat in our class nates that every
cyclicpup is an cobelian cyclicpup is an abelian
Hence is abelian
(iv) GIVEN: D is a group.

$$
\begin{aligned}
& H_{1}<D \text { and } H_{2}<D \\
& H_{1} \nsubseteq H_{2} \text { and } H_{2} \nsubseteq H_{1}
\end{aligned}
$$

\rightarrow Prove that $H_{1} \cup H_{1}$ can never be a subgroup of D :
Let $a \in H_{1}$ and $a \notin H_{2}$
Let $b \in H_{2}$ and $b \notin H_{1}$
Hence, $a \in H_{1} \cup H_{2}$ and $b \in H_{1} \cup H_{2}$
Clear that $a * b \notin H_{1}$ and $a * b \notin H_{2}$
Therefore, $a * b \notin H_{1} \cup H_{2}$
\therefore Closure is not schislied $\Rightarrow \mathrm{H}_{1} \cup \mathrm{H}_{2}$ is not even
Exanple: a group to begin witt
$\left(D_{6}, t_{6}\right)$ where $D=\{0,1,2,3,4,5\}$

$$
\begin{aligned}
& H_{1}=\{0,2,4\} \text { and } H_{2}=\{0,3\} \\
& H_{1} \cup H_{2}=\{0,2,3,4\} \\
& 2+6=5 \notin H_{1} \cup H_{2}
\end{aligned}
$$

Jun can mince IT. Shun 1 ? $a^{-1} x b \in H_{1} \cap H_{2}$.
Since $a \in H_{1} \cap \mathrm{H}_{2}, a^{-1} e H_{n} \cap \mathrm{H}_{2}$. Hence $a^{-1} \times b$ 敷 and
(v) GIVEN: $a^{-1} \neq b \in H_{2}$. Thus $a^{-1} \neq b \in H_{1} \cap H_{2}$. D is a group
$H_{1}<D$ and $H_{2}<D$
\rightarrow show that $\left(H_{1} \cap H_{2}\right)<D$:
closure: let $a \in H_{1} \cap H_{2}$ and $b \in H_{1} n H_{2}$ then $a, b \in H_{1}$ and $a, b \in H_{2}$
Since H_{1} is a subgroup, then $a * b \in H_{1}$ Similarly, $a+b \in H_{2}$
Hence, $a * b \in H_{1} \cap H_{2}$ closure is satisfied
AssociATIVE: clear, since H_{1}, and H_{2} are subgroups Therefore, $\mathrm{H}_{2} \cap \mathrm{H}_{2}$ satisfies the associative axiom
IDENTITY: Since H_{1}, and H_{2} are subgroups, the identity e is in both

$$
\Rightarrow e \in H_{1} \text { and } e \in H_{2}
$$

Hence, $e \in H_{1} \cap H_{2}$
INVERSE: if $a \in H_{1} \cap H_{2}$, then $a \in H_{1}$ and $a \in H_{2}$
if $a \in H_{1}$, then $a^{-1} \in H_{1}$, becciuse H^{H}, is a subgroup. Similarly, $a \in H_{2} \Rightarrow a^{-1} \in H_{2}$
Hence, $a^{-1} \in H_{1} \cap H_{2}$

* $H_{1} \cap H_{2}$ satisfies all group axioms and $H_{1} \cap H_{2} \subset D$

$$
\Rightarrow H_{1} \cap H_{2}<D *
$$

Let $a, b \in f$ - show shorter
(vi) GIVEN: $(S, *)$ is ap abelian group with identity e

$$
F=\left\{a \in S \mid a^{n}=e\right\} ; n \geqslant 2
$$

\rightarrow Prove that $(F, *)$ is a subgroup of S : since s is abelian $\left(a^{-1} * b\right)^{n}=$
CLOSURE: Since $(S, *)$ is abelian, we know that $a^{n} 1^{n}$ $a * b=b * a \quad \forall a, b \in S$ $\left(a^{-1}\right) * b^{n}=$ We also know that since $a * b=b * a$, then -1

$$
\begin{array}{ll}
(a * b)^{n}=a^{n} * b^{n} & \left(a^{n}\right) * b^{n+} \\
\text { Let } a, b \in F \Rightarrow a^{n}=e \quad 3 b^{n}=e & \text { e*e }=e \\
(a * b)^{n}=a^{n} * b^{n}=e * e=e & \text { Dene } \\
\text { Since }(1 * b)^{n}=e \text {, then } a * b \in F / \text { closure }
\end{array}
$$

ASSCCIATIVE: Clear, since $+C S$? s is a gracip
IDENTITY: Since $e^{n}=e \Rightarrow e \in F$
INVERSE: Let $a \in F \Rightarrow a^{n}=e$
We know that $|a|=\left|a^{-1}\right|$

$$
\Rightarrow a^{m}=e \quad 3\left(a^{-1}\right)^{m}=e
$$

if $n=m \Rightarrow\left(a^{-1}\right)^{n}=e \Rightarrow a^{-1} \in F$
if $n \neq m \Rightarrow$ We know that $m \mid n$, and hence $\left(a^{-1}\right)^{n}=e \Rightarrow a^{-1} \in F$
$* F$ is a group 3 F CS $\Rightarrow F<S *$
Assume $n=11 \Rightarrow F=\{e\}$ or $|F|$ is at least 11

$$
F=\left\{a \in S \mid a^{\prime \prime}=e\right\}
$$

11 is prime $\Rightarrow F=\{a \in S| | a \mid=11\}$ since there cannot be any other m less than 11 such that $a^{m}=e$

In a group, we know that the order of any element in the group divides the orcler of the group $\Rightarrow|a|||F| \forall a \in F$
Since $|a|=11 \Rightarrow|F|=11,22,33,44, \ldots$
*F must have at least 11 elements
Assume that there exists no element in S whose order is 11, hence only e satisfies $e^{\prime \prime}=e$
$* F=\{e\} *$
\hbar
(vii) Given: $(U(9),-9)$

$$
\begin{aligned}
& U(9)=\{a \in\{0,1,2,3,4,5,6,7,8\} \mid \operatorname{gcd}(a, 9)=1\} \\
& U(9)=\{1,2,4,5,7,8\}
\end{aligned}
$$

\rightarrow Construct the Coley's table:

$\cdot 9$	1	2	4	5	7	8
1	(1)	2	4	5	7	8
2	2	4	8	1	5	7
4	4	8	7	2	1	5
5	5	1	2	7	8	4
7	7	5	(1)	8	4	2
8	8	7	5	4	2	1

\rightarrow Is $1(9)$ cyclic?

$$
\begin{aligned}
& |1|=1 \\
& |2|=6 \\
& |4|=3 \\
& |5|=6 \\
& 17 \mid=3 \\
& |8|=2
\end{aligned} \quad \rightarrow \text { could be }
$$

Check: $U(9)=\left\{2,2^{2}=4,2^{3}=8,2^{4}=7,2^{5}=5,2^{6}=1\right\}$
Hence, $u(9)=<2\rangle$ cyclic β generated by $a=2$

$$
U(9)=\left\{5,5^{2}=7,5^{3}=8,5^{4}=4,5^{5}=2,5^{6}=1\right\}
$$

Hence. $u(9)=\langle 5\rangle$ cyclic $\&$ generated by $a=5$

HW III, MTH 320, Fall 2016

Ayman Badawi

QUESTION 1. (i) We know that $6 Z, 8 Z$ are infinite cyclic subgroups of $(Z,+)$. Hence $6 Z \cap 8 Z$ is also an infinite cyclic subgroup and thus $6 Z \cap 8 Z=a Z$ for some $a \in Z$. Find all possible values of a. Explain?
Sketch. Let a be the least positive integer that 'lives'' in $6 Z$ and 'lives'' in 8Z. Hence $6 \mid a$ and $8 \mid a$. Since a is the least positive integer where $6 \mid a$ and $8 \mid a$, we conclude that $a=L C M[6,8]=24$. Thus $a=24$. Thus $6 Z \cap 8 Z=24 Z$
(ii) In general fix $a, b \in(Z,+)$. Then $a Z \cap b Z=c Z$ for some $c \in Z$. Find all possible values c (of course write c in terms of a, b.

Sketch: Let $d \in(a Z \cap b Z)$. Then $a \mid d$ and $b \mid d$. Let $h=l c m[a, b]$. Then h is the least positive integer that lives in $a Z \cap b Z$. Since $a Z \cap b Z$ must be an infinite cyclic subgroup of Z, we conclude that $a Z \cap b Z=l c m[a, b] Z=h Z$. We know that if $H=<v>$ is an infinite cyclic group, then H has exactly two generators, namely: v and v^{-1}. Thus $a Z \cap b Z=l c m[a, b] Z=-l c m[a, b] Z$. Thus all possible values of c are : lcm[a,b] and -lcm[a,b].
(iii) Let $(S, *)$ be a group. Assume that $a * b=b * a$ for some $a, b \in S$. Prove that $a * b^{-1}=b^{-1} * a$.

Proof Since $a * b=b * a$, we have $b^{-1} * a * b * a^{-1}=b^{-1} * b * a * a^{-1}=e * e=e$. Since $b^{-1} * a * b * a^{-1}=e$ we conclude that $b^{-1} * a=e * a * b^{-1}=a * b^{-1}$.
(iv) Let $(D, *)$ be a group with 8 elements. Assume that D has a unique subgroup of order 2 and it has a unique abelian subgroup of order 4 . Prove that D is an abelian group. In fact, you can prove that $(D, *)$ is cyclic.
Proof: Let F be the unique abelian subgroup of D with 2 elements and let M be the unique abelian subgroup of D with 4 elements. Since M is abelian with 4 elements, we know that M has an abelian subgroup K with 2 elements. Since K is also an abelian subgroup of D with 2 elements, we conclude that $K=F$. Now let $a \in D \backslash M$ and let $c=|a|$. Hence by Lagrange Theorem, $c=1$ or 2 or 4 or 8. We know that $\left\{a, a^{2}, \ldots, a^{c}=e\right\}=<a>$ is an abelian (cyclic) subgroup of D with c elements. Since $a \in D \backslash M$ and $F \subset M$ are unique abelian subgroups of order 2 and 4 respectively, we conclude that $c \neq 2$ and $c \neq 4$. Clearly, $c \neq 1$. Hence $c=8$. Thus $D=<a\rangle$.,
(v) Let $(D, *)$ be a group. Assume $a * b=b * a$ for some $a, b \in D$. Given $|a|=n,|b|=m$, and $g c d(n, m)=1$. Prove that $|a * b|=n m$. [Hint: Since $g c d(n, m)=1$, from class notes we know that if $n \mid m c$ for some $c \in Z$, then $n \mid c$. Also you need to use a trivial fact from number theory that if $\operatorname{gcd}(n, m)=1$ and $n \mid c$ and $m \mid c$ for some $c \in Z$, then $n m \mid c$]
Proof: Let $k=|a * b|$. Since $a * b=b * a,(a * b)^{n m}=\left(a^{n}\right)^{m}\left(b^{m}\right)^{n}=e * e=e$. Hence $k \mid n m$. Now $e=(a * b)^{k m}=a^{k m} *\left(b^{m}\right)^{k}=a^{k m} * e=a^{k m}$. Thus $n \mid k m$. Since $g c d(n, m)=1$, we conclude that $n \mid k$. Similarly, $e=(a * b)^{k m}=\left(a^{m}\right)^{k} * b^{k n}=e * b^{k n}=b^{k n}$. Thus $m \mid k n$. Since $g c d(n, m)=1$, we conclude that $m \mid K$. Since $n \mid k$ and $m \mid k$ and $\operatorname{gcd}(n, m)=1$, we conclude that $n m \mid k$. Since $k \mid n m$ and $n m \mid k$, we conclude that $k=n m$.
(vi) Let $(D, *)$ be a group. Assume $a * b=b * a$ for some $a, b \in D$. Given $|a|=6$ and $|b|=14$. Prove that $(D, *)$ has a cyclic subgroup of order 42. [hint: Some how show that D has an element of order 7, then you need to use (V)]
Proof. We know $\left|b^{2}\right|=14 / \operatorname{gcd}(2,14)=7$. Since $a * b=b * a$, it is clear that $a * b^{2}=b^{2} * a$. Since gcd $(\mathbf{6}, 7)=1$, by part $V\left|a * b^{2}\right|=42$. Hence $H=<a * b^{2}>$ is a cyclic subgroup of D with 42 elements.
(vii) Let D be an abelian group with $p q$ elements where p, q are distinct prime numbers. Prove that D is cyclic.

Proof. Since D is abelian, we have a subgroup H of order p and a subgroup K of order q. Let $a \in H$ such that $a \neq e$. By Lagrange Theorem we conclude $|a|=p$. Similarly, if $b \in K$ and $b \neq e$, then $|b|=q$. Thus $|a * b|=p q$ by part V. Hence $D=<a * b>$
(viii) Let D be a finite abelian group and H be a proper subgroup of D with 10 elements. Assume $a \in D \backslash H$ such that $|a|=3$. Then
a. Show that $a * H, a^{2} * H, a^{3} * H$ are distinct left cosets of H [Hint: First note that $a^{3} * H=e * H=H$. We know $a * H \cap H=\emptyset$. So show $a^{2} * H \cap a * H=\emptyset$ and $a^{2} * H \cap H=\emptyset$].
Proof: We show $a^{2} \notin H$ and $a^{2} \notin a * H$. Assume that $a^{2} \in H$. Since $a^{3}=e, a * a^{2}=e$. Thus $e \in a * H$, impossible since $a * H \cap H=\emptyset$. Assume $a^{2} \in a * H$. Thus $a^{2}=a * h$ for some $h \in H$. Hence $a=h$, impossible. Thus $H, a * H, a^{2} * H$ are all distinct left cosets of H.
b. Show that $F=a * H \cup a^{2} * H \cup a^{3} * H$ is a subgroup of D with 30 elements.

Proof: Note that $H=a^{0} * H=e * H$ and hence $F=a^{0} * H \cup a * H \cup a^{2} * H$. Let $x, y \in F$. Since F is finite, we only need show $x * y \in F$. Hence $x=a^{i} * h, y=a^{k} * g$ for some $i, k, 0 \leq i, k \leq 2$ and some $h, g \in H$. Since lal $=3$ and D is abelian, $x * y=\left(a^{i} * h\right) *\left(a^{k} * g\right)=a^{(i+k) \bmod 3} *(h * g)$. Since $0 \leq(i+k) \bmod 3 \leq 2$ and $h * g \in H$, we are done.
a. Find all distinct left cosets of H. Note there must be exactly 4 such left cosets : This is my present to you... just straight forward calculations
b. Is $H \cup 5 H$ a subgroup of $U(16)$? Is $H \cup 9 H$ a subgroup of $U(16)$? explain

Note $K=H \cup 5 H=\{1,7,3,5\} .(5.3=15 \notin K$, so no) and $L=H \cup 9 H=\{1,7,9,15\}$ (by Caley's Table L is a subgroup)

Submit your solution on Tuesday October 18, 2016 at 2pm. Faculty information

Ayman Badawi, Department of Mathematics \& Statistics, American University of Sharjah, P.O. Box 26666, Sharjah, United Arab Emirates.
E-mail: abadawi@aus.edu, www.ayman-badawi.com

HW IV, MTH 320, Fall 2016

Ayman Badawi

QUESTION 1. (i) Let $\alpha=\left(\begin{array}{ll}1 & 4 \\ 5\end{array}\right) o(265) \in S_{6}$. Find $|\alpha|$
Typical question
(ii) Let $\beta \in S_{7}$ and $x=\beta o(2631) o \beta^{-1}$. Find $|x|$.

Typical question
(iii) Let $D=\left(Z_{4},+\right) \times\left(Z_{6},+\right)$. Give me a subgroup H of D such that there is no subgroup L_{1} of Z_{4} and there is no subgroup L_{2} of Z_{6} where $H=L_{1} \times L_{2}$.
Solution: The element $(2,3)$ in D is of order 2. Hence $H=\{(0,0),(2,3)\}$ is a subgroup of D but there is no subgroup L_{1} of Z_{4} and there is no subgroup L_{2} of Z_{6} where $H=L_{1} \times L_{2}$.
(iv) Let $D=(S, * 1) \times(F, * 2)$ be a cyclic group (you may assume $|S|>1,|F|>1)$. Let H be a subgroup of D. Prove that there exists a subgroup K of S and there exists a subgroup L of F such that $H=K \times L$. [Hint: You may use the fact that if $\operatorname{gcd}(n, m)=1$ and $i \mid n m$, then $i \mid n$ or $i \mid m$ or $i=a b(a>1$ and $b>1)$ such that $a \mid n$ and $b \mid m$.) [OBSERVE that the group in part III is not cyclic, interesting!]
Solution: We know that F, S are cyclic and finite groups. Let $n=|S|$ and $m=|F|$. Hence $|D|=n m$. Since D is cyclic, we know $\operatorname{gcd}(n, m)=1$. Let H be a subgroup of D and $k=|H|$. Since D is cyclic, we know that H is the only subgroup of D that has k element. Since $k \mid n m$ and $\operatorname{gcd}(n, m)=1$, we conclude that $k=a b$ such that $a|n, b| m$, and $g c d(a, b)=1$ (note it is possible that $a=1$ or $b=1$). Since $a \mid n, S$ has a unique subgroup L_{1} of order a. Since $b \mid m, F$ has a unique subgroup L_{2} of order b. Thus $L_{1} \times L_{2}$ is the unique subgroup of D that has k elements. Hence $H=L_{1} \times L_{2}$.
(v) Let $a \in S_{n}$ be a permutation (i.e $a=\left(a_{1} \cdots a_{k}\right)$. Note that not every function in S_{n} is a permutation). Prove that $a \in A_{n}$ if and only if $|a|$ is an odd number.
Solution: Since $a=\left(a_{1} a_{2} \cdots a_{k-1} a_{k}\right)=\left(a_{1} a_{k}\right) o\left(a_{1} a_{k-1}\right) o \cdots o\left(a_{1} a_{2}\right)$, (k-1)-2-cycles, we conclude that $a \in A_{n}$ iff ($\mathbf{k}-1$) is even. Hence k must be an odd positive integer. Thus $|a|=k$ is odd.
(vi) We know that D_{4} is a subgroup of S_{4} and hence $L=D_{4} \cap A_{4}$ is a subgroup of S_{4}. Find L. Is $L \triangleleft A_{4}$? EXPLAIN

Solution: Let $L=D_{4} \cap A_{4}=\left\{(1),(13)(24),(13)(24),\left(\begin{array}{ll}2 & 3\end{array}\right)(14)\right\}$. Now if we view L as a subgroup of A_{4}. Then $\left[A_{4}: L\right]=3$. Thus L has exactly 3 left cosets, say: L, $a o L$, and $b o L$. Now do the calculation, show: $a o L=L o a$ and $b o L=L o b$. Thus we conclude that $L \triangleleft A_{4}$.
(vii) Let D be a group with 15 elements. Assume $H \triangleleft D$ such that $|H|=3$. Assume there exists $a \in S \backslash H$ such that $|a| \neq 5$. Prove that D is cyclic. [Hint: you may want to consider D / H !!]
Solution: We know D / H is a group with 5 element. Consider the natural group homomorphism from D onto D / H (given by $x \rightarrow x * H$). Let $k=|a|$, and $m=|a * H|$ (note that m is the order of the element $a * H$ in D / H). We know that $m \mid k$ and $m \mid 5$ (since $|D / H|=5$). Since $a \notin H, m \neq 1$. Hence $m=5$. Thus $5 \mid k$. Since $5 \mid k$ and $k \mid 15$ and $a^{5} \neq 1$, we conclude that $k=15$. Thud D is cyclic.
(viii) Let F be a nontrivial group-homomorphism from $\left(Z_{6},+\right)$ into $\left(Z_{8},+\right)$. Find $\operatorname{Ker}(F)$ and find $\operatorname{Image}(F)$ (i.e. Range (F)).
Solution: We know $Z_{6} / \operatorname{Ker}(F) \approx \operatorname{Image}(F)$ and $\operatorname{Image}(F)$ is a subgroup of Z_{8}. Thus $|\operatorname{Image}(F)|$ is a factor of 8. Let $a=|\operatorname{Image}(F)|, b=\left|Z_{6} / \operatorname{Ker}(F)\right|$. Hence $a=b$. Since $b \mid 6$ and $a=b$ and $a \mid 8$, we conclude that $a=b=2$. Now Z_{8} has exactly one subgroup of order 2 . Thus $\operatorname{Image}(F)=\{0,4\}$. Since $b=2$, we conclude $|\operatorname{Ker}(F)|=3$. Since Z_{6} has exactly one subgroup of order 3, we conclude $\operatorname{Ker}(F)=\{0,2,4\}$.
(ix) Is the group $\left(Z_{4},+\right)$ isomorphic to $U(8)$? EXPLAIN.

Solution: No, Z_{4} is cyclic but $U(8)$ is not cyclic
(x) Give me an example of a non-abelian group say D such that D has a normal subgroup H where D / H is abelian.

Solution: Let $D=S_{3}$ and $H=A_{3}$.
(xi) Give me an example of an abelian group say D that is not cyclic but D has a normal subgroup H where D / H is cyclic.
Solution: Let $D=U(8)$ and $H=\{1,7\}$.
(xii) Give me an example of a group say D that has a normal subgroup H such that there is an $a \in D$ where $|a|=\infty$ but the order of the element $a * H$ in G / H is finite.
Solution: Let $D=(Z,+), H=5 Z$, and $a=1$. Then $|1|=\infty$. Since $Z / 5 Z \approx Z_{5},|1+5 Z|=5$.
(xiii) Give me an example of a group say D such that for each integer $n \geq 2$, there is an element $a \in D$ with $|a|=n$. (note that such D must be infinite)
Solution: Let $D=(Q,+)$ and $H=Z$. Then $\left.\frac{1}{n}+Z \right\rvert\,=n$ in Q / Z.
(xiv) Let $n \geq 3$ and let $x \in S_{n}$. Prove that x^{2} is always an even function.

