Section : Course Syllabus

${ }^{2}$ Academic Integrity Measures

${ }_{3.2}$ Questions with Solutions on Chapter 7.2 (Find Laplace Inverse)
3.3 Questions with Solutions on Chapter 7.2 (Solving IVP using Laplace)
3.4 Questions with Solutions More-Questions-Solutions-Laplace-IVP
3.5 Questions with Solutions More-Questions-Solutions-Laplace-IVP
${ }_{3.6}$ Questions with Solutions on Chapter 7.4, Questions-Solutions-Laplace-When-multiply-with- t^{r}
${ }_{3.7}$ Questions with Solutions on Chapter 7.4, Questions-Solutions-Related-to-Convolution
3.8 Questions with Solutions on Chapter 7.5, Questions-Solutions-Related-Delta-Function
3,9 Questions with Solutions on Chapter 7.6, Questions-Solutions-System-Linear-Diff-Equations
${ }^{3.10}$ Questions with Solutions, More-Questions-Periodic-Solving-System-LDE
3.11 Questions with Solutions on Chapter 4.4, Questions-Solutions-Undetermined-Coefficient-Method Questions with Solutions on Chapter 4.7, Questions-Solutions-Cauchy-Euler
${ }_{3.13}$ Questions with Solutions on Chapter 4.6, Variation With Contant Coef.LDE
3.14 Questions with Solutions on Chapter 4.7, Variation with Cauchy Euler LDE
3.15 Questions with Solutions on Chapter 2.3, Questions-Solutions-on-First-Order-LDE
(3.16 Questions with Solutions on Chapter 2.5, Bernoulli
AND Substitution.
(3.17 Questions with Solutions on Chapter 2.4, Exact Non- linear DE
3.18 Questions with Solutions on Chapter 2.2, Separable DE
3.19 Questions with Solutions on Chapter 3.1, CoolingWarming and Mixture Applications
${ }^{3.20}$ Questions with Solutions on Chapter 4.3, Reduction of order
116
${ }_{3.21}$ Questions with Solutions, Review Exam-One 119
${ }_{3}^{322}$ Questions with Solutions, Review Exam II 137
${ }_{3.23}$ Questions with Solutions, Review Final Exam 148
${ }_{4}$ Worked out Solutions for all Assessment Tools ${ }_{17}$ 4.1 Solution for Quiz I 175
${ }^{4.2}$ Solution for Quiz II 177
4.3 Solution for Quiz III (3 different versions) 179
${ }^{4.4}$ Solution for Quiz IV 189
${ }^{4.5}$ Solution for Quiz V. 192
4.6 Solution for Quiz VI 199
47 Solution for EXAM 204
48 Solution for EXAMII 213
4.9 Solution for Final Exam 224
${ }_{5}$ Section : Assessment Tools-Quizzes (unanswered) 238
5.1 Quiz I 239
5.2 Quiz III 241
5.3 Quiz III 243
5.4 Quiz IV 245
5.5 Quiz V 247
5.6 Quiz VI 249
${ }^{6}$ Section : Assessment Tools-EXAMS (unanswered) 251
6. Exam 252
62 Exam 255
6.3 Final Exam 257

1 Section : Course Syllabus

A	Warning: During th to ensure that this Course Title \& Number	Differential Equations - MTH205					
B	Pre/Corequisite(s)	Pre-requisite: MTH104 (Calculus II)					
C	Number of credits	3					
D	Faculty Name	Ayman Badawi					
E	Term/ Year	Fall 2020					
F	Sections	Course No.	Sec. No.	Room	Days	Start	End
		11103 - MTH205	07	Online	UTR	13:00	13:50
G	Instructor Information	Instructor	Office	Telephone		Email	
		Ayman Badawi	NAB 262	abadawi@aus.edu			
		Office Hours: UTR: $15: 00=116$ or by appointment (send me an EMAIL)					
H	Course Description from Catalog	Covers mathematical formulation of ordinary differential equations, methods of solution and applications of first order and second order differential equations, power series solutions, solutions by Laplace transforms and solutions of first order linear systems.					
1	Course Learning Outcomes	Upon completion of the course, students will be able to: - Explain basic definitions, concepts, vocabulary, and mathematical notation of differential equations. Exam one and Final Exam - Demonstrate the necessary manipulative skills (usually Algebra Skills) required to solve equations of first order and higher-order constant-coefficient linear differential equations. First Exam and Final Exam - Demonstrate the necessary manipulative skills (usually Algebra Skills) required to find particular solutions of second order differential equations. Exam Two and Final Exam - Apply Laplace transform to solve IVPs and systems of linear differential equations. First Exam and Final Exam - Understand the fundamental properties of power series, and how to use them to solve linear differential equations with variable coefficients. Final Exam - Formulate and give reasonable approximation solutions to applied physical problems arising in science and engineering. Exam Two and Final Exam					
J	Textbook, Instructional Material, and Resources	- MAIN : CLASS NOTES, My personal webpage (old exams, quizzes) http://ayman-badawi.com/MTH\%20205.html - Problems with solutions for each section will be posted on ILearn - (Optional) Zill D.G., A First Course in Differential Equations with Modeling and Applications, International Metric Edition, $11^{\text {th }}$ ed,, 2018, CENGAGE Learning Custom Publishing.					