Solution: Since $A_{4} \triangleleft S_{4}$, we know that S_{4} / A_{4} is a group with exactly 2 elements. Let $x \in S_{4}$. Then $\left(x o A_{4}\right)^{2}=$ $x^{2} o A=A$ in S_{4} / A_{4}. Thus $x^{2} \in A_{4}$.
DUE DATE : Nov 18, 2016, Thursday at 2pm

Faculty information

Ayman Badawi, Department of Mathematics \& Statistics, American University of Sharjah, P.O. Box 26666, Sharjah, United Arab Emirates. E-mail: abadawi@aus.edu, www.ayman-badawi.com
\qquad

EXAM I, MTH 320, Fall 2016

Ayman Badawi

QUESTION 1. (i) We know that $(Z,+)$ is cyclic. Prove that $F=(Z,+) \times(Z,+)$ is not a cyclic (Some of you have the right idea but ...)
Proof. Deny. Then $F=<(a, b)>$ for some $a, b \in Z$. It is clear that $a \neq 0$, and $b \neq 0$. Since $(1,0) \in F$, there must exist $k \in Z$ such that $(1,0)=(a, b)^{k}=(a k, b k)$. Hence $b k=0$ and $a k=1$. Since $b k=0$ and $b \neq 0$, we conclude $k=0$. But $(a, b)^{0}=(0,0) \neq(1,0)$. A contradiction. Thus F is not cyclic.
(ii) Give me an example of an abelian group with 16 elements, say D, such that D has a subgroup H with exactly 8 elements, but D has no elements of order 8 .
Solution: Let $D=\left(Z_{4},+\right) \times\left(Z_{4},+\right)$. We know that $|(a, b)|=L C M[|a|,|b|]$. Hence each element in \mathbf{D} is of order 1, 2, or 4. Now $H=\{0,2\}$ is a subgroup of Z_{4}. Thus $Z_{4} \times H$ is a subgroup of D with 8 elements.
(iii) Let D be an abelian group such that D has a subgroup H with 10 elements. Given that D has an element a of order 2 where $a \notin H$. Prove that D has a subgroup of order 20 .
Proof. Let $F=H \cup a * H$. We know $H \cap a * H=\emptyset$ and $|F|=20$. Hence we show that F is closed. Let $x, y \in F$. Then $x=a^{i} * h_{1}, y=a^{k} * h_{2}$ where $0 \leq i, k \leq 2, h_{1}, h_{2} \in H$. Thus $x * y=a^{i+k(\bmod 2)} h_{1} h_{2} \in F$.
(iv) We know that if a, b are elements of a group $(D, *)$ such that $a * b=b * a$ and $\operatorname{gcd}(|a|,|b|)=1$, then $|a * b|=|a||b|$. Give me an example of a group D that has two elements, say a, b, such that $g c d(|a|,|b|)=1$ but $|a * b| \neq|a||b|$.
Solution: Let $a=\left(\begin{array}{lll}1 & 2 & 3\end{array}\right), b=\left(\begin{array}{ll}2 & 3\end{array}\right) \in S_{3}$. Then $|a|=3$ and $|b|=2$. $a o b=\left(\begin{array}{ll}1 & 2\end{array}\right)$. Thus $|a o b|=2$, where $|a||b|=6$
(v) Let $(D, *)$ be a group and $a, b \in D$ such that $a * b=b * a$. Prove that $a^{-1} * b^{-1}=b^{-1} * a^{-1}$.

Proof. Since $a * b=b * a$, we have $(a * b)^{-1}=(b * a)^{-1}$. We know that $(a * b)^{-1}=b^{-1} * a^{-1}$ and $(b * a)^{-1}=a^{-1} * b^{-1}$. Thus $a^{-1} * b^{-1}=b^{-1} * a^{-1}$.
(vi) Let $(D, *)$ be a group such that $a^{2}=e$ for every $a \in D$. Prove that D is an abelian group.

Proof. Since $a^{2}=e$ for every $a \in D$, we conclude that $a=a^{-1}$ for every $a \in D$. Now let $x, y \in D$. Since $x * y \in D$, we have $(x * y)^{2}=(x * y) *(x * y)=e$. Thus $x * y=y^{-1} * x^{-1}=y * x$ (since $y^{-1}=y$ and $x^{-1}=x$
(vii) ((All of you - 2) got it right just straightforward class notes, see your notes)

Is $U(10) \times\left(Z_{7},+\right)$ cyclic? Explain briefly.
b. Is $U(15) \times\left(Z_{9},+\right)$ cyclic? Explain briefly.
c. Let $F=\left(Z_{12},+\right)$ and $H=\{0,3,6,9\}$. Find all left cosets of H
d. Let $V=\left(\begin{array}{ll}1 & 3\end{array}\right) o(256)$ Find $|v|$
e. Let $V=\left(\begin{array}{lll}1 & 3 & 5\end{array}\right) o\left(\begin{array}{ll}2 & 3\end{array} 4\right.$ 5). Find $|v|$.
\mathbb{H} Faculty information

EXAM II, MTH 320, Fall 2016

Ayman Badawi

QUESTION 1. Let D be a group with 55 elements.
(i) (6 points). Convince me that D is not simple.

Solution: We know that D has an element of order 11, and hence D has a subgroup, say H, with 11 elements. Since $[D: H]=5$ and 5 is the smallest prime factor of 55 , we know that H must be normal. Thus D is not simple.
(ii) (8 points). Assume that D has a normal subgroup, say H, such that $|H|=5$. Prove that D is cyclic.

Solution: Let K be a normal subgroup of D with 5 elements and let H as in (i). We know $H K$ is a subgroup of D. Thus $|H K|=5$ or 11 or 55 . Since K and H are subgroups of $H K$, we conclude that $|H K|=55$. Thus $H K=D$. It is clear that $H \cap K=\{e\}$. Hence by one of the results in class, we have $D /(H \cap K) \simeq D / H \times D / K$ and thus $D \simeq D / H \times D / K$. Since $|D / H|=5$ and $|D / K|=11$, we conclude that $D / H \simeq Z_{5}$ and $D / K \simeq Z_{11}$. Thus $D \simeq Z_{5} \times Z_{11} \simeq Z_{55}$ is cyclic.
QUESTION 2. (8 points). Given that H is a normal subgroup of a group $(D, *)$ such that $|H|=11$. Assume that $D / H=<a * H>$ (i.e., D / H is cyclic and generated by $a * H$) for some $a \in D \backslash H$ such that $a * h=h * a$ for every $h \in H$. Prove that D is abelian

Solution: I wrote this question to see how many of you read the proof I give in CLASS. Similar proof to if $D / C(D)$ is cyclic, then D is abelian. Here we go: Let $x, y \in D$. Show $x * y=y * x$. Hence $x=a^{i} * H, y=a^{k} * H$ in D / H. Thus $x=a^{i} * b, y=a^{k} * c$ for some $b, c \in H$. Now since $|H|=11, H$ is cyclic and hence abelian. Thus $b * c=c * b$. Also by hypothesis, we have $a * b=b * a$ and $a * c=c * a$. Hence $x * y=a^{i+k} * b * c=a^{i+k} * c * b=y * x$.
QUESTION 3. (6 points). Let $F: Z_{15} \rightarrow Z_{12}$ be a nontrivial group homomorphism. Find $\operatorname{Ker}(F)$ and $\operatorname{Image}(F)$.
Solution: We know $Z_{15} / \operatorname{Ker}(F) \simeq \operatorname{Image}(F)$. Hence by staring (and keep in mind that Image (\mathbf{F}) is a subgroup of Z_{12} and $|\operatorname{image}(F)|$ must be a factor of the two numbers 12 and 15), we conclude that $\left|Z_{15} / \operatorname{Ker}(F)\right|=$ $|\operatorname{Image}(F)|=3$. Thus $\operatorname{Image}(F)=\{0,4,8\}$, and in order that $\left|Z_{15} / \operatorname{Ker}(F)\right|=3$ we must have $|\operatorname{Ker}(F)|=5$. Thus $\operatorname{Ker}(F)=\{0,3,6,9,12\}$.
QUESTION 4. (6 points). Let $F: Z \rightarrow Z_{20}$ be a nontrivial group homomorphism. Given that F is not ONTO (not surjective) and $5 \in \operatorname{Image}(F)$. Find $\operatorname{Ker}(F)$ and Image (F).

Solution: Since F is not onto and $5 \in \operatorname{Image}(F),<5>=\{0,5,10,15\}$ is the only subgroup of Z_{20} that is not equal to Z_{20} and contains 5 . Thus $\operatorname{Image}(F)=\{0,5,10,15\}$. We know every subgroup of Z is of the form $k Z$. Hence $Z / \operatorname{Ker}(F)=Z / k Z \simeq \operatorname{Image}(F)=\{0,5,10,15\} \simeq Z_{4}$. Thus $K=4$. Hence $\operatorname{Ker}(F)=4 Z$.
QUESTION 5. (6 points). Let D be an abelian group with p^{3} elements for some prime integer p. Assume that D has a unique subgroup of order p. Prove that D is cyclic.

Solution: We Know that (1) $D \simeq Z_{p^{3}}$ or (2) $D \simeq Z_{p} \times Z_{p^{2}}$ or (3) $D \simeq Z_{p} \times Z_{p} \times Z_{p}$. If D is isomorphic to the groups in (2) or (3), then clearly D has more than one subgroup with p elements. Thus $D \simeq Z_{p^{3}}$ is cyclic.
QUESTION 6. (6 points). Let D be a a noncyclic abelian group with 32 elements. Assume that $|a|=16$ for some $a \in D$. Up to isomorphism, find all such groups.

Solution: We know (1) $D \simeq Z_{32}$ or (2) $D \simeq Z_{2} \times Z_{16}$ or (3) $D \simeq Z_{k_{1}} \times \cdots Z_{k_{m}}$ where $k_{1}, \ldots, k_{m} \in\{2,4,8\}$. Now D is not isomorphic to Z_{32} since D is not cyclic. D is not isomorphic to a group as in (3) since all such groups have elements of order 8 or less. Thus $D \simeq Z_{2} \times Z_{16}$.
QUESTION 7. (6 points). Assume that a group D has unique subgroup H where $|H|=2016$. Prove that H is a normal subgroup of D.

Solution: Let $a \in D$. Show $a * H=H * a$. Since $C_{a}(H)=a * H * a^{-1}$ is a subgroup od D with cardinality equals to the cardinality of H, we conclude $a * H * a^{-1}=H$. Thus $a * H=H * a$.
QUESTION 8. (i) (5 points). Is $U(27) \simeq Z_{18}$? explain
(ii) (5 points). Is $(124) o(13) \in A_{4}$? explain
(iii) (5 points). Is every abelian group with 45 elements isomorphic to $Z_{15} \times Z_{3}$? explain
(iv) (5 points). Let $a=(1345) o(241)$. Find $|a|$
(v) (5 points). Let $a \in S_{7}$ and $m=|a|$. What is the maximum value of m. Explain briefly.

Solution: (i-iv): all of you got it right. For (v): just observe that a must be written as disjoint cycles say $a=a_{1} o a_{2} o \cdots \circ a_{k}$ and $|a|=\mathbf{L C M}\left[\right.$ length of a_{1}, length of a_{2}, \ldots, length $\left.a_{k}\right]=m=$ maximum. Now it should be clear that for m to be maximum $k=2,\left|a_{1}\right|=4$ and $\left|a_{2}\right|=3$. Hence $m=12$.

Faculty information

Ayman Badawi, Department of Mathematics \& Statistics, American University of Sharjah, P.O. Box 26666, Sharjah, United Arab Emirates. E-mail: abadawi@aus.edu, www.ayman-badawi.com

Final EXAM , MTH 320, Fall 2016

Ayman Badawi

QUESTION 1. (i) (5 points). Is $\left(Q^{*},.\right)$ isomorphic to $(Z,+)$? Explain
No. $\left(Q^{*},.\right)$ has a finite group, namely $\{1,-1\}$. So $(Q *,$.$) is not cyclic (since every subgroup of a cyclic infinite$ group is cyclic). However, $(Z,+)$ is cyclic. Thus $\left(Q^{*},.\right)$ is not isomorphic to $(Z,+)$.
(ii) (5 points). Is $Z_{3} \times Z_{8}$ isomorphic to $Z_{6} \times Z_{4}$? Explain
$Z_{3} \times Z_{8}$ is isomorphic to Z_{24} and hence cyclic. Since $\operatorname{gcd}(6,4) \neq 1, Z_{6} \times Z_{4}$ is not cyclic.
(iii) (5 points) . Let $n=5^{2} .7^{3} .11$, and let $D=\left\{a \in\left(Z_{n},+\right)| | a \mid=77\right\}$. Find the cardinality of D.

Since Z_{n} is cyclic, we know Z_{n} has a unique subgroup of order 77, say $H=<a>$. Hence if $b \in D$, then $<a>=$. Thus $D=\{c \in H| | c \mid=77\}$. We know that H has exactly $\phi(77)=\phi(7 \times 11)=6 \times 10=60$ elements of order 77. Thus $|D|=60$.
(iv) (5 points). It is easy to see that A_{8} has an elements of order 15 . With at most two lines, convince me that A_{8} must have at least two distinct subgroups each is of order 15.
Let H be a subgroup of order 15. Since A_{5} is simple, there exists $a \in A_{5}$ such that $a * H \neq H * a$. Thus $a * H * a^{-1} \neq H$. We know $a * H * a^{-1}$ is a subgroup of A_{8} with 15 elements .
(v) (5 points). Is it possible to have infinitely many non-isomorphic groups such that each has 100 elements? Explain

It is clear that S_{100} has finitely many subgroups, each is of order 100. By Caley's Theorem a group with 100 elements is isomorphic to a subgroup of S_{100}. Thus there are finitely many non-isomorphic groups such that each has 100 elements.
(vi) (5 points). Give me an example of a group D that has an element w of order 2 and an element f of order 3 , but D has no elements of order 6 .
S_{3} has no elements of order 6. However $a=\left(\begin{array}{ll}1 & 2\end{array}\right)$ is of order 2 and $b=\left(\begin{array}{lll}1 & 2 & 3\end{array}\right)$ is of order 3.
(vii) (8 points). Let $F:(Z,+) \rightarrow\left(Q^{*},.\right)$ be a nontrivial group homomorphism such that F is not one-to-one. Find $F(1)$, then find $\operatorname{Image}(F)$ and $\operatorname{Ker}(F)$.
Since F is not $\mathbf{1 - 1 ,} \operatorname{Ker}(f) \neq\{0\}$. Hence $\operatorname{Ker}(F)=m Z$ for some $m \in Z^{+}$. Thus $Z / m Z=Z_{m} \simeq \operatorname{Image}(F)<$ Q^{*}. Thus Image (F) must be finite. However $\left(Q^{*},.\right)$ has a unique finite subgroup $H=\{1,-1\}$. Thus $\operatorname{Image}(F)=H \simeq Z_{2}$. Hence $m=2$ and $\operatorname{Ker}(F)=2 Z$. If $F(1)=1$, then $F(a)=1$ for every $a \in Z$ and thus F is the trivial group homomorphism, a contradiction. Hence $F(1)=-1$.
(viii) (8 points). Let F be a group with 21 elements such that F has a unique subgroup with 3 elements. Prove that F is isomorphic to Z_{21}.
We know F has a subgroup with 7 elements, say H, and it has a subgroup with 3 elements, say K. Since $[H: F]=3$, and 3 is the minimum prime divisor of $|F|=21$, we conclude that $H \triangleleft F$. Since K is unique, we conclude $K \triangleleft F$. It is clear that $|H K|=21$ and $H \cap K=\{e\}$. Hence $H K=F$ and $\mathbf{F}=F /(H \cap K) \simeq$ $F / H \times F / K \simeq Z_{3} \times Z_{7} \simeq Z_{21}$ is cyclic.
(ix) (8 points). Let D be a group with 77 elements. Prove that either $|C(D)|=1$ or D is abelian.
$\mid C(D)=1$ or 7 or 11 or 77. If $C(D)=77$, we are done. If $C(D)=7 o r 11$, then $D / C(D)$ is cyclic and hence D is abelian.
(x) ($\mathbf{8}$ points). Let D be a finite group. Assume H is a normal subgroup. Given $|a * H|=n$ (the order of the element $a * H$ is n in $G / H)$ for some $a \in D$. Prove that D has an element of order n.
Let $m=|a|$. We know $n \mid m$. Thus $m=n k$. Let $f=a^{k} \in D$. We know $|f|=\left|a^{k}\right|=\frac{m}{g c d(k, m)}=\frac{m}{k}=n$.

Faculty information

Ayman Badawi, Department of Mathematics \& Statistics, American University of Sharjah, P.O. Box 26666, Sharjah, United Arab Emirates. E-mail: abadawi@aus.edu, www.ayman-badawi.com
3.s Notes on $U(n)$ and Invariant Factors
$U(n)$,
(1) $|u(n)|=\phi(n)$
(2) $(U(n), \cdot)$ is cyclic iff

$$
n=2,4, \theta^{m}, 2 p^{m}, p \text { is }
$$

ODD pnime $m \geq 1$
(3) $n=\theta_{1}^{\alpha_{1}} \theta_{2}^{\alpha_{2}} \ldots \theta_{K}^{\alpha_{k}}$
$U(n) \approx U\left(P_{1}^{\alpha_{1}}\right) \oplus U\left(P_{2}^{\alpha_{2}}\right) \oplus$

$$
\begin{aligned}
& \cdots \oplus U\left(P_{K}^{\alpha}{ }^{k}\right) \\
& U\left(z^{m}\right), m \geqslant 3 \approx z_{2} \oplus z^{m} \\
& U\left(p^{m}\right), \stackrel{p \neq 2}{ } \quad \approx Z_{p-1} \oplus \frac{m^{-2}}{z_{p^{m-1}}} \\
& \xrightarrow{E x} n=2^{6} 5^{3} 7^{2} \\
& U(n) \approx U\left(2^{6}\right) \oplus U\left(5^{3}\right) \oplus U\left(7^{2}\right)
\end{aligned}
$$

$$
U(n) \approx z_{2} \oplus z_{2^{4}}^{\prime} \oplus z_{4} \oplus \frac{z_{5^{2}}^{x}}{}+\underset{6}{ }\left(\oplus z_{7}^{z^{x}}\right.
$$

$$
\begin{aligned}
& U\left(2^{5} \cdot 7^{3} \cdot 11\right) \approx \frac{d}{} d\left(z^{5}\right) \oplus U\left(7^{3}\right) \oplus U(11) \\
& \approx z_{2} \oplus z_{2^{3}} \oplus z_{6} \oplus z_{7^{2}} \oplus z_{10} \\
& \approx z_{m_{1}} \oplus \cdots \cdots z_{m_{w}}^{7^{2}} \quad \text { s.t. } \\
& m_{1}\left(m_{2} \ldots\right) m_{\omega} \\
& m_{w}=\operatorname{Lcm}\left[10,7^{2}, 6, z^{3}, 2\right]=5 \cdot 7^{2}-3-2^{3}
\end{aligned}
$$

$$
\begin{aligned}
& \text { so } m_{w}=5.7^{2} \cdot 3.2^{3} \Longrightarrow \text { cross } \\
& \text { (} z_{5}, z_{7^{2}}, z_{3}, z_{2}
\end{aligned}
$$

$$
n=2^{5} \cdot 3^{2}-7^{2}
$$

WMite $U(n)$ in temms of invariant factars

$$
\begin{aligned}
U(n) & \approx U\left(2^{5}\right) \oplus U\left(3^{2}\right) \oplus U\left(7^{2}\right) \\
& \approx z_{2} \oplus \frac{z^{3}}{z^{3}} \oplus z_{2} \oplus z_{3} \oplus z_{6}^{x} \oplus z_{7}^{x}
\end{aligned}
$$

We need U(n) $\approx z_{m_{1}} \oplus z_{m_{2}} \rightarrow--\theta Z_{m_{w}}$

$$
n_{W}=7.6-8=
$$

$$
\frac{z_{1}}{w z_{z}} \oplus z_{7.6 .8}
$$

Invariant factons

$$
\begin{aligned}
m_{1}=2, m_{2}=6, m_{3} & =7.6 .8 \\
& =608
\end{aligned}
$$

$$
\begin{aligned}
\rightarrow U\left(2^{5} \cdot 3 \cdot 5^{2}\right) & \approx u\left(2^{5}\right) \oplus U(3) \oplus u\left(5^{2}\right) \oplus \\
& \approx z_{2} \oplus z_{8} \oplus z_{2} \oplus z_{4} \oplus \frac{z}{5} \\
m_{w} & \rightarrow \operatorname{LCM}\left[2, \frac{1}{2}, 4,5\right]=5-8
\end{aligned}
$$

$$
z_{2} \oplus z_{2} \oplus z_{4} \oplus m_{i=2, m_{2}=2, m_{2}-4}^{m_{1}+8}
$$

$$
m_{1}=2, m_{2}=2, m_{3}=4, m_{4}=40
$$

(1) classify all finite abelian groups (upto isomanghic) of and 23,373

We will have exactly $3 \times 2 \times 3$
non-isomphic g noups of ondel $z^{3}-3^{2}-5^{3}$ any group of order $2^{3}-3^{2}-5^{3} 1$ will isomongtic to
$\left(\begin{array}{c}\text { group in } \\ \text { colum } \\ \text { 3 }\end{array}\right)$
(t) $\binom{$ group }{ colum 4}

Introduction to rings
(t) $\left(\begin{array}{l}\text { group } \\ \text { from } \\ \text { linn }\end{array}\right.$ 5) not on the final
Def. $(R,+, \ldots)$, set R with 2 $\stackrel{\text { I }}{+} l_{\text {mut }}$
binary operations t) -st.
(1) (R, t) is abelian group
(2) (R, w) is semignoup-(closur, associative)
(3) $\forall a, b, c \in R, a \cdot(b+c)=a \cdot b+a \cdot c$
and Fistributive
($b+c$) $a=b-a+c \cdot a$
any set $(R,+, \cdot)$ satisfies
(1) $+(2)+(3)$, called ming

is abelian group,
We say R is a field.
$(R,$.
$(z, t,-)$ is arming P abelisem commutative ming

$$
\left(R^{2 x^{2}},+,-\right) \rightarrow \text { ing }
$$

$\left(\begin{array}{c}\text { cont- } \\ \text { function, }\end{array}+, 0\right)$

4 Section : Worked out Solutions for all Assessment Tools

MTH320 - Abstract Algebra I

HW \#1

September 14th, 2020

Question 1:

Let H be the set of all symmetries on an equilateral triangle. Construct the Caley's Table of (H, \circ) and conclude that (H, \circ) is a group.
From class notes, we have the following 6 functions:
$\left\{f_{1}:\left(\begin{array}{ccc}a & b & c \\ b & c & a\end{array}\right), f_{2}:\left(\begin{array}{ccc}a & b & c \\ c & a & b\end{array}\right), f_{3}=e:\left(\begin{array}{ccc}a & b & c \\ a & b & c\end{array}\right), f_{4}:\left(\begin{array}{ccc}a & b & c \\ a & c & b\end{array}\right), f_{5}:\left(\begin{array}{ccc}a & b & c \\ c & b & a\end{array}\right), f_{6}:\left(\begin{array}{ccc}a & b & c \\ b & a & c\end{array}\right)\right\}$
We further know that the binary operator is the composition of the functions. We define the binary operator as per the following example:

$$
f_{1} \circ f_{2}=f_{1}\left(f_{2}\right)
$$

By this, we say for each $a, b, c \in f_{n}$, we approach it by doing the following. Let us take a for this case and see what happens to a.

1. We first see what a corresponds to in f_{2}. In this case, it is c
2. Now, we return to f_{1} and see what c corresponds to after the rotation, and in this case, it is a Therefore, if we proceed with the same logic, we go by each of the columns:

$$
\begin{array}{r}
a \rightarrow c \rightarrow a \\
b \rightarrow a \rightarrow b \\
c \rightarrow b \rightarrow c
\end{array}
$$

So:

$$
f_{1} \circ f_{2}:\left(\begin{array}{ccc}
a & b & c \\
a & b & c
\end{array}\right)=f_{3}=e
$$

Now, let us see the case for all 6 functions and their compositions with each other.

$$
\begin{aligned}
& f_{1} \circ f_{1}:\left(\begin{array}{lll}
a & b & c \\
c & a & b
\end{array}\right)=f_{2} \\
& f_{1} \circ f_{2}:\left(\begin{array}{lll}
a & b & c \\
a & b & c
\end{array}\right)=e \\
& f_{1} \circ e:\left(\begin{array}{lll}
a & b & c \\
b & c & a
\end{array}\right)=f_{1} \\
& f_{1} \circ f_{4}:\left(\begin{array}{lll}
a & b & c \\
b & a & c
\end{array}\right)=f_{6} \\
& f_{1} \circ f_{5}:\left(\begin{array}{lll}
a & b & c \\
a & c & b
\end{array}\right)=f_{4} \\
& f_{1} \circ f_{6}:\left(\begin{array}{lll}
a & b & c \\
c & b & a
\end{array}\right)=f_{5}
\end{aligned}
$$

We can do the same for all the rows of the Caley table, but they are trivial. So we will no longer work out each individual composition and instead put all the results as per the same standards of the aforementioned technique.
Therefore, we can come up with the following Caley's Table:

\circ	f_{1}	f_{2}	e	f_{4}	f_{5}	f_{6}
f_{1}	f_{2}	e	f_{1}	f_{6}	f_{4}	f_{5}
f_{2}	e	f_{1}	f_{2}	f_{5}	f_{6}	f_{4}
e	f_{1}	f_{2}	e	f_{4}	f_{5}	f_{6}
f_{4}	f_{5}	f_{6}	f_{4}	e	f_{1}	f_{2}
f_{5}	f_{6}	f_{4}	f_{5}	f_{2}	e	f_{1}
f_{6}	f_{4}	f_{5}	f_{6}	f_{1}	f_{2}	e

Table 1.
We have thus constructed the Caley's table for the set of symmetries for an equilateral triangle. Now, what are some things we can conclude from this? We conclude that (H, \circ) is a group because it has closure (all compositions result in elements of the set, H), it has an identity, e, and we will now look for the inverse of each element.
By definition, the inverse of an element is defined as follows: $a \cdot a^{-1}=e$. In this set, all we need to do is look at the Caley table to see what elements composed with each other give us the identity, e.

$$
\begin{array}{ll}
f_{1}^{-1}=f_{2} & \text { since } f_{1} \circ f_{2}=e \tag{i}\\
f_{2}^{-1}=f_{1} & \text { since } f_{2} \circ f_{1}=e \\
f_{3}^{-1}=f_{3} & \text { since } f_{3}=e \text { and } e \circ e=e \\
f_{4}^{-1}=f_{4} & \text { since } f_{4} \circ f_{4}=e \\
f_{5}^{-1}=f_{5} & \text { since } f_{5} \circ f_{5}=e \\
f_{6}^{-1}=f_{6} & \text { since } f_{6} \circ f_{6}=e
\end{array}
$$

Hence, we have found all the inverses, and these inverses are clearly also in the set H. Furhtermore, by observation from the Caley's table, we can see that it is also associative. So, since this is the case, we conclude that (H, \circ) is a group (closure, inverse, identity, associative).
(ii) For all $f \in H$, find $|f|$. Note that $|f|$, or the order of f, is the minimum number of times the binary operation has to be repeated on the f before we obtain the identity, e. We will do one example to show the process and put the final answers for the rest.

To find $\left|f_{1}\right|$, first we do:
$f_{1} \circ f_{1}:\left(\begin{array}{ccc}a & b & c \\ c & a & b\end{array}\right)=f_{2}$
Now we do $f_{2} \circ f_{1}$
$f_{2} \circ f_{1}:\left(\begin{array}{lll}a & b & c \\ a & b & c\end{array}\right)=f_{3}$
Since $f_{2} \circ f_{1}=\left(f_{1} \circ f_{1}\right) \circ f_{1}=f_{3}=e$;
we conclude that $\left|f_{1}\right|=3$
(Since it took 3 binary operations to get e)

$$
\begin{array}{ll}
\left|f_{1}\right|=3 & \text { Since } f_{1} \circ f_{1} \circ f_{1}=e \\
\left|f_{2}\right|=3 & \text { Since } f_{2} \circ f_{2} \circ f_{2}=e \\
\left|f_{3}\right|=1 & \text { Since } f_{3}=e
\end{array}
$$

$$
\begin{array}{ll}
\left|f_{4}\right|=2 & \text { Since } f_{4} \circ f_{4}=e \\
\left|f_{5}\right|=2 & \text { Since } f_{5} \circ f_{5}=e \\
\left|f_{6}\right|=2 & \text { Since } f_{6} \circ f_{6}=e
\end{array}
$$

We have thus found the order of each of the six elements in the group.
(iii) Show that (H, \circ) is a non-Abelian group.

The definition of an Abelian group is that for all Takeelements in a group, the binary operator acting on the elements results in the same outcome, which is another element in the group, regardless of the order the operator is acted.

Mathematically, Let (D, \cdot) be a group. Then: $\forall a, b \in D, a \cdot b=b \cdot a \in D$.
To prove that this group is non-Abelian, we need to find just one example where this commutivity does not hold. We can simply refer to the Caley's table to see this.

$$
\begin{aligned}
& f_{1} \circ f_{4}=f_{6} \\
& f_{4} \circ f_{1}=f_{5}
\end{aligned}
$$

Clearly we have shown that $f_{4} \circ f_{1} \neq f_{1} \circ f_{4}$, and thus the commutative property does not hold for all elements in this group. Therefore, the group is safely concluded to be non-Abelian.

Question 2:

Let C be the set of complex numbers. We know that $\left(C^{*}, \times\right)$ is a group under multiplication. Let n be some fixed positive integer, $n \geqslant 2$, and let H be the set of all the roots of the polynomial $x^{n}-1$. i.e.

$$
H=\left\{x \in C^{*} \mid x^{n}-1=0\right\}
$$

Prove that (H, \times) is a subgroup of $\left(C^{*}, \times\right)$.
Firstly, we take advantage of the fact that H is a finite subset of C. If we take this into consideration, then we can use a result introduced in the lectures that tells us that if we have a finite subset of a "larger" set, if the larger set is a group, then the subset, under the same binary operator, will also be a group iff it is closed.

In our case, we know that $\left(C^{*}, \times\right)$ is a group, and $H \subset C^{*}$. Then we need to show that (H, \times) is closed for it to be a subgroup. We proceed as follows:

$$
\begin{array}{r}
\text { Let } a, b \in H \quad a \text { and } b \text { are chosen randomly } \\
a \text { satisfies: } a^{n}-1=0 \\
b \text { satisfies: } b^{n}-1=0 \\
a^{n}=b^{n}=1 \\
\text { We want to show that } a \cdot b \in H \\
(a \cdot b)^{n}-1=\left(a^{n}\right) \times\left(b^{n}\right)-1 \\
=(1 \times 1)-1 \\
=0
\end{array}
$$

Therefore: $\quad(a \times b)^{n}-1=0$
And thus $a \cdot b \in H$
H is closed.

We have shown that H is closed under the binary operation \times. Since it is a finite subset, it is then concluded that (H, \times) is a subgroup of $\left(C^{*}, \times\right)$.

Question 3:

Consider the group ($\mathbb{Z}_{20},+$). Find $|1|,|6|,|14|,|15|,|17|,|12|$.
We first find $|1|$ and observe the fact that $k=1^{k}$. Then we can proceed and find the rest.

$$
\begin{array}{r}
1+1+1+\ldots+1(20 \text { times })=20 \\
20 \bmod 20=0 \\
\text { Therefore },|1|=20
\end{array}
$$

Note that by a result introduced in the lectures, if we have some a in a group where the order of a is finite, then $\left|a^{k}\right|=\frac{m}{\operatorname{gcd}(k, m)}$. We also know that for some $k \in \mathbb{Z}_{20}, 1^{k}=k$ (As per the instructions of the question, but we can also observe this fact very easily).

Using these results, we can go on to find the orders of the remaining five elements.

$$
\left.\begin{array}{r}
|6|=\left|1^{6}\right|=\frac{|1|}{\operatorname{gcd}(|1|, 6)} \\
=\frac{20}{\operatorname{gcd}(20,6)} \\
=\frac{20}{2}=10
\end{array}\right) \begin{array}{r}
\text { Therefore, }|6|=10 \\
|14|=\left|1^{14}\right|=\frac{20}{\operatorname{gcd}(20,14)} \\
=\frac{20}{2}=10
\end{array} \quad \begin{array}{r}
|15|=\left|1^{15}\right|=\frac{20}{\operatorname{gcd}(20,15)} \\
=\frac{20}{5}=4 \\
|17|=\left|1^{17}\right|=\frac{20}{\operatorname{gcd}(20,17)} \\
=\frac{20}{1}=20 \\
|12|=\left|1^{12}\right|=\frac{20}{\operatorname{gcd}(20,12)} \\
=\frac{20}{4}=5
\end{array}
$$

Question 4:

Let $H=\{2,4,6,8,10,12\}$. Let • be the binary operation: multiplication modulo 14 . Construct the Caley's table for (H, \cdot)

$\cdot 14$	2	4	6	8	10	12
2	4	8	12	2	6	10
4	8	2	10	4	12	6
6	12	10	8	6	4	2
8	2	4	6	8	10	12
10	6	12	4	10	2	8
12	10	6	2	12	8	4

Table 2.

Obviously, this is an Abelian group because $\forall a, b \in H, a \cdot b=b \cdot a$.
(i) What is e ?
for some $d, e \in H$, we have that $d \cdot e=e \cdot d=d$. What element do we have in H such that $(d \cdot e)(\bmod 14)=d ?$
This element is 8 . Notice that, as an example, $(2 \cdot 8) \bmod 14=16 \bmod 14=2$. Another example would be $(12 \cdot 8) \bmod 14=96 \bmod 14=12$.

$$
\text { Obviously, } e=8
$$

(ii) For each $a \in H$, find a^{-1}

$$
\begin{aligned}
2^{-1}=4 & \text { Since }(2 \cdot) \bmod 14=8 \\
4^{-1}=2 & \text { Since }(4 \cdot 2) \bmod 14=8 \\
6^{-1}=6 & \text { Since }(6 \cdot 6) \bmod 14=8 \\
8^{-1}=8 & \text { Since }(8 \cdot 8) \bmod 14=8 \\
10^{-1}=12 & \text { Since }(10 \cdot 12) \bmod 14=8 \\
12^{-1}=10 & \text { Since }(12 \cdot 10) \bmod 14=8
\end{aligned}
$$

(iii) Find $|6|$ and $|10|$

$$
(6 \cdot 6) \bmod 14=8, \text { therefore }|6|=2
$$

Using a calculator, we can see that

$$
1,000,000 \bmod 14=8
$$

$$
10 \cdot 10 \cdot 10 \cdot 10 \cdot 10 \cdot 10=1000000
$$

Therefore, $|10|=6$

Question 5:

Part 1:
Let a, b be elements in a group, (D, \cdot) such that $a \cdot b=b \cdot a$. Given that $|a|=n,|b|=m$, where n, $m \neq \infty$ and $\operatorname{gcd}(n, m)=1$, let $x=a \cdot b$. Prove that $|x|=n m$.

Hints:

$$
\begin{gathered}
\text { if } a \cdot b=b \cdot a \text {, then }(a \cdot b)^{n}=a^{n} \cdot b^{n} \\
\text { if } a \cdot b \neq b \cdot a \text {, we CANNOT conclude }(a \cdot b)^{n}=a^{n} \cdot b^{n}
\end{gathered}
$$

Let k, n, m be positive integers

1. If $n \mid k m$ and $\operatorname{gcd}(n, m)=1$, then $n \mid k$.
2. If $n \mid k$ and $m \mid k$ and $\operatorname{gcd}(n, m)=1$, then we conclude that $n m \mid k$

In the question, we are given the following facts: $\operatorname{gcd}(n, m)=1,|a|=n,|b|=m$.

$$
\begin{gathered}
x=a \cdot b \\
\text { Let us take } k=|x| \quad\left(\text { i.e. } x^{k}=e\right), k \in \mathbb{Z}^{+}
\end{gathered}
$$

Assume k to be the smallest positive integer

$$
\text { such that } x^{k}=e
$$

$$
(a \cdot b)^{k}=(a)^{k} \cdot(b)^{k}=e
$$

$$
\text { We know } a^{n}=e \text { and } b^{m}=e
$$

By some result introduced in the lectures, we know that if $|a|=n$, and $a^{k}=e$, then $n \mid k$. So we can conclude the following:

$$
\begin{aligned}
& n \mid k, k \text { is divisible by } n \\
& \qquad \frac{k}{n}=\alpha \quad \alpha \in \mathbb{Z}^{+} \\
& \text {In other words, } k=\alpha n
\end{aligned}
$$

$$
\text { Furthermore, } m \mid k
$$

$$
\frac{k}{m}=\quad \in \mathbb{Z}^{+}
$$

In other words, $k=\beta m$

By the hint given to us in the question, we know that if $n \mid k$ and $m \mid k$, then $n m \mid k$ (Given that $\operatorname{gcd}(n, m)=1)$. In other words, $k=\gamma n m$, for some $\gamma \in \mathbb{Z}^{+}$.

$$
\begin{array}{r}
(a \cdot b)^{m n}=a^{m n} \cdot b^{m n} \\
=\left(a^{n}\right)^{m} \cdot\left(b^{n}\right)^{m} \\
a^{n}=b^{n}=e \\
\text { Therefore: } \quad e^{m} \cdot e^{m}=e \cdot e=e
\end{array}
$$

Hence $k \mid m n$

Since $k \mid m n$ and $m n \mid k$, we can logically conclude that $k=m n$. In this case, we can easily see the following:

$$
\begin{aligned}
& |x|=k=n m \\
& x^{k}=x^{m n}=e
\end{aligned}
$$

Part 2:
Find two elements in Question 1, f and k in (H, \circ) s.t. $|f|=2$ and $|k|=3$, but $|f \circ k| \neq 6$.
Let us take $f=f_{4},\left|f_{4}\right|=2$, and $k=f_{1},\left|f_{1}\right|=3$.

$$
\begin{aligned}
& f_{4} \circ f_{1}=f_{5} \\
& \left|f_{5}\right|=2 \neq 6
\end{aligned}
$$

Hence we can clearly see that despite the fact that $\operatorname{gcd}(2,3)=1$, we cannot claim that $\left|f_{4} \circ f_{1}\right|=6$, in fact we have proven for it to be 2. This is because the group in Question 1 is NON-Abelian and we cannot say that $a \cdot b=b \cdot a \quad \forall a, b \in H$.

MTH320 - Abstract Algebra I

HW \#2 (Solutions)

September 29th, 2020

Question 1:

Let $A=\{1,2,3\}$ and D be the power set of A, i.e., D is the set of all subsets A (note that $|D|=2^{3}=8$). Define "." on D to mean $a \cdot b=(a b) \cup(b a) \forall a, b \in D$. Then (D, \cdot) is an Abelian group.
Since D is the set of all subsets of A, then:

$$
D=\{\varnothing,\{1\},\{2\},\{3\},\{1,2\},\{1,3\},\{2,3\},\{1,2,3\}\}
$$

The Caley's Table:

$a \cdot b$	\varnothing	\{1\}	\{2\}	\{3\}	\{1, 2 \}	\{1,3\}	\{2, 3\}	\{1,2,3\}
\varnothing	\varnothing	\{1\}	\{2\}	\{3\}	\{1,2\}	\{1,3\}	\{2, 3\}	\{1,2,3\}
\{1\}	\{1\}	\varnothing	\{1,2\}	\{1, 3\}	\{2\}	\{3\}	$\{1,2,3\}$	\{2,3\}
\{2\}	\{2\}	\{1,2\}	\varnothing	$\{2,3\}$	\{1\}	$\{1,2,3\}$	\{3\}	\{1,3\}
\{3\}	\{3\}	\{1,3\}	\{2, 3\}	\varnothing	$\{1,2,3\}$	\{1\}	\{2\}	\{1, 2\}
\{1,2\}	\{1,2\}	\{2\}	\{1\}	$\{1,2,3\}$	\varnothing	$\{2,3\}$	\{1,3\}	\{3\}
\{1,3\}	\{1,3\}	\{3\}	$\{1,2,3\}$	\{1\}	\{2, 3\}	\varnothing	\{1,2\}	\{2\}
\{2,3\}	\{2, 3\}	$\{1,2,3\}$	\{3\}	\{2\}	\{1,3\}	\{1,2\}	\varnothing	\{1\}
$\{1,2,3\}$	$\{1,2,3\}$	$\{2,3\}$	\{1,3\}	\{1,2\}	\{3\}	\{2\}	\{1\}	\varnothing

Table 1.
(i) What is $e \in D$?

Obviously e is the element where for some $a \in D, a \cdot e=a$. In other words, $(a-e) \cup(e-a)=a$. The only element with this property is \varnothing. For any $a, a \cdot \varnothing=a$. As an example:

$$
\{1,2,3\} \cdot \varnothing=[\{1,2,3\}-\varnothing] \cup[\varnothing-\{1,2,3\}]=\{1,2,3\}
$$

(ii) For each $a \in D$, find a^{-1}

Again, we will simply use the Caley's table to find the inverse of each of the 8 elements in D. We proceed as follows:

$$
\begin{aligned}
&\{1\}^{-1}=\{1\} \quad \text { Since }\{1\} \cdot\{1\}=\varnothing \\
&\{2\}^{-1}=\{2\} \\
&\{3\}^{-1}=\{3\} \\
&\{1,2\}^{-1}=\{1,2\} \\
&\{1,3\}^{-1}=\{1,3\} \\
&\{2,3\}^{-1}=\{2,3\} \\
&\{1,2,3\}^{-1}=\{1,2,3\} \\
& \varnothing^{-1}=\varnothing
\end{aligned}
$$

As a matter of fact, each element is its own inverse (Again visible from the Caley's table).
(iii) For each $a \in D$, find $|a|$

A sample calculation is provided below as to how we get the order of each element. The rest is self explanatory.

$$
\begin{array}{r}
\{1\}: \\
\{1\} \cdot\{1\}=\varnothing \\
\{1\}^{2}=\varnothing \\
\text { Therefore }|\{1\}|=2
\end{array}
$$

$$
\begin{aligned}
|\{2\}| & =2 \\
|\{3\}| & =2 \\
|\{1,2\}| & =2 \\
|\{1,3\}| & =2 \\
|\{2,3\}| & =2 \\
|\{1,2,3\}| & =2 \\
|\varnothing| & =1 \quad \text { Since } \varnothing \text { is the identity }
\end{aligned}
$$

(iv) The converse of the Lagrange theorem is correct when a group is finite and Abelian, i.e. if D is an Abelian group, $|D|=n$, and $m \mid n$, Then D has at least one subgroup with m elements. Now the above group is Abelian and $|D|=8$. Give a subgroup, say H, of D with 4 elements. Verify that H is a subgroup by doing the Caley's table. Does D have an element of order 4?
(If $m \mid n$, then we must have a subgroup with m elements, but not necessarily an element of order m)

Let us take $H=\{\varnothing,\{1,2\},\{1,3\},\{2,3\}\}$. This subset of D is clearly a subgroup of (D, \cdot). The Caley's table is shown below:

$a \cdot b$	\varnothing	\{1, 2\}	\{1,3\}	\{2, 3\}
\varnothing	\varnothing	$\{1,2\}$	\{1,3\}	$\{2,3\}$
\{1,2\}	\{1,2\}	\varnothing	$\{2,3\}$	\{1,3\}
\{1,3\}	\{1,3\}	$\{2,3\}$	\varnothing	\{1,2\}
\{2, 3\}	\{2,3\}	$\{1,3\}$	$\{1,2\}$	\varnothing

Table 2.

From the table we can see that H is indeed a group. In fact, $H<D$. It satisfies all the properties of a group (Identity $e=\varnothing$, each element has an inverse, it is closed and associative). Furthermore, H is an Abelian group since $\forall a, b \in H, b \cdot a=a \cdot b$.

Now we can see that $|H|=4$, and $4 \mid 8$. However, it is evident that $\forall a \in H,|a|=2$, except for the case of $a=\varnothing$, in which case $|\varnothing|=1$. Therefore, we can conclude that if we have $m \mid n$, that does not necessarily imply that we can find a subgroup with m elements that also has elements of order m.

Question 2:

Let $D=\{2,4,6,8,10,12\}$. From HW1, we know that D under multiplication modulo 14 is an Abelian group. Now $H=\{6,8\}$ is a subgroup of D. Find all the left cosets of H. Since D is Abelian, H is a normal subgroup of D. Construct the Caley's table for the group $(D / H, *)$.

From HW1, we know that $e=8$. We will take the binary operator to be $\cdot{ }_{14}$. All the left cosets of of H are as follows:

$$
\begin{array}{r}
a \cdot H=\{a \cdot h \mid a \in D, h \in H\} \\
2 \cdot H=\{2 \cdot 6,2 \cdot 8\}=\{12,2\} \\
4 \cdot H=\{4 \cdot 6,4 \cdot 8\}=\{10,4\} \\
6 \cdot H=\{6 \cdot 6,6 \cdot 8\}=\{8,6\}=H \\
8 \cdot H=\{8 \cdot 6,8 \cdot 8\}=\{6,8\}=H \\
10 \cdot H=\{10 \cdot 6,10 \cdot 8\}=\{4,10\} \\
12 \cdot H=\{12 \cdot 6,12 \cdot 8\}=\{2,12\}
\end{array}
$$

Note that the identity here is:

$$
e=6 \cdot H=8 \cdot H=H
$$

We have 3 distinct left cosets of H. These are $2 \cdot H=\{2,12\}, 4 \cdot H=\{4,10\}$ and $6 \cdot H=\{6,8\}$.
These are the elements of the set D / H.

$$
D / H=\{2 H, 4 H, 6 H\}
$$

We define $*$, the binary operator on the set D / H as the following:

$$
\forall x, y \in D / H, x * y=(a \cdot b) \cdot H
$$

a, b are two left cosets of H.
Therefore, the Caley's table for $(D / H, *)$ would be:

$x * y$	$2 H$	$4 H$	$6 H$
$2 H$	$4 H$	$6 H$	$2 H$
$4 H$	$6 H$	$2 H$	$4 H$
$6 H$	$2 H$	$4 H$	$6 H$

Table 3.

What is the identity of $(D / H, *) ? 6 H$, since $\forall x \in D / H, x * 6 H=x$. We can see from the Caley's Table that $(D / H, *)$ is closed, associative, each element has an inverse and it is closed. Furthermore, we can see that this group is Abelian because $\forall x, y \in D / H, x * y=y * x$.

Question 3:

Let (D, \cdot) be a group, and H, K are distinct subgroups of D (i.e. $H \neq K$).
(i) Prove that $F=H \cap K$ is a subgroup of D [Hint: Let $a, b \in F$. By class result, you only need to show that $a^{-1} \cdot b \in F$ for every $\left.a, b \in F\right]$.

$$
F=H \cap K
$$

Firstly, since $H<D$, we know that $\{e\} \in H$
Similarly, since $K<D,\{e\} \in K$ Therefore $H \cap K$ contains AT LEAST the identity

Or, in other words, $H \cap K \neq \varnothing$

Let $a, b \in F$
This means that $a, b \in H$ and $a, b \in K$

Since H and K are both subgroups, then $a^{-1} \cdot b \in H$ and $a^{-1} \cdot b \in K$ and since $a^{-1} \cdot b$ is in both H and K, by definition of the intersection,

$$
a^{-1} \cdot b \in F
$$

Therefore $F=H \cap K$ is a subgroup of D
Since F is a subgroup of D, and $F \subseteq H, F \subseteq K$, then we can also directly say that $F<H$ and $F<K$. Therefore F is also a subgroup of both H and K.
(ii) Assume that neither $K \subset H$ nor $H \subset K$. Prove that $H \cup K$ is never a subgroup of D.

We proceed by contradiction, i.e. we assume $F=H \cup K$ is a subgroup of D.

$$
\begin{array}{rr}
H \not \subset K \text { and } K \not \subset H \\
\text { we choose } a \in H \text { and } b \in K \text {, but } a \notin K \text { and } b \notin H & \\
\text { but since } F \text { is a subgroup, } & \\
a \cdot b \in F & \\
\text { Meaning that } a \cdot b \in H \text { or } a \cdot b \in K & \text { By definition of the union } \\
a^{-1} \cdot a \cdot b \in H \rightarrow b \in H & \text { Contradiction } \\
\text { OR } & \\
a \cdot b \cdot b^{-1} \in K \rightarrow a \in K & \text { Also a contradiction }
\end{array}
$$

In other words, if we assume the union to be a subgroup, then we would have that an element that cannot be in one of the subgroups H and K would be in them, which is a contradiction of the fact that $H \not \subset K$ and $K \not \subset H$.
Therefore, $H \cup K$ is never a subgroup of D.
(iii) Assume $|H|=|K|=m$, where m is a prime positive integer. Prove that $H \cap K=\{e\}$

The intersection between H and K must be a subgroup, by the result proven in 3(i). This means that $H \cap K<D$. We can also say that $H \cap K<H$ and $H \cap K<K$. Now,

$$
\begin{array}{r}
\text { Since }|H|=|K|=m \\
\text { and } H \cap K<H
\end{array}
$$

Therefore, by Langrange' s theorem:

$$
|H \cap K| \mid m
$$

The cardinality of $H \cap K$ divides m, which is the cardinality of H

But we know that m is prime, meaning that:
the only numbers that divide it are 1 and m
So:

$$
|H \cap K|=m \text { or }|H \cap K|=1
$$

However:
Since H is not the same as K and m is prime,

$$
|H \cap K| \neq m
$$

So:

$$
|H \cap K|=1
$$

Since $H \cap K$ is a group with one element, then the only element it can contain is e

$$
\text { Therefore } H \cap K=\{e\}
$$

We have proven that the intersection of two subgroups (which is itself a subgroup) of D contains only the identity of D.

Question 4:

(a) [CORRECTED] Let (D, \cdot) be a group, H is a normal subgroup of D, and K is a subgroup of D. Prove that $H \cdot K=\{h \cdot k \mid h \in H, k \in K\}$ is a subgroup of D. Note that H is a subgroup of $H \cdot K$ and K is a subgroup of $H \cdot K$ since $H \cdot e=H$ and $e \cdot K=K$ [Hint: Let $a, b \in H \cdot K$, by a class result, you only need to show that $a^{-1} \cdot b \in H \cdot K$ for every $\left.a, b \in H \cdot K\right]$.

$$
\begin{array}{rr}
\text { Let } a, b \in H \cdot K & \\
a=h_{1} \cdot k_{1}, b=h_{2} \cdot k_{2} & h_{1}, h_{2} \in H, k_{1}, k_{2} \in K \\
a^{-1} \cdot b=\left(h_{1} \cdot k_{1}\right)^{-1} \cdot\left(h_{2} \cdot k_{2}\right) & \\
k_{1}^{-1} \cdot h_{1}^{-1} \cdot h_{2} \cdot k_{2} & \\
h_{1}^{-1} \cdot h_{2} \in H & \text { Since } H \text { is a subgroup } \\
\text { Let } h_{3}=h_{1}^{-1} \cdot h_{2} \in H & \\
\text { Hence } a^{-1} \cdot b=k_{1}^{-1} \cdot h_{3} \cdot k_{2} &
\end{array}
$$

$$
\begin{array}{r}
\text { Since } H \text { is normal, we have: } \\
k_{1}^{-1} \cdot h_{3} \cdot k_{2}=h_{4} \cdot k_{1}^{-1} \cdot k_{2} \\
\text { For some } h_{4} \in H \\
\text { Let } k_{3}=k_{1}^{-1} \cdot k_{2} \\
\text { meaning that } k_{3} \in K \\
\text { Therefore: } \\
a^{-1} \cdot b=h_{4} \cdot k_{3} \in H \cdot K
\end{array}
$$

Therefore, we have proven that for every $a, b \in H \cdot K, a^{-1} \cdot b \in H \cdot K$. This condition is enough to satisfy the condition for subgroups, and therefore $H \cdot K$ is a subgroup of D.
(b) [CORRECTED] Consider S_{3}, the symmetric group of an equilateral triangle (As in HW1). Give a subgroup, say H of S_{3}, that is not a normal subgroup of S_{3}.
$\left\{f_{1}:\left(\begin{array}{ccc}a & b & c \\ b & c & a\end{array}\right), f_{2}:\left(\begin{array}{lll}a & b & c \\ c & a & b\end{array}\right), f_{3}=e:\left(\begin{array}{ccc}a & b & c \\ a & b & c\end{array}\right), f_{4}:\left(\begin{array}{lll}a & b & c \\ a & c & b\end{array}\right), f_{5}:\left(\begin{array}{ccc}a & b & c \\ c & b & a\end{array}\right), f_{6}:\left(\begin{array}{lll}a & b & c \\ b & a & c\end{array}\right)\right\}$
This is the symmetric group of an equilateral triangle. Out of these 6 elements, we can form a subgroup, H that is NOT a normal subgroup of S_{3}. This means that for some $a \in S_{3}, a \cdot H \neq H \cdot a$.
We need to note here that we mustn't fall into this trap: The condition for a normal subgroup is that we can find some $h, k \in H$ st $\forall a \in S_{3}, a \cdot h=k \cdot a$. k and h do not necessarily need to equal each other for the subgroup to be normal. With that in mind, let us take $H=\left\{e, f_{4}\right\}$:

$$
H=\left\{e:\left(\begin{array}{lll}
a & b & c \\
a & b & c
\end{array}\right), f_{4}:\left(\begin{array}{lll}
a & b & c \\
a & c & b
\end{array}\right)\right\}
$$

The Caley's table for this subset is:

Table 4.

Clearly, from this Caley's table, we can see that the subset is a subgroup of S_{3}. Now, let us see if the subgroup is normal. Since being a normal subgroup means: $\forall a \in S_{3}, a \cdot H=H \cdot a$, the negation of the statement means that $\exists a \in D$ (at least one) where $a \cdot H \neq H \cdot a$.
Let us take some random element in S_{3}, which will serve as our a. Take $a=f_{1}$. Then:

$$
\begin{array}{rl}
\text { We check to see if } a \cdot h=k \cdot a & h, k \in H \\
f_{1} \circ f_{4}=f_{6} & \text { From Caley's Table in HW1 } \\
f_{4} \circ f_{1}=f_{5} & \\
f_{4} \circ f_{1} \neq f_{1} \circ f_{4} &
\end{array}
$$

Note that H only has two elements, making it easy to see the other possibilities. Hence:

$$
f_{4} \cdot H \neq H \cdot f_{4}
$$

And this shows that H is NOT a normal subgroup of S_{3}.

4.3 HW3-Solution

MTH 320 - Abstract Algebra

HW \#3 Solutions

October 14th, 2020
Question 1: Let (D, \cdot) be a group with 130 elements. Given $a, b \in D$ such that $a \cdot b=b \cdot a,|a|=$ 10 and $|b|=13$, prove that D is an Abelian group. What more can we say about this group?

We are given some $a, b \in D$ such that $|a|=10$ and $|b|=13$. By previous result shown in HW1, we know that since (D, \cdot) is a group and we have two elements in D, say a and b, then $|a \cdot b|=|a| \cdot|b|$ if $\operatorname{gcd}(|a|,|b|)=1$ and $a \cdot b=b \cdot a$.

In our case, we know that $\operatorname{gcd}(10,13)=1$, meaning that for some $c=a \cdot b \in D,|c|=|a| \cdot|b|=10 \cdot 13=$ 130. This means that the order of the element c is 130 , or in other words, there exists an element inside D such that the order of the element is equal to the cardinality of D itself. Mathematically:

$$
\exists c \in D \text { st }|c|=130=|D|
$$

With this knowledge, we know that c forms up the entirety of the group, D. In other words, $D=\langle c\rangle$. Every other element in the group, (D, \cdot) can be made by taking c to some power, where the power represents the repitition of the binary operation, (\cdot).

This means that D is indeed not only a group, but a cyclic group. Automatically, through the discussion introduced in class, we know that if a group is cyclic, then it is also Abelian. Therefore we have proven that (D, \cdot) is Abelian, and went an extra step to show that it is alo cyclic.

Question 2:

i. Assume (D, \cdot) is an infinite cyclic group and $a \in D$ st $a \neq e$. Prove that $|a|=\infty$.

Since (D, \cdot) is an infinite cyclic group, $D=\langle a\rangle$ for some $a \in D$. Let $b \in D$ and assume that $|b|=m$. Since we know that $b \in D=<a>$, then we conclude that $b=a^{k}$ for some $k \in \mathbb{Z}$.

Since $|b|=m$, we have that $b^{m}=e$, which means that $\left(a^{k}\right)^{m}=e$. However, this is a contradiction because we are saying that $a^{k m}$, where $k m$ is a finite number gives us the identity, e. Since (D, \cdot) is an infinite cyclic group, we conclude that $|a|=\infty$.
ii. We know that $\left(\mathbb{Z}_{8},+\right)$ is cyclic and $(\mathbb{Z},+)$ is cyclic. Prove that $\mathbb{Z}_{8} \oplus \mathbb{Z}$ is not a cyclic group. Use the above proof from (i).

Let $x=(1,0) \in \mathbb{Z}_{8} \oplus \mathbb{Z}$. Then we know that $|x|=\operatorname{lcm}(|1|,|0|)=\operatorname{lcm}(8,1)=8$. Since x is not the identity of $\mathbb{Z}_{8} \oplus \mathbb{Z}$ by our choice, and it is of finite order, we can conclude using (i) that D is NOT cyclic.
iii. Let (H, \cdot) and $(K, *)$ be cyclic groups st $|H|=m$ and $|K|=n$. Let $D=H \oplus K$. Prove that D is cyclic iff $\operatorname{gcd}(m, n)=1$.

$$
\begin{array}{r}
\text { Assume } D \text { is cyclic, show } \operatorname{gcd}(m, n)=1 \\
\operatorname{let} h \in H, k \in K
\end{array}
$$

We know that since $D=H \oplus K$, then $|D|=|H| \times|K|$
ie $|D|=m n$

Since H is cyclic, it has exactly $\varphi(m)$ elements of order m
Similarly, K has exactly $\varphi(n)$ elements of order n
(From class result)
We are assuming that D is cyclic, ie $\exists a \in D$ st $|a|=|D| \quad a=(h, k)$

$$
|a|=|(h, k)|=m \times n
$$

We know that the concept of order suggests the LEAST positive number st $a^{m \times n}=e$, leading us to the fact that:

$$
\operatorname{lcm}(m, n)=m \times n
$$

$$
\operatorname{gcd}(m, n)=\frac{m \times n}{\operatorname{lcm}(m, n)}=\frac{m n}{m n}=1
$$

Assume gcd $(m, n)=1$, show that D is cyclic

$$
\operatorname{gcd}(m, n)=\frac{m n}{\operatorname{lcd}(m, n)} \Rightarrow \operatorname{lcd}(m, n)=m n
$$

Let $h \in H$ and $k \in K$
Since H and K are both cyclic groups, then $\exists h \in H$ st $|h|=m=|H|$ and similarly, $\exists k \in K$ st $|k|=n=|K|$

$$
|D|=m n(\text { By previous proof })
$$

$$
\begin{aligned}
\text { Let } a= & (h, k) \in D \\
|a|= & \\
& \operatorname{lcm}(m, n) \quad \text { By definition of } D \\
& |a|=n m
\end{aligned}
$$

$$
\begin{array}{r}
\text { Therefore, } \exists a \in D \text { st }|a|=|D|=|H| \times|K|=m n \\
\text { And hence } D \text { is cyclic, } D=<a>
\end{array}
$$

iv. Let $D=\left(\mathbb{Z}_{8},+\right) \oplus\left(\mathbb{Z}_{15},+\right)$. Then, by (iii), D is cyclic. How many generators does D have? Find all subgroups of D with 20 elements. How many elements of order 40 does D have?
Since $\operatorname{gcd}(8,15)=1, D$ iscyclic and $|D|=\left|\mathbb{Z}_{8}\right| \times\left|\mathbb{Z}_{15}\right|$. We know that \mathbb{Z}_{8} has $\varphi(8)=4$ generators and similarly, \mathbb{Z}_{15} has $\varphi(15)=8$ generators. This means that the number of generators for D is exactly $4 \times 8=32$, since each pair of two generators from \mathbb{Z}_{8} and \mathbb{Z}_{15} can form a generator for D.

We know that $|D|=15 \times 8=120$. This means that the total number of elements in D is 120. By a class result, we know that since $20 \mid 120$, then there exists a unique subgroup of D where the cardinality is 20 . In other words, this subgroup contains exactly 20 elements, and it is the only one that does.
There is exactly one subgroup, H, of D with 20 elements. Choose one element in D with order 20. For example, choose $x=(2,3) .|x|=20$. Thus $H=<(2,3)>=F \oplus K$, where $F=\{0,2,4,6\}<\mathbb{Z}_{8}$ (subgroup of \mathbb{Z}_{8}) and $K=\{0,3,6,9,12\}<\mathbb{Z}_{15}\left(\right.$ subgroup of $\left.\mathbb{Z}_{15}\right)$.

To find the number of elements in D that have order 40 , we consider the following:

$$
\begin{array}{r}
\text { Let } d=(h, k) \in D \\
h \in \mathbb{Z}_{8}, k \in \mathbb{Z}_{15} \\
\text { st lcm }(|h|,|k|)=40 \quad \forall d \in D
\end{array}
$$

$$
\begin{array}{r}
|h|=8,|k|=5 \text { or }|h|=5,|k|=8 \\
\text { In either case, }
\end{array}
$$

the number of elements with order 5: $\varphi(5)$
the number of elements with order 8: $\varphi(8)$

Therefore:
the number of elements with order 40: $\varphi(5) \times \varphi(8)$

$$
\begin{array}{r}
=4 \times 4 \\
=16
\end{array}
$$

v. Let (D, \cdot) be a group. Given that D has exactly 10 distinct subgroups, each with 13 elements, how many elements of order 13 does D have?
We know that we have 10 distinct subgroups with 13 elements in each. Let us consider the following:

> Consider $H<D(H$ is a random subgroup of $D)$
> $|H|=13$
> We want to find an element, $h \in H$ st $|h|=13$
> $\forall h \in H,|h|=13$ because $|H|$ is prime
> and $|h|$ divides $|H|$

Therefore, we conclude that $H=\langle h>$ (Cyclic) and thus H has $\varphi(13)$ elements with 13 elements

$$
\varphi(13)=12
$$

We know from a previous HW that the intersection of two subgroups that both have prime order is $\{e\}$.

Hence D has exactly 10 subgroups,
and so it has 10×12 elements of order 13
$=120$ elements

Question 3:

a) Let $f=\left(\begin{array}{lllllllll}1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 4 & 7 & 6 & 8 & 9 & 2 & 3 & 1 & 5\end{array}\right) \in S_{9}$. Find $|f|$.

We have an element in the symmetric group of size 9 , such that $f=\left(\begin{array}{lllllllll}1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 4 & 7 & 6 & 8 & 9 & 2 & 3 & 1 & 5\end{array}\right)$. In order to find the order of f, we need to consider the following:

$$
f=\left(\begin{array}{lll}
1 & 4 & 8
\end{array}\right) \circ\left(\begin{array}{llll}
2 & 7 & 3 & 6
\end{array}\right) \circ\left(\begin{array}{ll}
5 & 9
\end{array}\right)
$$

And so we know that $|f|=\operatorname{lcm}(3,4,2)=12$.

$$
\text { Therefore: }|f|=12
$$

b) Let $\left.f=\left(\begin{array}{lll}1 & 3 & 7\end{array}\right) \circ\left(\begin{array}{lll}1 & 2 & 4\end{array}\right) \circ\left(\begin{array}{lll}2 & 3 & 1\end{array}\right]\right) \in S_{7}$. Find $|f|$.

Similar to part (a), we can simply proceed as follows:

$$
\begin{aligned}
& f=\left(\begin{array}{lllllll}
1 & 2 & 3 & 4 & 5 & 6 & 7 \\
6 & 7 & 2 & 5 & 3 & 4 & 1
\end{array}\right) \\
& f=\left(\begin{array}{llllllll}
1 & 6 & 4 & 5 & 3 & 2 & 7
\end{array}\right)
\end{aligned}
$$

Since we have now written f is the composition of disjoint cycles, we can use the result used in part (a):

$$
|f|=7
$$

Question 4: Let (D, \cdot) be a group st $|D|=77$. Given that H is a normal subgroup of D st $|H|=7$, suppose that D has exactly one subgroup with 11 elements. Prove that D is a cyclic group. Think about D / H.
Let $a \in D, a \neq e$. By Lagrange's theorem, $|a|=7,11$ or 77 . Let F be the unique subgroup of D with 11 elements. Choose $b \notin F$ and $b \notin H$. Since F is a unique subgroup with 11 elements, then $|b| \neq 11$. Therefore, $|b|=7$ or 77 . We say that $|b|=7$ because there is no uniqueness for the subgroup H, implying that even if $b \notin H$, it could still belong to another subgroup with 7 elements.

Let us assume that $|b|=7 . b \cdot H$ is an element of the group $D / H(H \triangleleft D$, and thus D / H is a group), and $b \cdot H \neq H$ (Because $b \notin H$). Furthermore, because $|b|=7$, we have that $b^{7}=e \in D$.

We conclude that $(b \cdot H)^{7}=e \cdot H=H \in D / H$. Thus $|b \cdot H|=7$. However, we have that $|D / H|=11$, and by Lagrange's theorem, that means that $7 \mid 11$. This is not possible since 7 does not divide 11 . This leaves us with one option, and that is $|b|=77$.
Since we have found an element in D that has the same order as the number of elements in the group, we can conclude the following:

$$
D=\langle b\rangle
$$

Therefore, D is a cyclic group.

Homework Four, MTH 320 , Fall 2020, Due date: October 29, 2020, by MIDNIGHT, email your Solution as a PDF to abadawi@aus.edu

Ayman Badawi

QUESTION 1. Let $D_{n}(n \geq 3)$ be the set of all symmetries on $n-g o n$ (see class notes). We know from class notes that $\left(D_{n}, o\right)$ is a group with exactly 2 n elements (exactly n elements are rotations and exactly n elements are reflections, note $e=R_{360}$ and $R_{a}^{-1}=R_{a}$ for every reflection $R_{a} \in D_{n}$.). It is clear that the composition of two rotations is a rotation in D_{n}.
(i) (give a short proof, but clear-cut). Prove that the composition of a rotation with a reflection is a reflection in D_{n} (nice!) (i.e, assume that R is a rotation and R_{a} is a reflection, prove that $R o R_{a}=R_{b}$ for some reflection R_{b} in D_{n}.)
Proof. Let R be a rotation and E be a reflection. Assume that R o $E=R_{1}$ for some rotation R_{1}. Hence $E=$ $R_{1} o R^{-1}$, a contradiction since the composition of two rotations is a rotation. Thus $R o E=F$ for some reflection F. (note, similarly $E o R=H$ for some reflection H.)
(ii) (give a short proof, but clear-cut).Prove that the composition of two reflections is a rotation in D_{n} (i.e, assume that R_{a}, R_{b} are reflections in D_{n}, prove that $R_{a} o R_{b}=R$ for some rotation R in D_{n}.).
Proof Assume that $F_{1} F_{2}=F_{3}$, where F_{1}, F_{2}, F_{3} are some reflections. Since number of rotations $=$ number of reflections, by (i) we conclude $\left\{F_{1} o R_{1}, F_{1} \circ R_{2}, \ldots, F_{1} o R_{n}\right\}=$ set of all reflections. Thus $F_{1} o R_{i}=F_{3}$ for some rotation R_{i}. Since $F_{1} o F_{2}=F_{3}$ and $F_{1} o R_{i}=F_{3}$, we conclude that $R_{i}=F_{2}$, impossible. Thus $F_{1} o F_{2}$ is a rotation.

QUESTION 2. (a) Assume $(D,$.$) is a group such that a^{2}=e$ for every $a \in D$. Prove that D is an abelian group.
Proof. Let $a \in D$. Since $a^{2}=e$, we conclude that $a^{-1}=a$. Let $a, b \in D$. Since, $a . b \in D$, we have $(a . b)^{2}=e$. Thus

$$
(1)(a . b)^{-1}=a . b
$$

Hence

$$
(2)(a \cdot b)^{-1}=b^{-1} \cdot a^{-1}=b \cdot a
$$

. Thus (1) and (2) implies $a . b=b . a$.
(b) Assume that $(D,$.$) is a group such that (a b)^{2}=a^{2} b^{2}$ for every $a, b \in D$. Prove that D is an abelian group.

Proof. $(a . b)^{2}=a . b . a . b=a . a . b . b$. Hence $a^{-1} .(a . b . a . b) . b^{-1}=a^{-1} .(a . a . b . b) . b^{-1}$. Thus b.a $=a . b$.
QUESTION 3. a) Let (D,.) be a group and $a \in D$ such that $|a|=n<\infty$. Prove that $\left|b \cdot a \cdot b^{-1}\right|=|a|=n$ for every $b \in D$.

Proof. Let $m=\left|b . a . b^{-1}\right|$. Note that $\left(b . a . b^{-1}\right)^{n}=b . a . b^{-1} . b . a . b^{-1} . \cdots . b . a . b^{-1}(n$ times $)=b . a^{n} \cdot b^{-1}=b . e . b^{-1}=e$. Hence $m \mid n$. Since $\left|b . a . b^{-1}\right|=m$, we have $\left(b . a . b^{-1}\right)^{m}=b . a \cdot b^{-1} b \cdot a \cdot b^{-1} \cdot \cdots . b \cdot a \cdot b^{-1}=b \cdot a^{m} \cdot b^{-1}=e .(m$ times $)$. Thus $a^{m}=b . b^{-1}=e$. Thus $n \mid m$. Since $m \mid n$ and $n \mid m$, we conclude that $n=m$.
b) Let ($\mathrm{D},$.) be a group and H be a subgroup of D such that $|H|=m<\infty$.
i) Prove that $\left|a . H . a^{-1}\right|=|H|=m$ for every $a \in D$. [Hint : Let $a \in D$ and construct a function $f: H \rightarrow$ a.H. a^{-1} such that $f(b)=a \cdot b \cdot a^{-1}$. Show that f is $1-1$ and onto , (easy)]

Proof. Let $a \in H$. Define $f: H \rightarrow a . H . a^{-1}$ such that $f(h)=a . h . a^{-1}$. We show f is ONTO. Let $d \in a . H . a^{-1}$. Then $d=a \cdot h_{1} \cdot a^{-1}$ for some $h_{1} \in H$. Thus $f\left(h_{1}\right)=a \cdot h_{1} \cdot a^{-1}$. We show f is one-to-one. Assume $f\left(h_{1}\right)=f\left(h_{2}\right)$. Thus $a \cdot h_{1} \cdot a^{-1}=a \cdot h_{2} \cdot a^{-1}$. Hence $h_{1}=h_{2}$.
ii) Let $a \in(D,$.$) . Prove that a . H . a^{-1}$ is a subgroup of D [Hint: Let $x, y \in a . H . a^{-1}$, show that $\left.x . y \in a . H . a^{-1}\right]$.

Proof. Let $x, y \in a . H . a^{-1}$. Since $a . H . a^{-1}$ is a finite set, by a class-notes result, we show $x . y \in a . H . a^{-1}$. Thus $x=a \cdot h_{1} \cdot a^{-1}$ and $y=a \cdot h_{2} \cdot a^{-1}$. Hence $x \cdot y=a \cdot h_{1} \cdot a^{-1} \cdot a \cdot h_{2} \cdot a^{-1}=a \cdot h_{1} \cdot h_{2} \cdot a^{-1} \in a \cdot H \cdot a^{-1}$. Thus $a \cdot H \cdot a^{-1}$ is a subgroup of D.
iii) Assume H is unique (i.e., H is the only subgroup of D with m elements). Prove that H is a normal subgroup of D (nice! and easy, make use of (i) and (ii))

Proof. Let $a \in D$. Hence by (i) and (ii), $a . H . a^{-1}=H$. Thus $a . H=H . a$. Since $a . H=H . a$ for every $a \in D$, we conclude that H is a normal subgroup of D.

QUESTION 4. Let $f=\left(\begin{array}{ll}1 & 2\end{array}\right) o\left(\begin{array}{lll}6 & 2 & 5\end{array}\right) o(16245) \in S_{6}$.
a) Find $|f|$.

Solution We must write f as disjoint cycles. Hence $f=\left(\begin{array}{ll}1 & 3 \\ 6 & 5\end{array} 24\right)$. Thus $|f|=6$.
b) Find f^{-1}
$f^{-1}=(425631)$
c) Is $f \in A_{n}$? explain.

Since f is a 6-cycle, clearly f is an odd permutation (function). Thus $f \notin A_{n}$.
e) Let $h \in A_{9}$ such that $|h|$ is maximum. What is $|h|$? (think, not difficult) (i.e., if $|h|=m$, then $|b|<=m$ for every $\left.b \in A_{9}\right)$

IDEA: Imagine that we Write h as disjoint cycles, by try and error and staring, we conclude that h is a composition of a 5 -cycle with a 3-cycle. Hence $|h|=15$.

QUESTION 5 (Nice, good exercise, see class notes). . Let $f:\left(Z_{12},+\right) \rightarrow\left(Z_{9},+\right)$ be a non-trivial group homomorphism.
a) Find Range(f) and $\operatorname{Ker}(f)$.

By class notes, \mid Range(f)| must be a factor of 9 and 12 (i.e., \mid Range(f)| must be a factor of \mid co-domainl and |domainl). Thus \mid Range $(f) \mid=3$.

Since $\left(Z_{9},+\right)$ is cyclic, Z_{9} has exactly one subgroup with 3 elements. Since $|3|$ is 3 , we have $\operatorname{Range}(f)=<3>=$ $\{0,3,6\}$.

By class-notes (First-Isomorphism Theorem), we have $Z_{12} / \operatorname{Ker}(f) \equiv \operatorname{Range}(f)$. Hence $\left|Z_{12}\right| /|\operatorname{Ker}(f)|=\mid \operatorname{Range}(f)$ Thus $|\operatorname{Ker}(f)|=4$.

Since $\left(Z_{12},+\right)$ is cyclic, it has a unique subgroup K of Z_{12} with 4 elements. To find k choose an element in Z_{12} of order 4 (for example $1^{3}=3$) Hence $K=\{0,3,6,9\}$.
b) What are all possibilities of $f(1)$? For each possibility of $f(1)$, find $f(a)$ for every $a \in Z_{12}$. [Hint: Note if we know $\mathrm{f}(1)$, then we know $f(a)$ for every $a \in Z_{12}$. Since $Z_{12}=<1>$ and f is a group homomorphism, $f(a)=f\left(1^{a}\right)=$ $(f(1))^{a}$. By the first isomorphism theorem, we know $Z_{12} / \operatorname{Ker}(f)$ is group-isomorphic to Range(f) (see class notes: $K(b+\operatorname{Ker}(f))=f(b)$. Hence if $i+\operatorname{Ker}(f)$ is a left coset of $\operatorname{Ker}(\mathrm{f})$. Then $K(i+\operatorname{Ker}(f))=f(i)$. Observe that each element in a left coset can be chosen as a representative, Thus for every $b \in i+\operatorname{Ker}(f)$ (we know $\mathrm{b}+\operatorname{Ker}(\mathrm{f})=\mathrm{i}+$ $\operatorname{Ker}(\mathrm{f})$), we have $K(i+\operatorname{Ker}(f))=K(b+\operatorname{Ker}(f))=f(i)=f(b)$ (i,e., if W is a left coset of $\operatorname{Ker}(\mathrm{f})$, then all elements of W must map to the same number in Z_{9}). Now since 1 is a generator of $Z_{12}, f(1)$ must be a generator of Range(f) (note that Range(f) is a cyclic subgroup of Z_{9}).

Now since $Z_{12}=<1>$, we conclude that Range $(f)=<f(1)>$. Hence $f(1)=3$ or $f(1)=6$ since $<3>=<$ $6>=\operatorname{Range}(f)$. So assume $f(1)=3=1^{3}$. (if you choose, then you can find $\mathrm{f}(\mathrm{a})$ for every $a \in Z_{12}$ Note $f(a)=$ $f\left(1^{a}\right)=(f(1))^{a}=\left(1^{3}\right)^{a}=3 \cdot a(\bmod 9)$

But, here is a different approach :
Now recall from class notes the map $K: Z_{12} / \operatorname{Ker}(f) \rightarrow \operatorname{Range}(f)=\{0,3,6\}$, where $K(a+\operatorname{Ker}(f))=f(a)$. (Note that this map is well-defined, K is group-homomorphism, 1-1, and onto). For assume that $h \in a+\operatorname{Ker}(f)$. We know (class notes) that $h+\operatorname{Ker}(f)=a+\operatorname{Ker}(f)$. Hence $K(a+\operatorname{Ker}(f))=K(h+\operatorname{Ker}(f))=f(h)=f(a)$). Since K is 1-1, each left coset of $Z_{12} / \operatorname{Ker}(f)$ maps to one and only one number in $\operatorname{RANGE}(\mathrm{F})$.

Now we find the left cosets of $\operatorname{Ker}(\mathrm{f})$ (note that $\operatorname{Ker}(\mathrm{f})$ has exactly 3 left cosets)
(1) $\operatorname{Ker}(\mathrm{f})$, and hence $f(a)=0$ for every a in $\operatorname{Ker}(\mathrm{f})$.
(2) $1+\operatorname{Ker}(f)=\{1,4,7,10\}$. Thus $f(a)=f(1)=3$ for every $a \in 1+\operatorname{Ker}(f)$.
(3) $2+\operatorname{Ker}(f)=\{2,5,8,11\}$. Thus $f(a)=f(2)=f\left(1^{2}\right)=(f(1))^{2}=\left(1^{3}\right)^{2}=6$ for every a in $2+\operatorname{Ker}(\mathrm{f})$.

Similarly, assume $f(1)=6=1^{6} \ldots$. YOU DO IT.

Faculty information

Ayman Badawi, Department of Mathematics \& Statistics, American University of Sharjah, P.O. Box 26666, Sharjah, United Arab Emirates. E-mail: abadawi@aus.edu, www.ayman-badawi.com

WARNING: Title too long for running head.
PLEASE supply a shorter form with \backslash headlinetitle

4.5 HW5-Solution

Solution-MTH 320, Exam II, Fall 2020

Ayman Badawi

47

QUESTION 1. (6 points) Let $(D,$.$) be a group with 39$ elements. Assume that D has a normal subgroup with 3 elements. Prove that D is cyclic.

Proof.(very similar to a HW-problem) Since $39=3.13$, we know by HW and by class-result that D has an element a of order 13 . Let $H=\langle a\rangle$. Hence $|H|=13$. Since $[H: D]=3$ is the smallest prime factor of $|D|$, we conclude that H is a normal subgroup of D. Let F be the given normal subgroup of D with 3 elements. It is clear that $H \cap F=\{e\}$. Thus $D=H \cdot F$. Hence $D \approx H \oplus F$ by a class result. It is clear that $F \approx Z_{13}$ and $F \approx Z_{3}$. Hence $D \approx Z_{13} \oplus Z_{3}$. Since Z_{13}, Z_{3} are cyclic groups and $\operatorname{gcd}(13,3)=1$, we conclude that $D \approx Z_{13} \oplus Z_{3} \approx Z_{39}$ is a cyclic group.

QUESTION 2. Let $(D,$.$) be an abelian group with 245=5 \cdot 7^{2}$ elements. Assume that D is non-cyclic.
i) (6 points) Find $m_{1}, . ., m_{k}$ such that $D \approx\left(Z_{m_{1}},+\right) \oplus \cdots \oplus\left(Z_{m_{k}},+\right)$. SHOW THE WORK.
(similar to a HW-problem) Since D is abelian, D has a normal subgroup, H, with $7^{2}=49$ elements and it has a normal subgroup F with 5 elements. Since $g c d(5,49)=1$, we conclude that $H \cap F=\{e\}$. Thus $D=H \cdot F$. Hence, we know that $D \approx H \oplus F$. It is clear that $F \approx Z_{5}$. Since $|H|=7^{2}$, By a HW-problem we know that either $F \approx Z_{49}$ OR $H \approx Z_{7} \oplus Z_{7}$. Hence either $D \approx H \oplus F \approx Z_{49} \oplus Z_{5}$ OR $D \approx H \oplus F \approx Z_{7} \oplus Z_{7} \oplus Z_{5}$. Assume that $D \approx Z_{49} \oplus Z_{5}$. Since $\operatorname{gcd}(49,5)=1$, we conclude that $D \approx Z_{49} \oplus Z_{5} \approx Z_{245}$ is cyclic, a contradiction (since it is given that D is non-cyclic). Thus $D \approx Z_{7} \oplus Z_{7} \oplus Z_{5} \approx Z_{7} \oplus Z_{35}$. Thus you may choose either ($m_{1}=m_{2}=7$ and $m_{3}=5$) OR ($m_{1}=7$ and $m_{2}=35$).
ii) ($\mathbf{3}$ points) How many elements of order 35 does D have?

From (i), we know that $D \approx Z_{7} \oplus Z_{35}$. Let $(a, b) \in Z_{7} \oplus Z_{35}$ such that $|(a, b)|=L C M[|a|,|b|]=35$. Since $\operatorname{gcd}(35,7)=7$, we conclude that $|(a, b)|=35$ if and only $|b|=35$ OR $|a|=7$ and $|b|=5$. Hence a can be any element in Z_{7} and we know that Z_{35} has exactly $\phi(35)=24$ elements of order 35 OR a can be any nonzero element of Z_{7} and $b \in Z_{35}$ such that $|b|=5$. We know that Z_{35} has exactly $\phi(5)=4$ elements of order 5 . Thus D has exactly $7 \cdot 24+6 \cdot 4=168+24=192$ elements of order 35 .
iii) (3 points) How many elements of order 7 does D have? For this part, maybe it is easier to use the other version of D, i.e., $D \approx Z_{7} \oplus Z_{7} \oplus Z_{5}$. Let $(a, b, c) \in Z_{7} \oplus Z_{7} \oplus Z_{5}$ such that $|(a, b, c)|=L C M[|a|,|b|,|c|]=7$. Hence either (a is a nonzero element of Z_{7} and $b \in Z_{7}$ and $c=0$) $\mathbf{O R}\left(a=0\right.$ and b is a nonzero element $o f Z_{7}$ and $c=0$). Thus D has exactly $6 \cdot 7 \cdot 1+1 \cdot 6 \cdot 1=48$ elements of order 7 .

QUESTION 3. (5 points) Let $(D,$.$) be a non-cyclic-group with 2020$ elements. Prove that there are finitely many groups, say D_{1}, \ldots, D_{m}, each with 2020 elements such that $D \not \approx D_{i}$ (i.e., D is not group-isomorphic to D_{i}) for every i, where $1 \leq i \leq m$.

The idea is in Caley's Theorem: We know that every group with 2020 elements is isomorphic to a subgroup of S_{2020} by Caley's Theorem. Since S_{2020} is a FINITE group, S_{2020} has FINITELY many subgroups of order 2020. In particular, S_{2020} has FINITELY many NON-ISOMORPHIC subgroups of order 2020, say M_{1}, \ldots, M_{k}, where $k<\infty$. Thus each group of order 2020 is isomorphic to one and only one M_{i} for some $i, 1 \leq i \leq k$. We may assume that $D \approx M_{1}$. Then $D \not \approx M_{i}$ for every $i, 2 \leq i \leq k$. Thus if L a group with 2020 elements and $L \not \approx D$, then $L \approx M_{i}$ for some $i, 2 \leq i \leq k$. Hence D is not isomorphic to exactly $k-1$ groups of order 2020.

QUESTION 4. Let $f:\left(Z_{6},+\right) \oplus\left(Z_{6},+\right) \rightarrow\left(Z_{6},+\right)$ such that $f((a, b))=2 \cdot\left(a+b^{-1}\right)$ (note that b^{-1} means the inverse of b under addition $\bmod 6$, and in $2 \cdot\left(a+b^{-1}\right)$, the " + " means addition $\bmod 6$ and $" \cdot "$ means multiplication mod 6 .
i) (3 points) Show that f is a group-homomorphism.

Trivial: Let $(a, b),(c, d) \in\left(Z_{6},+\right) \oplus\left(Z_{6},+\right)$. We show $f((a, b) \oplus(c, d))=f(a, b)+f(c, d)$. (note that in general $(a \cdot b)^{-1}=b^{-1} \cdot a^{-1}$, here $" \cdot$ " is + mod 6, and Z_{6} is abelian. Hence $(a+b)^{-1}=b^{-1}+a^{-1}=a^{-1}+b^{-1}$)

Now $f((a, b) \oplus(c, d))=f(a+c, b+d)=2\left(a+c+(b+d)^{-1}\right)=2 a+2 c+2 b^{-1}+2 d^{-1}=2\left(a+b^{-1}\right)+2\left(c+d^{-1}\right)=$ $f(a, b)+f(c, d)$.
ii) ($\mathbf{3}$ points) Find the range of f.

We know $|\operatorname{Range}(f)|$ is a factor of 6 . Since Z_{6} is cyclic, we know that Z_{6} has unique subgroup of order 2 and it has unique subgroup of order 3. It is clear that $1 \notin \operatorname{Range}(f)$. Hence $\operatorname{Range}(f) \neq Z_{6}$. Since $f(1,0)=2 \in$ $\operatorname{Range}(f)$, we conclude that $\operatorname{Range}(f)=\{0,2,4\}$ is the unique subgroup of Z_{6} with 3 elements.
iii)(5 points) Find $\operatorname{ker}(f)$.

We know that $\left(Z_{6} \oplus Z_{6}\right) / \operatorname{Ker}(f) \approx \operatorname{Range}(f)$. Hence $\mathbf{3 6} / \mid \operatorname{Ker}(\mathbf{f})=3$. Thus $|\operatorname{Ker}(f)|=12$. So we need to find 12 elements in $Z_{6} \oplus Z_{6}$, say (a, b), such that $2\left(a+b^{-1}\right)=0$ in Z_{6}. So if we set $a+b^{-1}=0$, we get that $b=a$. Thus $(0,0),(1,1),(2,2),(3,3),(4,4),(5,5) \in \operatorname{Ker}(f)$, but we still need to find 6 more elements. By staring at $2\left(a+b^{-1}\right)=0$ in Z_{6}, we see that if $a+b^{-1}=3$ in Z_{6}, then $2\left(a+b^{-1}\right)=0$ in Z_{6}. By Setting $a+b^{-1}=3$ and solving for b, we get $b^{-1}=3+a^{-1}$. Hence $b=\left(3+a^{-1}\right)^{-1}=3^{-1}+a=3+a$ in Z_{6}. Thus $(0,3),(1,4),(2,5),(3,0),(4,1),(5,2) \in \operatorname{Ker}(f)$.

Hence $\operatorname{Ker}(f)=\{(0,0),(1,1),(2,2),(3,3),(4,4),(5,5),(0,3),(1,4),(2,5),(3,0),(4,1),(5,2)\}$
QUESTION 5. Let $D=\left(\operatorname{Aut}\left(Z_{20}\right), o\right)$. [Recall: $\operatorname{Aut}\left(Z_{20}\right)$ is the group of all group-isomorphism from $\left(Z_{20},+\right)$ onto $\left(Z_{20},+\right)$ under composition.]
i) ($\mathbf{3}$ points) Is D cyclic? explain?

One lecture (1 hours and 15 minutes) was only on $A u t\left(Z_{n}\right)$. We know $\operatorname{Aut}\left(Z_{20}\right) \approx U(20)$. Since $20=2^{2} \cdot 5$, we conclude that $U(20)$ is not cyclic by class-result. Thus $\left(A u t\left(Z_{20}\right), o\right)$ is not cyclic.
ii) (4 points) Construct a non-cyclic subgroup of D, say (H, o), of D such that $|H|=4$.

See my lecture on $A u t\left(Z_{n}\right)$. We constructed a group-isomorphism $K:((U(20),$.$) (note '"." is multiplication$ module 20) $\rightarrow\left(\operatorname{Aut}\left(Z_{20}\right), o\right)$ such that $k(a)=f_{a}$ for every $a \in U(20)$, where $f_{a} \in \operatorname{Aut}\left(Z_{20}\right)$ and $f_{a}:\left(Z_{20},+\right) \rightarrow$ $\left(Z_{20},+\right)$ such that $f_{a}(b)=a b$ in Z_{20} for every $b \in Z_{20}$. Since $U(n)$ is abelian, we conclude that $A u t\left(Z_{n}\right)$ is abelian. Hence one way to construct a noncyclic-subgroup of $A u t\left(Z_{20}\right)$ with 4 elements: Construct two subgroups H, F of $A u t\left(Z_{20}\right)$ such that $|H|=|F|=2$. Then $L=H o K$ will be a noncyclic subgroup with 4 elements since $H \cap F=\{e\}$.

Hence choose $a=9 \in U(20)$. Then $|a|=2$. Since $K(9)=f_{9}: Z_{20} \rightarrow Z_{20}$, where $f_{9}(b)=9 b$ in Z_{20} for every $b \in Z_{20}$, we conclude $\left|f_{9}\right|=2$. Note that the identity, e, in $\operatorname{Aut}\left(Z_{20}\right)$ is the identity map $I: Z_{20} \rightarrow Z_{20}$ such that $I(b)=b$ for every $b \in Z_{20}$. Thus $H=\left\{I, f_{9}\right\}$ is a subgroup of $A u t\left(Z_{20}\right)$ with 2 elements.

Choose $a=11 \in U(20)$. Then $|11|=2$. Thus (similar to the case above), $K=\left\{I, f_{11}\right\}$ is a subgroup of $\operatorname{Aut}\left(Z_{20}\right)$ with 2 elements. Thus $H o K=\left\{I, f_{9}, f_{11}, f_{19}\right\}$ is a non-cyclic subgroup of $\operatorname{Aut}\left(Z_{20}\right)$ with 4 elements (note that $\left(f_{9} \circ f_{11}\right)(b)=f_{9}(11 b)=99 b=19 b$ for every $b \in Z_{20}$.

QUESTION 6. Let $n=16 \cdot 9$ and $D=U(n)$.
(i)(4 points) Find $m_{1}, . ., m_{k}$ such that $D \approx\left(Z_{m_{1}},+\right) \oplus \cdots \oplus\left(Z_{m_{k}},+\right)$. SHOW THE WORK.

By the last lecture (before the exam), we know that $U\left(2^{4} \cdot 3^{2}\right) \approx U\left(2^{4}\right) \oplus U\left(3^{2}\right)$. Also we know that $U\left(2^{m}\right)$ $(m \geq 3) \approx Z_{2} \oplus Z_{2^{(m-2)}}$ and $U\left(p^{n}\right)(p$ is prime, $p \neq 2$ and $n \geq 1) \approx Z_{p-1} \oplus Z_{p^{(n-1)}} \approx Z_{p^{n}-p^{(n-1)}}$.

Hence $U\left(2^{4} \cdot 3^{2}\right) \approx U\left(2^{4}\right) \oplus U\left(3^{2}\right) \approx Z_{2} \oplus Z_{4} \oplus Z_{2} \oplus Z_{3} \approx Z_{2} \oplus Z_{2} \oplus Z_{12}$.
So you may choose either ($m_{1}=2, m_{2}=4, m_{3}=2$ and $m_{4}=3$) OR ($m_{1}=m_{2}=2$ and $m_{3}=12$)
(ii) (2 points) Let $a \in D$ such that $|a|$ is maximum. Find $|a|$.

Let $(b, c, d) \in Z_{2} \oplus Z_{2} \oplus Z_{12}$ such that $|(b, c, d)|=L C M[|b|,|c|,|d|]=k$ such that k is maximum. By staring $k=12$. Since $U\left(2^{4} \cdot 3^{2}\right) \approx Z_{2} \oplus Z_{2} \oplus Z_{12}$. we conclude that $|a|=k=12$.

Faculty information

Qi) $\cdot 5 \cdot x+3=8$ in \mathbb{Z}_{12}. $U(2)=\{1,5,7,11\} .5 \in U(1) \therefore 3!x \in \mathbb{Z}_{12}$, st $5 x+3=8$

$$
\begin{aligned}
5 x & =8+3^{-1} \\
5 x & =8+9 \\
5 \cdot x & =5 \\
x & =5^{-1} \cdot 5 \\
x & =1
\end{aligned}
$$

$$
3^{-1}=9[\text { Additive, mod in] }
$$

$$
8+9(\operatorname{mad} / 2)=5
$$

- Write b in terms of $a, a, b \in \mathbb{Z}_{q}, a^{-1}+4 b=6 \in \mathbb{Z}_{q} \quad\left[a^{-1}\right.$ is the additive inverse mod $\left.q\right]$

$$
\begin{aligned}
a^{-1}+4 b & =6 \\
4 b & =a+6 \\
b & =4^{-1} \cdot(a+6) \quad 4^{-1}=7 \quad[\text { Multipliaitive, Mod } 9] \\
b & =7 \cdot(a+6) \\
b & =7 \cdot a+7 \cdot 6 \\
b & =7 \cdot a+6
\end{aligned}
$$

Q2) $D=U\left(2^{6} \cdot 5^{2}\right) \approx \mathbb{Z}_{m_{1}} \oplus \cdots \oplus \mathbb{Z}_{m_{w}}$, where $m_{1, \cdots} \cdots, m_{w}$ are invariant factors of D.

i) Find $m_{1}, \ldots, m_{N}: U\left(2^{6} 5^{2}\right) \approx U\left(2^{6}\right) \oplus U\left(s^{2}\right) \approx \mathbb{Z}_{2} \oplus \mathbb{Z}_{2} 4 \oplus \mathbb{Z}_{4} \oplus \mathbb{Z}_{5}$

$$
\approx \mathbb{Z}_{2} \oplus \mathbb{Z}_{4} \oplus \mathbb{Z}_{80} . \quad m_{1}=2, m_{2}=4, m_{3}=80
$$

ii) How mary elements of order 4 inD? $D \approx \mathbb{Z}_{2} \oplus \mathbb{Z}_{4} \oplus \mathbb{Z}_{80}$

We want $\operatorname{lam}(|a|,|b|,|a|)=4$, s.t $(a, b, c) \in D$.
$|a|=1 \rightarrow \ln (| | b| | a \mid)=4 \quad b=1: \Phi(4)=\Phi\left(2^{2}\right)=2$ elements in $\mathbb{Z}_{80} . \quad 2 \times 1=6$

$$
b=2: \text { Want }|c|=4 \Rightarrow \Phi(4)=2 \text { elenats in } \mathbb{Z}_{80} . \Phi(x)=1 \text { elemantin } \vec{Z}_{4} \Rightarrow 2 \times 1=2>12
$$

$b=4: \rightarrow|c|=1: 1$ element in $\mathbb{Z}_{80} \& I(4)=2$ elements in $\mathbb{Z}_{4} \rightarrow 2 x_{1} \mid=2$ elements
$厶_{1} \mid G=2$: $\Phi(x)=1$ elamedinin $Z_{80} \& \Phi(\varphi)=2$ elenatin $Z_{\varphi} \rightarrow 2 \times 1=2$
$|a|=2 \rightarrow \mid \operatorname{cm}(|b|,|c|)=4 \rightarrow 12$ elements as above.

$\therefore 12+12=24$ elements of order 4

Q2) iii) $D \approx \mathbb{Z}_{2} \oplus \mathbb{Z}_{4} \oplus \mathbb{Z}$. How many elements of order $5 \in D$?
We want $(a, b, c) \in D$ sit $\mid c m(|a|,|b|,|c|)=5$
Only choice $\rightarrow a=0, b=0$ and $|c|=5 \quad \Phi(5)=4$ elements of order 5 in \mathbb{Z}_{80}
$|a|=1,|b|=1 \quad \therefore 4$ elements of order 5 in D.
iv) $a \in D$ s.t $|a|=$ maximum. Find $|a|$.

Want $(a, b, c) \in D$ sit $\operatorname{lam}(|a|,|b|,|c|)=$ maxin,unn

$$
|a|=1 \text { or } 2,|b|=1,2,4 . \quad|c|=1,2,4,5,8,10,16,20,40,80
$$

$$
\begin{aligned}
& \text { Let } \mid a=5, \text { and } 1 a \mid \text { set or } \\
& \operatorname{lcm}(5,4,2)=20 \text {. Maximum }|a|=20 \\
& 5 \text { is the highest }
\end{aligned}
$$

5 is the highest number thatelelcanbe/ that is relatively prime top 2 .
note: |cf combe $=10$ os well Ere/aing/p primeto 4] but $\operatorname{lng}(2,2,0)=20$ same/as above.

Let $x=(a, b, c)$ of maximum order. Since $U\left(2^{\wedge} 6.5^{\wedge} 2\right)=Z_{-} 2$ (opus) $Z_{-} 4$ (oplus) $Z_{-} 80$ and $2|4| 80$, we
know Max Order of $x=$ Max LCM $[|a|,|b|,|c|]=80$
know Max Order of $x=\operatorname{Max}$ LCM $[|a|,|b|,|c|]=80$

$$
\begin{aligned}
& \text { Qu) } D \approx \mathbb{Z}_{6} \oplus \mathbb{Z}_{4} \oplus \mathbb{Z}_{10}, F \approx \mathbb{Z}_{2} \oplus \mathbb{Z}_{6} \oplus \mathbb{Z}_{20} \\
& D \approx \mathbb{Z}_{2} \oplus \mathbb{Z}_{3} \oplus \mathbb{Z}_{4} \oplus \mathbb{Z}_{\odot} \oplus \mathbb{Z}_{5} \text { and } F \approx \mathbb{Z}_{2} \oplus \mathbb{Z}_{2} \oplus \mathbb{Z}_{3} \oplus \mathbb{Z}_{4} \oplus \underline{\mathbb{Z}_{5}} \\
& \Rightarrow D \approx \mathbb{Z}_{6} \oplus \mathbb{Z}_{2} \oplus \mathbb{Z}_{2} \quad \text { and } F \approx \mathbb{Z}_{60} \oplus \mathbb{Z}_{2} \oplus \mathbb{Z}_{2} .
\end{aligned}
$$

Sine D and F have th same innaimet haters, $D \approx F_{\text {" }}$

$$
\begin{aligned}
& L \approx \mathbb{Z}_{2} \oplus \mathbb{Z}_{1} \oplus \mathbb{Z}_{12} \\
& L \approx \mathbb{Z}_{2} \oplus \mathbb{Z}_{2} \oplus \mathbb{Z}_{5} \oplus \mathbb{Z}_{3} \oplus \mathbb{Z}_{4} \\
& L \approx \mathbb{Z}_{60} \oplus \mathbb{Z}_{2} \oplus \mathbb{Z}_{2} .
\end{aligned}
$$

Since the inlowiout tutors are unique, $L \approx D$.

Q4) i) Unto isomorphic, Classify all finite Abelian groups with $2^{5} \cdot 5^{3}$ elements.

ii) Non-cyclic. has element order $200=2^{3} 5^{2}$. Write in terms of invariant factors.

- $\mathbb{Z}_{32} \oplus \mathbb{Z}_{5} \oplus \mathbb{Z}_{25} \approx \mathbb{Z}_{5} \oplus \mathbb{Z}_{800}$
- $\mathbb{Z}_{16} \oplus \mathbb{Z}_{2} \oplus \mathbb{Z}_{125} \approx \mathbb{Z}_{2} \oplus \mathbb{Z}_{2000}$
- $\mathbb{Z}_{8} \oplus \mathbb{Z}_{4} \oplus \mathbb{Z}_{125} \approx \mathbb{Z}_{4} \oplus \mathbb{Z}_{1000}$
- $\mathbb{Z}_{8} \oplus \mathbb{Z}_{4} \oplus \mathbb{Z}_{5} \oplus \mathbb{Z}_{25} \approx \mathbb{Z}_{20} \oplus \mathbb{Z}_{200}$
- $\mathbb{Z}_{8} \oplus \mathbb{Z}_{2} \oplus \mathbb{Z}_{2} \oplus \mathbb{Z}_{125} \approx \mathbb{Z}_{2} \oplus \mathbb{Z}_{2} \oplus \mathbb{Z}_{1000}$
- $\mathbb{Z}_{8} \oplus \mathbb{Z}_{2} \oplus \mathbb{Z}_{2} \oplus \mathbb{Z}_{5} \oplus \mathbb{Z}_{25} \approx \mathbb{Z}_{2} \oplus \mathbb{Z}_{10} \oplus \mathbb{Z}_{200}$

The converse of Lagrange is thu for Abelion grays.
\therefore Fattens one subgroup of H, of order 3, one of order 11 , and of order 33 .
Let $F<H$ s.t $|F|=3$ and $L<H$ s.t $\mid 4=11$.
Both Fond L are cyclic as their cardinality is prime.
The implies, $\exists f \in F$ and $\exists l \in L$ sst $|f|=3$ and $|l|=11$.
conibibs $f \cdot l$. Sine $f, l \in H, f \cdot l \in A . \quad H \quad,=1$,
$|f, l|=|f| \cdot|l|$ as ged $(|f,|l|)=1 . \quad|f l|=3 \times 11=33$.
$\therefore \exists h \in H$ sib $|h|=33 . \therefore H$ is cyclic.
Q2(ii) Let F be the unique subgroup of D with 5 elements and $M=D / H$. Let a in D - (F UH). Then $a^{*} H$ not equal to H. Since $|M|=5,|a * H|=5$. Thus 5 must divide $|a|$. Since a is not in F and F is unique, $|a|=13$ or 65. Since 5 does not divide 13, $|a|$ is not 13 . Thus $|a|=65$. Hence D is cyclic.

Q2) i) 色 $\langle 4\rangle=\{4,8,4012,16,0\}=H, H \angle D \&|H|=5$
ii) Left cosets of H

We know number of all left coset
of H is $|\mathrm{D}| /|\mathrm{H}|=20 / 5=4$.
So we have
H
$1+\mathrm{H}=\{5,9,13,17,1\}, 2+\mathrm{H}=\{6$, $10,14,18,2\}, 3+H=\{7,11,15$,
$19,3\}$
tinct left coset of $\mathrm{H}:$
$H, 1+H, 2+H, 3+H$.

QB) $D=\mathbb{Z}_{6} \oplus \mathbb{Z}_{35}$.
i) $\operatorname{gcd}(6,35)=1 \therefore$ By $H W$, since \mathbb{Z}_{6} and \mathbb{Z}_{35} are caplin and $\operatorname{ged}(6,35)=1, \quad D=\mathbb{Z}_{6} \not \mathbb{Z}_{35}$ is
ii) $D=\langle(1,1)\rangle$ is cyclic,
iii). if $\left.a \in \mathbb{Z}_{6}, b \in \mathbb{Z}_{35},(a, b) \in D . \mid a, b\right) \mid=\operatorname{lcm}(|a|,|b|)$ want $=15$.
|a| must be $3 \quad$ Sine \mathbb{Z}_{6} is Cyclic, there are $\Phi(3)$ elnath of order $3 \quad \Phi(3)=(3-1) \cdot 3^{\circ}=2$ (b) must be 5 . Since \mathbb{Z}_{35} is cyclic, there ore $\Phi(5)$ elands of order $5 . \Phi(5)=(5-1) 5^{\circ}=4$.

There are 2 possible choice for a, and 4 possible chores for $b . \therefore 4 \times 2=8$ elements of
iv) $\{0,3\} \oplus\{5,10,15,20,25,30,0\} .=\{(0,5),(0,10),(0, . \quad$ order 15 .

Qt) $A=(125) \circ(652) \circ(38610)$ $15), \ldots,(3,5),(3,10), \ldots$
i) $|A|$: $(3,30)\}$

$$
\begin{aligned}
& A=(1261038) \quad \text { 程 } \\
& |A|=\sigma_{4}
\end{aligned}
$$

ii) A is an od permutation, as $|A|$ is even. $A=(18) \circ(13) \circ(10) \circ(16) \circ(12)$
iii)

$$
\begin{aligned}
& F A \cdot A \circ(1023)=(1261038) \circ(1023) \\
&=(128) 0(106) \\
&|A \circ(123)|=\operatorname{lcm}(3,2)=6
\end{aligned}
$$

Q5) i) \mid Range $(f) \mid=2 \operatorname{Or} 4 \quad \operatorname{Range}(f)=\{0,6\}$ or $\{0,3,6,9\}$

iii) If $\operatorname{kar}(f)=\{0,4,8,12\} \quad$ Similar $(y$, If $\operatorname{ker}(f)=\{0,2,4,6,8,10,12,14\}$,

$$
\operatorname{and} \operatorname{Range}(f)=\{0,3,6,9\}
$$

$$
f(0)=f(4)=f(8)=f(12)=0
$$

$$
\text { and Range }(P)=\{0,6\} \text {, }
$$

Since $\mathbb{Z}_{16}=\langle 1\rangle$, and f is a Group hanomorephism,

$$
\text { some } \mathbb{Z}_{16}=\langle 1\rangle \text {, \& fisc } G \cdot H, f(1)=(f(1))^{k}=b \text {. }
$$

$$
f\left(1^{k}\right)=(f(1))^{k}=b^{k} .
$$

\therefore By HW, we know: $(a+\operatorname{Ker}(f) \rightarrow f(a))$

$$
\begin{aligned}
& f(1)=f(5)=f(9)=f(13)=b \\
& \left.f()^{2}\right)=f(2)=f(6)=f(12)=f(14)=b^{2} \\
& f\left(1^{3}\right)=f(3)=f(7)=f(11)=f(15)=b^{3}
\end{aligned}
$$

$$
\begin{aligned}
& \text { Similarly, If } \operatorname{Rer}(f)=\{0,2,4,6,8,10,12,14\} \text {, } \\
& \text { and Ramp }
\end{aligned}(1-6\}
$$

$$
f(0)=f(2)=f(4)=f(6)=f(3)=f(10)=f(12)=f(14)=0
$$

\therefore We know $1^{k}+$ k er $^{(f)} \rightarrow\left[f(1)^{\text {k. }}\right.$
Consider $1+\operatorname{ker}(f)$, We hove:

$$
f(1)=f(3)=f(5)=f(7)=f(9)=f(1)=f(13)=f(15)=b \text {. }
$$

continued--

4.s Exam Two Solution

Solution-MTH 320, Exam II, Fall 2020

Ayman Badawi

47

QUESTION 1. (6 points) Let $(D,$.$) be a group with 39$ elements. Assume that D has a normal subgroup with 3 elements. Prove that D is cyclic.

Proof.(very similar to a HW-problem) Since $39=3.13$, we know by HW and by class-result that D has an element a of order 13 . Let $H=\langle a\rangle$. Hence $|H|=13$. Since $[H: D]=3$ is the smallest prime factor of $|D|$, we conclude that H is a normal subgroup of D. Let F be the given normal subgroup of D with 3 elements. It is clear that $H \cap F=\{e\}$. Thus $D=H \cdot F$. Hence $D \approx H \oplus F$ by a class result. It is clear that $F \approx Z_{13}$ and $F \approx Z_{3}$. Hence $D \approx Z_{13} \oplus Z_{3}$. Since Z_{13}, Z_{3} are cyclic groups and $\operatorname{gcd}(13,3)=1$, we conclude that $D \approx Z_{13} \oplus Z_{3} \approx Z_{39}$ is a cyclic group.

QUESTION 2. Let $(D,$.$) be an abelian group with 245=5 \cdot 7^{2}$ elements. Assume that D is non-cyclic.
i) (6 points) Find $m_{1}, . ., m_{k}$ such that $D \approx\left(Z_{m_{1}},+\right) \oplus \cdots \oplus\left(Z_{m_{k}},+\right)$. SHOW THE WORK.
(similar to a HW-problem) Since D is abelian, D has a normal subgroup, H, with $7^{2}=49$ elements and it has a normal subgroup F with 5 elements. Since $g c d(5,49)=1$, we conclude that $H \cap F=\{e\}$. Thus $D=H \cdot F$. Hence, we know that $D \approx H \oplus F$. It is clear that $F \approx Z_{5}$. Since $|H|=7^{2}$, By a HW-problem we know that either $F \approx Z_{49}$ OR $H \approx Z_{7} \oplus Z_{7}$. Hence either $D \approx H \oplus F \approx Z_{49} \oplus Z_{5}$ OR $D \approx H \oplus F \approx Z_{7} \oplus Z_{7} \oplus Z_{5}$. Assume that $D \approx Z_{49} \oplus Z_{5}$. Since $\operatorname{gcd}(49,5)=1$, we conclude that $D \approx Z_{49} \oplus Z_{5} \approx Z_{245}$ is cyclic, a contradiction (since it is given that D is non-cyclic). Thus $D \approx Z_{7} \oplus Z_{7} \oplus Z_{5} \approx Z_{7} \oplus Z_{35}$. Thus you may choose either ($m_{1}=m_{2}=7$ and $m_{3}=5$) OR ($m_{1}=7$ and $m_{2}=35$).
ii) ($\mathbf{3}$ points) How many elements of order 35 does D have?

From (i), we know that $D \approx Z_{7} \oplus Z_{35}$. Let $(a, b) \in Z_{7} \oplus Z_{35}$ such that $|(a, b)|=L C M[|a|,|b|]=35$. Since $\operatorname{gcd}(35,7)=7$, we conclude that $|(a, b)|=35$ if and only $|b|=35$ OR $|a|=7$ and $|b|=5$. Hence a can be any element in Z_{7} and we know that Z_{35} has exactly $\phi(35)=24$ elements of order 35 OR a can be any nonzero element of Z_{7} and $b \in Z_{35}$ such that $|b|=5$. We know that Z_{35} has exactly $\phi(5)=4$ elements of order 5 . Thus D has exactly $7 \cdot 24+6 \cdot 4=168+24=192$ elements of order 35 .
iii) (3 points) How many elements of order 7 does D have? For this part, maybe it is easier to use the other version of D, i.e., $D \approx Z_{7} \oplus Z_{7} \oplus Z_{5}$. Let $(a, b, c) \in Z_{7} \oplus Z_{7} \oplus Z_{5}$ such that $|(a, b, c)|=L C M[|a|,|b|,|c|]=7$. Hence either (a is a nonzero element of Z_{7} and $b \in Z_{7}$ and $c=0$) $\mathbf{O R}\left(a=0\right.$ and b is a nonzero element $o f Z_{7}$ and $c=0$). Thus D has exactly $6 \cdot 7 \cdot 1+1 \cdot 6 \cdot 1=48$ elements of order 7 .

QUESTION 3. (5 points) Let $(D,$.$) be a non-cyclic-group with 2020$ elements. Prove that there are finitely many groups, say D_{1}, \ldots, D_{m}, each with 2020 elements such that $D \not \approx D_{i}$ (i.e., D is not group-isomorphic to D_{i}) for every i, where $1 \leq i \leq m$.

The idea is in Caley's Theorem: We know that every group with 2020 elements is isomorphic to a subgroup of S_{2020} by Caley's Theorem. Since S_{2020} is a FINITE group, S_{2020} has FINITELY many subgroups of order 2020. In particular, S_{2020} has FINITELY many NON-ISOMORPHIC subgroups of order 2020, say M_{1}, \ldots, M_{k}, where $k<\infty$. Thus each group of order 2020 is isomorphic to one and only one M_{i} for some $i, 1 \leq i \leq k$. We may assume that $D \approx M_{1}$. Then $D \not \approx M_{i}$ for every $i, 2 \leq i \leq k$. Thus if L a group with 2020 elements and $L \not \approx D$, then $L \approx M_{i}$ for some $i, 2 \leq i \leq k$. Hence D is not isomorphic to exactly $k-1$ groups of order 2020.

QUESTION 4. Let $f:\left(Z_{6},+\right) \oplus\left(Z_{6},+\right) \rightarrow\left(Z_{6},+\right)$ such that $f((a, b))=2 \cdot\left(a+b^{-1}\right)$ (note that b^{-1} means the inverse of b under addition $\bmod 6$, and in $2 \cdot\left(a+b^{-1}\right)$, the " + " means addition $\bmod 6$ and $" \cdot "$ means multiplication mod 6 .
i) (3 points) Show that f is a group-homomorphism.

Trivial: Let $(a, b),(c, d) \in\left(Z_{6},+\right) \oplus\left(Z_{6},+\right)$. We show $f((a, b) \oplus(c, d))=f(a, b)+f(c, d)$. (note that in general $(a \cdot b)^{-1}=b^{-1} \cdot a^{-1}$, here $" \cdot$ " is + mod 6, and Z_{6} is abelian. Hence $(a+b)^{-1}=b^{-1}+a^{-1}=a^{-1}+b^{-1}$)

Now $f((a, b) \oplus(c, d))=f(a+c, b+d)=2\left(a+c+(b+d)^{-1}\right)=2 a+2 c+2 b^{-1}+2 d^{-1}=2\left(a+b^{-1}\right)+2\left(c+d^{-1}\right)=$ $f(a, b)+f(c, d)$.
ii) ($\mathbf{3}$ points) Find the range of f.

We know $|\operatorname{Range}(f)|$ is a factor of 6 . Since Z_{6} is cyclic, we know that Z_{6} has unique subgroup of order 2 and it has unique subgroup of order 3. It is clear that $1 \notin \operatorname{Range}(f)$. Hence $\operatorname{Range}(f) \neq Z_{6}$. Since $f(1,0)=2 \in$ $\operatorname{Range}(f)$, we conclude that $\operatorname{Range}(f)=\{0,2,4\}$ is the unique subgroup of Z_{6} with 3 elements.
iii)(5 points) Find $\operatorname{ker}(f)$.

We know that $\left(Z_{6} \oplus Z_{6}\right) / \operatorname{Ker}(f) \approx \operatorname{Range}(f)$. Hence $\mathbf{3 6} / \mid \operatorname{Ker}(\mathbf{f})=3$. Thus $|\operatorname{Ker}(f)|=12$. So we need to find 12 elements in $Z_{6} \oplus Z_{6}$, say (a, b), such that $2\left(a+b^{-1}\right)=0$ in Z_{6}. So if we set $a+b^{-1}=0$, we get that $b=a$. Thus $(0,0),(1,1),(2,2),(3,3),(4,4),(5,5) \in \operatorname{Ker}(f)$, but we still need to find 6 more elements. By staring at $2\left(a+b^{-1}\right)=0$ in Z_{6}, we see that if $a+b^{-1}=3$ in Z_{6}, then $2\left(a+b^{-1}\right)=0$ in Z_{6}. By Setting $a+b^{-1}=3$ and solving for b, we get $b^{-1}=3+a^{-1}$. Hence $b=\left(3+a^{-1}\right)^{-1}=3^{-1}+a=3+a$ in Z_{6}. Thus $(0,3),(1,4),(2,5),(3,0),(4,1),(5,2) \in \operatorname{Ker}(f)$.

Hence $\operatorname{Ker}(f)=\{(0,0),(1,1),(2,2),(3,3),(4,4),(5,5),(0,3),(1,4),(2,5),(3,0),(4,1),(5,2)\}$
QUESTION 5. Let $D=\left(\operatorname{Aut}\left(Z_{20}\right), o\right)$. [Recall: $\operatorname{Aut}\left(Z_{20}\right)$ is the group of all group-isomorphism from $\left(Z_{20},+\right)$ onto $\left(Z_{20},+\right)$ under composition.]
i) ($\mathbf{3}$ points) Is D cyclic? explain?

One lecture (1 hours and 15 minutes) was only on $A u t\left(Z_{n}\right)$. We know $\operatorname{Aut}\left(Z_{20}\right) \approx U(20)$. Since $20=2^{2} \cdot 5$, we conclude that $U(20)$ is not cyclic by class-result. Thus $\left(A u t\left(Z_{20}\right), o\right)$ is not cyclic.
ii) (4 points) Construct a non-cyclic subgroup of D, say (H, o), of D such that $|H|=4$.

See my lecture on $A u t\left(Z_{n}\right)$. We constructed a group-isomorphism $K:((U(20),$.$) (note '"." is multiplication$ module 20) $\rightarrow\left(\operatorname{Aut}\left(Z_{20}\right), o\right)$ such that $k(a)=f_{a}$ for every $a \in U(20)$, where $f_{a} \in \operatorname{Aut}\left(Z_{20}\right)$ and $f_{a}:\left(Z_{20},+\right) \rightarrow$ $\left(Z_{20},+\right)$ such that $f_{a}(b)=a b$ in Z_{20} for every $b \in Z_{20}$. Since $U(n)$ is abelian, we conclude that $A u t\left(Z_{n}\right)$ is abelian. Hence one way to construct a noncyclic-subgroup of $A u t\left(Z_{20}\right)$ with 4 elements: Construct two subgroups H, F of $A u t\left(Z_{20}\right)$ such that $|H|=|F|=2$. Then $L=H o K$ will be a noncyclic subgroup with 4 elements since $H \cap F=\{e\}$.

Hence choose $a=9 \in U(20)$. Then $|a|=2$. Since $K(9)=f_{9}: Z_{20} \rightarrow Z_{20}$, where $f_{9}(b)=9 b$ in Z_{20} for every $b \in Z_{20}$, we conclude $\left|f_{9}\right|=2$. Note that the identity, e, in $\operatorname{Aut}\left(Z_{20}\right)$ is the identity map $I: Z_{20} \rightarrow Z_{20}$ such that $I(b)=b$ for every $b \in Z_{20}$. Thus $H=\left\{I, f_{9}\right\}$ is a subgroup of $A u t\left(Z_{20}\right)$ with 2 elements.

Choose $a=11 \in U(20)$. Then $|11|=2$. Thus (similar to the case above), $K=\left\{I, f_{11}\right\}$ is a subgroup of $\operatorname{Aut}\left(Z_{20}\right)$ with 2 elements. Thus $H o K=\left\{I, f_{9}, f_{11}, f_{19}\right\}$ is a non-cyclic subgroup of $\operatorname{Aut}\left(Z_{20}\right)$ with 4 elements (note that $\left(f_{9} \circ f_{11}\right)(b)=f_{9}(11 b)=99 b=19 b$ for every $b \in Z_{20}$.

QUESTION 6. Let $n=16 \cdot 9$ and $D=U(n)$.
(i)(4 points) Find $m_{1}, . ., m_{k}$ such that $D \approx\left(Z_{m_{1}},+\right) \oplus \cdots \oplus\left(Z_{m_{k}},+\right)$. SHOW THE WORK.

By the last lecture (before the exam), we know that $U\left(2^{4} \cdot 3^{2}\right) \approx U\left(2^{4}\right) \oplus U\left(3^{2}\right)$. Also we know that $U\left(2^{m}\right)$ $(m \geq 3) \approx Z_{2} \oplus Z_{2^{(m-2)}}$ and $U\left(p^{n}\right)(p$ is prime, $p \neq 2$ and $n \geq 1) \approx Z_{p-1} \oplus Z_{p^{(n-1)}} \approx Z_{p^{n}-p^{(n-1)}}$.

Hence $U\left(2^{4} \cdot 3^{2}\right) \approx U\left(2^{4}\right) \oplus U\left(3^{2}\right) \approx Z_{2} \oplus Z_{4} \oplus Z_{2} \oplus Z_{3} \approx Z_{2} \oplus Z_{2} \oplus Z_{12}$.
So you may choose either ($m_{1}=2, m_{2}=4, m_{3}=2$ and $m_{4}=3$) OR ($m_{1}=m_{2}=2$ and $m_{3}=12$)
(ii) (2 points) Let $a \in D$ such that $|a|$ is maximum. Find $|a|$.

Let $(b, c, d) \in Z_{2} \oplus Z_{2} \oplus Z_{12}$ such that $|(b, c, d)|=L C M[|b|,|c|,|d|]=k$ such that k is maximum. By staring $k=12$. Since $U\left(2^{4} \cdot 3^{2}\right) \approx Z_{2} \oplus Z_{2} \oplus Z_{12}$. we conclude that $|a|=k=12$.

Faculty information

Questim 1: $f=(132+) \cdot(123) \cdot(45)$

$$
8=\left(\begin{array}{lllll}
1 & 2 & 3 & 4 & 5 \\
4 & 2 & 3 & 5 & 1
\end{array}\right)
$$

(i) $I_{5} \quad F \in A_{5}$? $F=\left(\begin{array}{lll}1 & 4 & 5\end{array}\right)=\left(\begin{array}{ll}1 & 4\end{array}\right) \circ\left(\begin{array}{ll}15\end{array}\right)$

We ihave an even. number of 2 -cyeles, ths F is an even penurtativ

$$
\therefore F \in A_{5}
$$

(ic) $F F /$ Since $F=\left(\begin{array}{lll}1 & 4 & 5\end{array}\right) \rightarrow \quad F I=3$.
(iii) Determive $F^{-1}: \quad F^{-1}=\left(\begin{array}{lll}5 & 4 & 1\end{array}\right)$

Quation 2. AN non-cydi Abating, 36 eleareats = $L^{2} \cdot 3^{2}$ eleurects.

$$
\left.\begin{array}{rl}
\text { Partition } \\
e+2 \\
1+1
\end{array}\left|\begin{array}{c}
\text { Order } L^{2} \\
\mathbb{Z}_{4} \\
\mathbb{Z}_{L} \oplus \mathbb{Z}_{2}
\end{array}\right| \begin{array}{c}
\text { order } 3^{2} \\
\mathbb{\mathbb { Z }}_{\xi} \oplus \mathbb{Z}_{3}
\end{array}\right\} 4 \text { grams total. }
$$

We wont non-eyclie, with order a element (unique).

$$
\begin{aligned}
& \text { All: } \quad \mathbb{Z}_{4} \otimes \mathbb{Z}_{a} \simeq \mathbb{\mathbb { C }}_{36} \sin \operatorname{ged}(4, a)=1 \\
& \mathbb{Z}_{2} \oplus \mathbb{U}_{L} \oplus \mathbb{U}_{9} \xlongequal{\sim} \mathbb{Z}_{2} \oplus \mathbb{L}_{1 \sigma} \\
& \mathbb{Z}_{4} \oplus \mathbb{Z}_{3} \oplus \mathbb{Z}_{3} \approx \mathbb{U}_{3} \oplus \mathbb{Z}_{12} \\
& \mathbb{T}_{2} \oplus \mathbb{Z}\left\llcorner\oplus \mathbb{Z}_{3} \theta \mathbb{\mathbb { X }}_{5} \simeq \mathbb{Z}_{6 \Theta} \mathbb{\mathbb { Z }}_{6}\right.
\end{aligned}
$$

Sine there is a unique subgroup of order 9 ;
$\mathbb{I}_{L A \in} \mathbb{E}_{\pi_{8}}$ is none aychir
$\mathbb{Z}_{i^{*}} \mathbb{I}_{n}$ is men-cystic $\{$ of these, the rs
$\mathbb{Z}_{6} \oplus \mathbb{Z}_{6}$ ir won-cyelic each hew order a
element. $\longrightarrow \operatorname{lcm}(|a|,|b|)=4$
Since they are Abdian of nar-cyelic, collocose of Lagrange implies uniqueness fer all three structures.

Quasbin 3:

$$
a^{-1}+2 b=[(a, b)
$$

(iii) Unio \oint all lefta coseti make up $\left(\mathbb{Z}_{5}, \rightarrow\right) \oplus\left(\mathbb{Z}_{5}, \vec{\oplus}\right)$

$$
\begin{aligned}
& \operatorname{Ker}(F)=\{(0,0),(4,1)(1,3),(2,1),(3,4)\} \\
& \text { IT } \operatorname{ker}(f)=\{(1,1),(0,2),(2,3),(3,2),(4,0)\} \\
& 2+\operatorname{ker}(7)=\{(1,2),(1,3),(3,4),(4,3),(0,1)\} \\
& 3+\operatorname{ker}(F)=\{(3,3),(2,4),(4,0),(0,4)(1,2)\} \\
& 4+\operatorname{ker}(F)=\{(4,4)(3,0)(0,1)(1,0)(2,3\} \\
& f(0,0)=f(4,2)=f(1,3)=f(2,1)=f(3,4)=e . \\
& f(1,1)=f(0,2)=F(2,3)=f(3,2)=f(4,0)=1 \\
& f(2,2)=\cdots \\
& f(3,3)=\ldots
\end{aligned}
$$

$$
f(4,4)=
$$

Question 5: $(D$,$) group, H \angle D$ st. $D /$ H cyclic but D is Lob Action.

Take some $A_{k} u \in \mathbb{Z} \geq 5$. We knew by doss result that $A_{n}<l S_{n}$. We have a group, Sin, and a normal subgroup, $A_{\text {n }}$. Now: $\quad\left|S_{n} / A_{n}\right|=\frac{\left|S_{n}\right|}{\left|A_{n}\right|}=\cdots \frac{n!}{\frac{n!}{L}}=2,2$ is a prime.
\therefore since every group of prime order is cyselic (by result), Sn/ A_{n} cydic.

But we know that S_{n} is not Abelim. Refer to How problem for counter example.

Qustion 6: : All Abeliki vith 72 elemats:

$$
72=2^{3} \times 3^{2}
$$

We have $3.2 \leq 6$ total
...e. Tince are 6 Abulian grops with 72 elements.

Questin 7: $\quad u(360)=u\left(2^{3} \cdot 3^{2} \cdot 5\right)$

$$
\begin{array}{r}
\underline{\sim} u\left(2^{3}\right) \oplus u\left(3^{2}\right) \oplus u(5) \\
\stackrel{\mathbb{C}_{2} \oplus \mathbb{U}_{2} \oplus \mathbb{U}_{2} \oplus \mathbb{Z}_{3} \oplus \mathbb{Z}_{4}}{ }
\end{array}
$$

since $\operatorname{jed}(3,4)=1 \Rightarrow$ combin $\mathbb{\mathbb { C }}_{+} \oplus \mathbb{U}_{S} \simeq \mathbb{\mathbb { T }}_{12}$.
$\therefore \quad \mathbb{I}_{2} \oplus \mathbb{I}_{2} \oplus \mathbb{Z}_{2} \oplus \mathbb{Z}_{12} \Rightarrow$ iwariant factors.

$$
\therefore m_{1}=2, m_{2}=2, m_{3}=2, m_{4}=12
$$

Q8. Assume that D has a subgroup H such that [H:D] = n, where $2<=\mathrm{n}<=4$. Then there is a nontrivial group homomorphism
F : D ---> S_n. Since D is simple, $\operatorname{Ker}(F)=\{e\}$ or $\operatorname{Ker}(F)=D$. Since F is nontrivial, $\operatorname{Ker}(F)$ not $=D$. Thus $\operatorname{Ker}(F)=\{e\}$. Thus by the first-isomorphism Theorem, D is isomorphic to Range $(F)=$ subgroup of S_n, which is impossible, since |D| >= 60 and $\left|S _n\right|$ $<=24$. Thus D does not have a subgroup H such that
$1<[H: D]<=4$.

${ }_{5}$ Section 5: Assessment Tools-Home Work's (unanswered)

Homework One, MTH 320 , Fall 2020, Due date: Sept 14 by MIDNIGHT, email your Solution as a PDF to abadawi@aus.edu

Ayman Badawi

QUESTION 1. Let H be the set of all symmetries on an equilateral triangle (see class notes). Construst the Caley's table of (H, o). By staring at the table, you should conclude that (H, o) is a group.
(i) For each $f \in H$, find f^{-1}
(ii) For each $f \in H$, find $|f|$ (note f^{m} here means f ofofowof (m times))
(iii) Show that (H, o) is a non-abelian group (i.e., show that f o $k \neq k$ o f for some $f, k \in H$)

QUESTION 2. Let C be the set of all complex numbers. It is clear that $\left(C^{*}, X\right)$ is group under multiplication. Fix a positive integer $n \geq 2$ and let H be the set of all roots of the polynomial $x^{n}-1$ (i.e., $H=\left\{x \in C^{*} \mid x^{n}-1=0\right\}$). Prove that (H, X) is a subgroup of $\left(C^{*}, X\right)$. [Hint : note that H is a finite subset of C^{*}.]

QUESTION 3. Consider the group $\left(Z_{20},+\right)$ Find $|1|,|6|,|14|,|15|,|17|,|12|$ [Hint: first find $|1|$, then observe that $k=1^{k}$ (for example $8=1^{8}$)], then use a class-result to find the order of the remaining elements]

QUESTION 4. Let $H=\{2,4,6,8,10,12\}$ and "." be the multiplication modulo 14 . Construct the Caley's Table of $(H,$.$) . By staring at the table you will observe that (H,$.$) is an abelian group.$
(i) What is $e \in H$?
(ii) For each $a \in H$, find a^{-1}.
(iii) Find $|6|,|10|$.

QUESTION 5. (1) Let a, b be elements in a group $(D,$.$) such that a \cdot b=b \cdot a$. Given $|a|=n,|b|=m$, where $n, m \neq \infty$ and $\operatorname{gcd}(n, m)=1$. Let $x=a \cdot b$. Prove $|x|=n m$. [Hint: (you need to know these facts, you might need them later on in the course) (1) If $a \cdot b=b \cdot a$, then $(a \cdot b)^{n}=a^{n} \cdot b^{n}$, if $a \cdot b \neq b \cdot a$, then we cannot CLAIM that $(a \cdot b)^{n}=a^{n} \cdot b^{n}$. (2) Let k, n, m be positive integers: (a) if $n \mid k m$ and $\operatorname{gcd}(n, m)=1$, then $n \mid k$. (b) if $n \mid k$ and $m \mid k$ and $\operatorname{gcd}(n, m)=1$, then $n m \mid k$].
(2) In Question 1 (above), find two elements f, k in (H, o) such that $|f|=2$ and $|k|=3$, but $|f o k| \neq 6$ (note that $\operatorname{gcd}(2,3)=1$). So the hypothesis $a \cdot b=b \cdot a$ in (1) is very crucial.

Faculty information

Ayman Badawi, Department of Mathematics \& Statistics, American University of Shariah, P.O. Box 26666, Sharjah, United Arab Emirates. E-mail: abadawi@aus.edu, www.ayman-badawi.com

WARNING: Title too long for running head.
PLEASE supply a shorter form with \backslash headlinetitle

Homework Two, MTH 320 , Fall 2020, Due date: Sept 29 (Tuesday) by MIDNIGHT, email your Solution as a PDF to abadawi@aus.edu

Ayman Badawi

QUESTION 1. Let $A=\{1,2,3\}$ and D be the power set of A, i.e., D is the set of all subsets of A (note that $|D|=2^{3}=$ 8). Define "." on D to mean $a \cdot b=(a-b) \cup(b-a)$ for every $a, b \in D$. Then $(D,$.$) is an abelian group (optional, you$ may verify this by doing the Caley's Table, but it is not a must)
(i) What is $e \in D$?
(ii) For each $a \in D$, find a^{-1}
(iii) For each $a \in D$, find $|a|$.
(iv) (nice), I told you that the converse of Lagrange Theorem is correct when a group is finite and abelian (I allow you to use this fact), i.e., if D is abelian group, $|D|=n$, and $m \mid n$. Then D has at least one subgroup with m elements. Now the above group is abalian and $|D|=8$. Give me a subgroup, say H, of D with 4 elements. Verify that H is a subgroup by doing the Caley's table. Does D have an element of order 4? so what do you learn from this question? Answer: if $m \mid n$, then we must have a subgroup with m elements, but not necessarily an element of order m.

QUESTION 2. Let $D=\{2,4,6,8,10,12\}$. From HW-One, we know that D under multiplication modulo 14 is an abelian group (see HW-One (Question 4)). Now $H=\{8,6\}$ is a subgroup of D. Find all left cosets of H. Since D is abelian, H is a normal subgroup of D. Construct the Caley's Table of the group $(D / H, *)$.

QUESTION 3. Let $(D,$.$) be a group, H, K$ are distinct subgroups of D, i.e., $H \neq K$
(i) Prove that $F=H \cap K$ is a subgroup of D [Hint: Let $a, b \in F$, by a class result, you only need to show that $a^{-1} \cdot b \in F$ for every $a, b \in F$.]
(ii) Assume that neither $K \subset H$ nor $H \subset K$. Prove that $H \cup K$ is never a subgroup of D.
(iii) Assume $|H|=|K|=m$, where m is a prime positive integer. Prove that $H \cap K=\{e\}$.

QUESTION 4. (a) Let $(D,$.$) be a group, H$ is a normal subgroup of D, and K is a subgroup of D. Prove that $H \cdot K=$ $\{h \cdot k \mid h \in H, k \in K\}$ is a subgroup of D. Note that H is a subgroup of $H \cdot K$ and K is a subgroup of $H \cdot K$ since $H \cdot e=H$ and $e \cdot K=K$ [Hint: Let $a, b \in H \cdot K$, by a class result, you only need to show that $a^{-1} \cdot b \in H \cdot K$ for every $a, b \in H \cdot K$.]
(b)Conside S_{3} the symmetric group of an equilateral triangle as in HW-one. Give me a subgroup, say H, of S_{3} that is not a normal subgroup of S_{3}.

Faculty information

Ayman Badawi, Department of Mathematics \& Statistics, American University of Sharjah, P.O. Box 26666, Sharjah, United Arab Emirates. E-mail: abadawi@aus.edu, www.ayman-badawi.com

WARNING: Title too long for running head.
PLEASE supply a shorter form with \headlinetitle

Homework Three, MTH 320 , Fall 2020, Due date: October 14 (Wednesday) by MIDNIGHT, email your Solution as a PDF to abadawi@aus.edu

Ayman Badawi

QUESTION 1. Let $(D,$.$) be a group with 130$ elements. Given, $a, b \in D$ such that $a \cdot b=b \cdot a,|a|=10$ and $|b|=13$. Prove that D is an abelian group. Can you say more about D ?

QUESTION 2. (i) Assume $(D,$.$) is an infinite cyclic group and a \in D$ such that $a \neq e$. Prove that $|a|=\infty$.
(ii) We know $\left(Z_{8},+\right)$ is cyclic and $(Z,+)$ is cyclic. Prove that $Z_{8} \oplus Z$ is not a cyclic group. [Hint: use (i) above!].
(iii) Let $(H,),.(K, *)$ be cyclic groups such that $|H|=m$ and $|K|=n$. Let $D=H \oplus K$. Prove that D is cyclic if and $\operatorname{gcd}(m, n)=1$ [Hint: First assume that D is cyclic. Show $\operatorname{gcd}(m, n)=1$. Second direction: Assume $\operatorname{gcd}(m, n)=1$. Show that D is cyclic.]
(iv) Let $D=\left(Z_{8},+\right) \oplus\left(Z_{15},+\right)$. Then by (iii), D is cyclic. How many generators does D have? Find all subgroups of D with 20 elements. How many elements of order 40 does D have?
(v) Let $(D,$.$) be a group. Given that D$ has exactly 10 distinct subgroups, each has 13 elements. How many elements of order 13 does D have?

QUESTION 3. (a) Let $f=\left(\begin{array}{lllllllll}1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 4 & 7 & 6 & 8 & 9 & 2 & 3 & 1 & 5\end{array}\right) \in S_{9}$. Find $|f|$.
(b) Let $f=\left(\begin{array}{lll}1 & 3 & 7\end{array}\right) o\left(\begin{array}{llll}1 & 2 & 4 & 5\end{array}\right) o\left(\begin{array}{llll}2 & 3 & 1 & 6\end{array}\right) \in S_{7}$. Find $|f|$.

QUESTION 4. Let $(D,$.$) be a group such that |D|=77$. Given that H is a normal subgroup of D such that $|H|=7$. Suppose that D has exactly one subgroup with 11 elements. Prove that D is a cyclic group. [Hint : Think about D/H !]

Faculty information

Ayman Badawi, Department of Mathematics \& Statistics, American University of Sharjah, P.O. Box 26666, Sharjah, United Arab Emirates. E-mail: abadawi@aus.edu, www.ayman-badawi.com

WARNING: Title too long for running head.
PLEASE supply a shorter form with \headlinetitle

Homework Four, MTH 320 , Fall 2020, Due date: October 29, 2020, by MIDNIGHT, email your Solution as a PDF to abadawi@aus.edu

Ayman Badawi

QUESTION 1. Let $D_{n}(n \geq 3)$ be the set of all symmetries on $n-g o n$ (see class notes). We know from class notes that $\left(D_{n}, o\right)$ is a group with exactly 2 n elements (exactly n elements are rotations and exactly n elements are reflections, note $e=R_{360}$ and $R_{a}^{-1}=R_{a}$ for every reflection $R_{a} \in D_{n}$.). It is clear that the composition of two rotations is a rotation in D_{n}.
(i) (give a short proof, but clear-cut). Prove that the composition of a rotation with a reflection is a reflection in D_{n} (nice!) (i.e, assume that R is a rotation and R_{a} is a reflection, prove that $R o R_{a}=R_{b}$ for some reflection R_{b} in D_{n}.)
(ii) (give a short proof, but clear-cut).Prove that the composition of two reflections is a rotation in D_{n} (i.e, assume that R_{a}, R_{b} are reflections in D_{n}, prove that $R_{a} o R_{b}=R$ for some rotation R in D_{n}.)

QUESTION 2. (a) Assume $(D,$.$) is a group such that a^{2}=e$ for every $a \in D$. Prove that D is an abelian group.
(b) Assume that $(D,$.$) is a group such that (a b)^{2}=a^{2} b^{2}$ for every $a, b \in D$. Prove that D is an abelian group.

QUESTION 3. a) Let (D,.) be a group and $a \in D$ such that $|a|=n<\infty$. Prove that $\left|b \cdot a \cdot b^{-1}\right|=|a|=n$ for every $b \in D$.
b) Let ($\mathrm{D},$.) be a group and H be a subgroup of D such that $|H|=m<\infty$.
i) Prove that $\left|a . H . a^{-1}\right|=|H|=m$ for every $a \in D$. [Hint : Let $a \in D$ and construct a function $f: H \rightarrow$ a.H. a^{-1} such that $f(b)=a \cdot b \cdot a^{-1}$. Show that f is $1-1$ and onto , (easy)]
ii) Let $a \in(D,$.$) . Prove that a . H . a^{-1}$ is a subgroup of D [Hint: Let $x, y \in a . H . a^{-1}$, show that $\left.x . y \in a . H . a^{-1}\right]$.
iii) Assume H is unique (i.e., H is the only subgroup of D with m elements). Prove that H is a normal subgroup of D (nice! and easy, make use of (i) and (ii))

QUESTION 4. Let $f=\left(\begin{array}{ll}1 & 2\end{array}\right) o\left(\begin{array}{ll}6 & 2 \\ 2\end{array}\right) o(16245) \in S_{6}$.
a) Find $|f|$.
b) Find f^{-1}
c) Is $f \in A_{n}$? explain.
e) Let $h \in A_{9}$ such that $|h|$ is maximum. What is $|h|$? (think, not difficult) (i.e., if $|h|=m$, then $|b|<=m$ for every $b \in A_{9}$)

QUESTION 5 (Nice, good exercise, see class notes). . Let $f:\left(Z_{12},+\right) \rightarrow\left(Z_{9},+\right)$ be a non-trivial group homomorphism.
a) Find Range(f) and $\operatorname{Ker}(f)$.
b) What are all possibilities of $f(1)$? For each possibility of $f(1)$, find $f(a)$ for every $a \in Z_{12}$. [Hint: Note if we know $\mathrm{f}(1)$, then we know $f(a)$ for every $a \in Z_{12}$. Since $Z_{12}=<1>$ and f is a group homomorphism, $f(a)=f\left(1^{a}\right)=$ $(f(1))^{a}$. By the first isomorphism theorem, we know $Z_{12} / \operatorname{Ker}(f)$ is group-isomorphic to Range(f) (see class notes: $K(b+\operatorname{Ker}(f))=f(b)$. Hence if $i+\operatorname{Ker}(f)$ is a left coset of $\operatorname{Ker}(\mathrm{f})$. Then $K(i+\operatorname{Ker}(f))=f(i)$. Observe that each element in a left coset can be chosen as a representative, Thus for every $b \in i+\operatorname{Ker}(f)$ (we know $\mathbf{b}+\operatorname{Ker}(\mathrm{f})=\mathrm{i}+$ $\operatorname{Ker}(\mathrm{f})$), we have $K(i+\operatorname{Ker}(f))=K(b+\operatorname{Ker}(f))=f(i)=f(b)$ (i,e., if W is a left coset of $\operatorname{Ker}(\mathrm{f})$, then all elements of W must map to the same number in Z_{9}). Now since 1 is a generator of $Z_{12}, f(1)$ must be a generator of Range(f) (note that Range(f) is a cyclic subgroup of Z_{9}).

Faculty information

Ayman Badawi, Department of Mathematics \& Statistics, American University of Sharjah, P.O. Box 26666, Sharjah, United Arab Emirates. E-mail: abadawi@aus.edu, www.ayman-badawi.com

WARNING: Title too long for running head.
PLEASE supply a shorter form with \backslash headlinetitle

HW5, MTH 320, Due date: November 26, Thursday by MIDNIGHT + 4 more hours, email your Solution as a PDF to abadawi@aus.edu

Ayman Badawi
PLEASE when you write something /make it brief/ clear/ try to avoid writing something that you do not understand

QUESTION 1. Let D be the set of all functions with continuous 4 th derivative, a_{1}, a_{2} be some nonzero fixed real numbers. We know that $(D,+)$ is an abelian group. Define $K:(D,+) \rightarrow(D,+)$ such that $k(y(x))=a_{1} y^{(4)}+a_{2} y^{(2)}$.
(i) Convince me that K is a group-homomorphism,
(ii) Given $f(x)=\cos (2 x) e^{3 x} \in \operatorname{Range}(K)$. Given $h(x) \in D$ such that $K(h(x))=f(x)$. Let $m(x) \in D$ such that $K(m(x))=f(x)$. Prove that $m(x)=h(x)+g(x)$, for some $g(x) \in K e r(K)$. i.e., by doing this question, you will understand why the general solution, y_{g}, to a linear diff. equation with constant coefficients is $y_{h}+y_{p}$ (where y_{h} is the homogeneous part and y_{p} is the particular part.) [hint: Use $D / \operatorname{Ker}(k)$ is group-isomorphic to Range (K)]

QUESTION 2. Let $(D,$.$) be an abelian group with 125$ elements, $m \geq 2$ be a fixed positive integer. Set $F=\left\{a^{m} \mid a \in\right.$ $D\}$. Find all possibilities of $|F|$ [Hint: Can you say something about F ?]. Do we need abelian here? explain.
QUESTION 3. Let D be a group with $3^{2} .5^{2}$ elements. Given $|C(D)| \geq 15$. Prove that D is an abelian group[Hint: Straight forward if you use two theorems that I told you about in the lectures]

QUESTION 4. Given $(D,$.$) is a group with 60$ elements, $a \in D$ such that $|C(a)|=15$. Find $|\operatorname{Conjugate}(a)|$.

QUESTION 5. (NICE)

(1) Let D be a group with p^{2} elements. Prove that $D \approx Z_{p^{2}}$ or $D \approx Z_{p} \oplus Z_{p}$. [Hint: What do you know about a group with p^{2} elements? Use the result if H, K are normal subgroups of D , where $D=H . K$ and $H \cap K=\{e\}$, then $D \approx H \oplus K$.
(2) Let D be an abelian group with p^{3} elements such that D has a unique subgroup with p^{2} elements. Prove that D is cyclic. [Hint: Assume not, use the hint as in (1), find H, K such that $D \approx H \oplus K$, then prove that $H \oplus K$ has more than one subgroup with p^{2} elements, a contradiction]

QUESTION 6. Let p_{1}, p_{2} be distinct prime integers and D be a group such that $|D|=p_{1} p_{2}$. Prove that D is not a simple group [Recall that D is simple if and only if $\{e\}$ is the only proper normal subgroup of D, then use a class result (straight forward)]

QUESTION 7. Let D be a group with 75 elements. Given D has a subgroup with 25 elements and a normal subgroup with 3 elements. Prove that D is abelian

QUESTION 8. Let $f:(Q,+) \rightarrow(Q,+)$ be a group-homomorphism such that $f(3)=-3$.

1) Prove that $f(1 / m)=-1 / m$ for every $m \in Z \backslash\{0\}$
2) Prove that $f(x)=-x$ for every $x \in Q .[$ Note that Q is the set of all rational numbers and Z is the set of all integers]

QUESTION 9. Let $f:\left(Z_{15},+\right) \rightarrow\left(Z_{10},+\right)$ be a group homomorphism such that $f(2)=2$. For each left coset of $\operatorname{Ker}(f)$, say H, find $f(h)$ for each $h \in H$.

Faculty information

Ayman Badawi, Department of Mathematics \& Statistics, American University of Sharjah, P.O. Box 26666, Sharjah, United Arab Emirates. E-mail: abadawi@aus.edu, www.ayman-badawi.com

HW 6, MTH 320, Due date: Any time before or at Dec 13, Sunday by MIDNIGHT + 4 more hours, email your Solution as a PDF to abadawi@aus.edu

Ayman Badawi

PLEASE when you write something /make it brief/ clear/ try to avoid writing something that you do not understand

Remark 1. We know $U(n)$ is group under multiplication $\bmod \mathrm{n}$ and Z_{n} is group under addition mod n . So now we can solve linear equations over Z_{n}.

Example: Solve for x :

$$
3 x+7=4 \text { in } Z_{8}
$$

$$
\begin{gathered}
3 x=4+7^{-1} \text { in } Z_{8}\left(7^{-1} \text { means inverse of } 7 \text { under addition } \bmod 8\right) \\
3 x=4+1=5
\end{gathered}
$$

note $3 \in U(8)$, hence $x=3^{-1} \cdot 5$ in $Z_{8}\left(3^{-1}\right.$ means inverse of 3 under multiplication mod 8)

$$
x=3 \cdot 5=7 \text { in } Z_{8}\left(\text { since } 3^{-1}=3 \text { in } U(8)\right)
$$

Note that if $a \in U(n), b \in Z_{n}$, and $c \in Z_{n}$, then $a x+b=c$ has only one solution in Z_{n}.
Note that if $a \notin U(n)$, then $a x+b=c$ might have more than one solution or no solutions.
For example: $2 x+1=3$ has two solutions in $Z_{8}, \mathrm{x}=1$, and $\mathrm{x}=5$.
For example $2 x+1=4$ has no solutions in Z_{8}.
I expect that you know how to solve $a x+b=c$, when $a \in U(n)$.
QUESTION 1. Solve for $x: 5 x+3=8$ in Z_{12}.
Write b in terms of a, where $a, b \in Z_{9}: a^{-1}+4 b=6$ in $Z_{9} .\left(a^{-1}\right.$ is the inverse of a under addition mod 9)
QUESTION 2. We know $D=U\left(2^{6} \cdot 5^{2}\right) \approx Z_{m_{1}} \oplus \cdots \oplus Z_{m_{w}}$, where $m_{1}, m_{2}, \ldots, m_{w}$ are the invariant factors of D.
(i) Find m_{1}, \ldots, m_{w}.
(ii) How many elements of order 4 does D have?
(iii) How many elements of order 5 does D have?
iv) Let $a \in D$ such that $|a|$ is maximum. Find $|a|$.

QUESTION 3. Given $D \approx Z_{6} \oplus Z_{4} \oplus Z_{10}$ and $F \approx Z_{2} \oplus Z_{6} \oplus Z_{20}$. Convince me that $D \approx F$.
Let $L=Z_{2} \oplus Z_{10} \oplus Z_{12}$. Then $|L|=|D|=|F|=240$. Convince me that $L \approx D \approx F$.
QUESTION 4. (i) Up to isomorphic, classify all finite abelian groups with $2^{5} \cdot 5^{3}$ elements.
(ii) up to isomorphic, classify all non-cyclic finite abelian groups with $2^{5} \cdot 5^{3}$ elements such that each has an element of order $200=2^{3} \cdot 5^{2}$. Write each group in terms of its invariant factors.

Faculty information

Ayman Badawi, Department of Mathematics \& Statistics, American University of Sharjah, P.O. Box 26666, Sharjah, United Arab Emirates. E-mail: abadawi@aus.edu, www.ayman-badawi.com
${ }_{6}$ Section 5: Assessment Tools-Exams (unanswered)

都

Exam-One, MTH 320

Ayman Badawi

QUESTION 1. i) Let H be an abelian group with 33 elements. Prove that H is cyclic.
ii) Let D be a group with 65 elements. Suppose that D has a normal subgroup with 13 elements and a unique subgroup with 5 elements. Prove that D is cyclic.

QUESTION 2. Consider the group $\left(Z_{20},+\right)$
(i) Construct a subgroup H of Z_{20} that contains exactly 5 elements.
(ii) Find all distinct left cosets of H.

QUESTION 3. Let $D=Z_{6} \times Z_{35}$
i) Is D cyclic? explain.
ii) Find a generator of D.
ii) How many elements of order 15 does D have?
iii) construct a subgroup of D that has exactly 14 elements.

QUESTION 4. Let $A=\left(\begin{array}{ll}1 & 2\end{array}\right) o\left(\begin{array}{ll}6 & 5\end{array}\right) o\left(\begin{array}{ll}3 & 8 \\ 6\end{array}\right)$
i) Find $|A|$
ii) Is A even or odd? explain.
ii) Find $\left|A o\left(\begin{array}{ll}10 & 2\end{array}\right)\right|$.

QUESTION 5. Let $f:\left(Z_{16},+\right) \rightarrow\left(Z_{12},+\right)$ be a non-trivial group homomorphism.
i) Find Range (f).
ii) Find $\operatorname{Ker}(f)$.
iii) Give me one possibility for $f(1)$, let us call it b. Using $f(1)=b$, find $\mathrm{f}\left(\right.$ a) for every $a \in Z_{16}$.

Faculty information

Ayman Badawi, Department of Mathematics \& Statistics, American University of Sharjah, P.O. Box 26666, Sharjah, United Arab Emirates. E-mail: abadawi@aus.edu, www.ayman-badawi.com

MTH 320, Exam II, Fall 2020

Ayman Badawi

47

QUESTION 1. (6 points) Let $(D,$.$) be a group with 39$ elements. Assume that D has a normal subgroup with 3 elements. Prove that D is cyclic.

QUESTION 2. Let $(D,$.$) be an abelian group with 245=5 \cdot 7^{2}$ elements. Assume that D is non-cyclic.
i) (6 points) Find $m_{1}, . ., m_{k}$ such that $D \approx\left(Z_{m_{1}},+\right) \oplus \cdots \oplus\left(Z_{m_{k}},+\right)$. SHOW THE WORK.
ii) (3 points) How many elements of order 35 does D have?
iii) ($\mathbf{3}$ points) How many elements of order 7 does D have?

QUESTION 3. (5 points) Let $(D,$.$) be a non-cyclic-group with 2020$ elements. Prove that there are finitely many groups, say D_{1}, \ldots, D_{m}, each with 2020 elements such that $D \not \approx D_{i}$ (i.e., D is not group-isomorphic to D_{i}) for every i, where $1 \leq i \leq m$.

QUESTION 4. Let $f:\left(Z_{6},+\right) \oplus\left(Z_{6},+\right) \rightarrow\left(Z_{6},+\right)$ such that $f((a, b))=2 \cdot\left(a+b^{-1}\right)$ (note that b^{-1} means the inverse of b under addition $\bmod 6$, and in $2 \cdot\left(a+b^{-1}\right)$, the " + " means addition mod 6 and "." means multiplication mod 6 .
i) (3 points) Show that f is a group-homomorphism.
ii) (3 points) Find the range of f.
iii)(5 points) Find $\operatorname{ker}(f)$.

QUESTION 5. Let $D=\left(\operatorname{Aut}\left(Z_{20}\right), o\right)$. [Recall: $\operatorname{Aut}\left(Z_{20}\right)$ is the group of all group-isomorphism from $\left(Z_{20},+\right)$ onto $\left(Z_{20},+\right)$ under composition.]
i) (3 points) Is D cyclic? explain?
ii) (4 points) Construct a non-cyclic subgroup of D, say (H, o), of D such that $|H|=4$.

QUESTION 6. Let $n=16 \cdot 9$ and $D=U(n)$.
(i)(4 points) Find $m_{1}, . ., m_{k}$ such that $D \approx\left(Z_{m_{1}},+\right) \oplus \cdots \oplus\left(Z_{m_{k}},+\right)$. SHOW THE WORK.
(ii) (2 points) Let $a \in D$ such that $|a|$ is maximum. Find $|a|$.

Faculty information

Ayman Badawi, Department of Mathematics \& Statistics, American University of Sharjah, P.O. Box 26666, Sharjah, United Arab Emirates. E-mail: abadawi@aus.edu, www.ayman-badawi.com

Final-Exam, MTH 320, Fall 2020

Ayman Badawi

Score $=-48$

QUESTION 1. (6 points) Let $F=\left(\begin{array}{llll}1 & 3 & 2 & 4\end{array}\right) o\left(\begin{array}{lll}1 & 2 & 3\end{array}\right) o\left(\begin{array}{ll}4 & 5\end{array}\right)$
(i) Is $F \in A_{5}$? Explain
(ii) Find $|F|$
(iii) Find F^{-1}

QUESTION 2. (6 points) (up to isomorphic) classify all noncyclic abelian group with 36 elements, such that each has unique subgroup with 9 elements. Write down the invariant factors of each group.

QUESTION 3. (6 points) Let $F: Z_{5} \oplus Z_{5} \rightarrow Z_{5}$ such that $F(a, b)=a^{-1}+2 b$ (note that a^{-1} means inverse of a under addition mod 5 and 2 b means 2 times $\mathrm{b} \bmod 5$)
(i) Show that F is a group homomorphism.
(ii) Find $\operatorname{Ker}(F)$
(iii) For each left cosets, say L, of $\operatorname{Ker}(f)$, find $F(w)$ for every $w \in L$.

QUESTION 4. (6 points)

(i) We know that $\left(\operatorname{Aut}\left(Z_{24}\right), o\right) \approx Z_{m_{1}} \oplus \cdots \oplus Z_{m_{w}}$, where m_{1}, \ldots, m_{w} are the invariant factors of $\operatorname{Aut}\left(Z_{24}\right)$. Find m_{1}, \ldots, m_{w}.
(ii) Construct a subgroup, H, of $A u t\left(Z_{24}\right)$ such that $|H|=4$. Is it possible that H is cyclic? Explain.

QUESTION 5. (4 points) Give me an example of a group $(D,$.$) such that D$ has a normal subgroup H such that D / H is cyclic, but D is not abelian.

QUESTION 6. (4 points) (up to isomorphic) classify all abelian group with 72 elements.
QUESTION 7. (4 points) We know $U(360) \approx Z_{m_{1}} \oplus \cdots \oplus Z_{m_{w}}$, where m_{1}, \ldots, m_{w} are the invariant factors of $U(360)$. Find m_{1}, \ldots, m_{w}. [Note $360=2^{3} \cdot 3^{2} \cdot 5$]

QUESTION 8. (4 points) Let D be a simple group such that $|D| \geq 60$. Prove that D does not have a subgroup H such that $1<[H: D] \leq 4$ (Recall that $[H: D]=|D| /|H|)$
QUESTION 9. (4 points) Let $F: D \rightarrow L$ be a group homomorphism and H be a subgroup of $\operatorname{Range}(F)$. Prove that $K=\{a \in D \mid F(a) \in H\}$ is a subgroup of D and $\operatorname{Ker}(F) \subseteq K$.

QUESTION 10. (4 points) Let D be a group such that $|D|=65$. Assume that D has a normal subgroup with 5 elements. Prove that D is cyclic.

Faculty information

Ayman Badawi, Department of Mathematics \& Statistics, American University of Sharjah, P.O. Box 26666, Sharjah, United Arab Emirates. E-mail: abadawi@aus.edu, www.ayman-badawi.com

Faculty information

Ayman Badawi, American University of Sharjah, UAE.
E-mail: abadawi@aus.edu