- (Optional) WebAssign: To purchase the access code and get the discount, you need the following details:
Cengage Brain URL : https://login.cengagebrain.co.uk/cb/
Product ISBN : 9781337786911 (\leftarrow click here)
Discount Code : MEBACKTOUNIVERISTY25

K	Teaching and Learning	This is a traditional lecture based course. Students are tested and given feedback throughout the semester via regular homework, quizzes, and exams						
L		Grading Scale	[92,100$]$	4.0	A	$[72,77)$	2.3	C
	Distribution, and		$[89,92)$	3.7	A-	$[66,72)$	2.0	C
			$[85,89)$	3.3	B+	$[62,66)$	1.7	C-
			$[81,85)$	3.0	B	[50,62)	1.0	D
			$[77,81)$	2.7	B-	[0,50)	0	F

Grading Distribution

Assessmet	Weight	Date
Quizzes	15%	TBA
Exam 1	25%	Sunday , Oct 11, 6:00pm -
		7:15pm
	25%	Sunday, Nov 29, 6:00pm - 7:15pm
Exam 2	35%	TBA
Final Exam	100%	
Total		

M Explanation of Assessments

There will be quizzes, two midterm tests, and a comprehensive final exam.

- Most quizzes will be pre-announced at least one lecture in advance. No makeup quizzes will be given. However the lowest quiz will not be counted toward your final grade.
- With a valid written excuse and making immediate arrangements with the instructor, a missed exam might be replaced with the grade of the final exam and/or the average grade of all tests (including final) and/or quizzes.
- The final exam is common and comprehensive. The date and time of the final exam will be scheduled by the registrar's office.

N Student Academic Integrity Code Statement

Student must adhere to the Academic Integrity code stated in the 2019-2020 undergraduate catalog American University of Sharjah

SCHEDULE

Note: Tests and other graded assignments due dates are set. No addendum, make-up exams, or extra assignments to improve grades will be given.

$\#$	WEEK	CHAPTER/SECTIONS	NOTES		
1	Week one	7.1 Notations and Fundamental Theorem of IVP			
7.1 Definition of the Laplace Transform					
7.2 Inverse Transforms and Transforms of Derivative				$]$	
:---					
2					

American University of Sharjah

10	Week ten	2.1 Solution Curves Without the Solution 2.2 Separable Equations	
11	Week eleven	2.5 Solutions by Substitution	
12	Week twelve	3.1 Applications of First order linear ODE - Formulate and give reasonable approximation solutions to applied problems arising in science and engineering.	
13	Week thirteen	- Applications of second order diff equation Formulate and give reasonable approximation solutions to applied problems arising in science and engineering.	
14	Week fourteen	6.1 Review of Power Series 6.2 Solutions of basic linear diff. equation using the concept of power series	
15	Week fifteen	More on first and second linear diff. equations, Bernoulli, Exact, separable, pictures for diff. equations without finding the exact diff. equation	
	One day or two days (depends!)	Reviews/Final Exam (Comprehensive)	

Math 205 Suggested Problems (if you choose to use the textbook)

TEXT: A First Course in Differential Equations with Modeling Application, by D.G. Zill, 11th Edition.

Section	Page	Exercises
1.1	10	1-8, 12, 15, 19, 27, 32
1.2	17	$4,8,14,17,18,23,24,25,27$
1.3	28	$1,5,13,14,17$
2.1	43	1, 9, 13, 21, 22, 25, 27, 29
2.2	51	$3,6,7,8,13,14,17,25,27,30,36(a)$
2.3	61	5, 9, 12, 13, 17, 23, 24, 25, 28, 29, 31
2.4	69	$2,3,6,8,12,16,24,32,35,37$
2.5	74	$3,5,8,11,15,18,22,23,25,28$
3.1	90	$1,3,6,7,14,15,23,26,27$
4.1	127	$1,3,5,6,9,13,15,17,19,23,26,31,36,38,40$
4.2	131	2, 3, 9, 11, 17
4.3	137	$3,5,11,15,16,22,23,24,31,33,43-48,56,57,59$
4.4	147	$1,5,8,11,13,15,19,20,24,26,29,32,45$
4.6	161	1, 3, 9, 15, 19, 25
4.7	168	$1,3,4,5,6,11,14,15,17,19,29,45$
5.1	205	$1,2,4,5,9,11,17-20,21,23,29,31,45,47$
6.1	237	23, 24, 25, 27, 29, 31,33
6.2	246	$1,2,3,5,7,9,11,13,15,17,19,21$
7.1	280	$4,13,15,18,21,25,29,31,33,37$
7.2	288	$2,3,7,9,11,15,19,24,33,34,36,39$
7.3	297	$1,3,6,7,15,22,23,26,29,37,39,43,45,47,49,51,54,55,5863,65$
7.4	309	$1,5,7,8,11,23,25,27,29,37,39,41,45,49,51$
7.5	315	1, 3, 6, 10
7.6	319	1, 3, 6, 7, 9, 12

2 Academic Integrity Measures

Academic Integrity Measures in Online Exams
List the measures taken to ensure the academic integrity of the exam.

Quizzes 1-6, all students were in the lecture room (blackboard Ultra room). All students had 20-25 minutes. All questions are essay. Students submitted their solution in a folder that I created on I-learn.

Students used lockdown browser for exams one, two and final exam. All questions are essay. Students submitted their solution in a folder that I created on I-learn. The outcome (scores) was not significantly different from a normal in-class exams (see the scores of the students in the excel-sheet)

I am completely satisfied with the outcome of MTH2O5.

3 Section : Instructor Teaching Material-Handouts
3.1 Questions with Solutions on Chapter 7.1 (Find Laplace)

19. $\mathscr{L}\left\{2 t^{4}\right\}=2 \frac{4!}{s^{\bar{j}}}$
20. $\mathscr{L}\left\{t^{5}\right\}=\frac{5!}{s^{6}}$
21. $\mathscr{L}\{4 t-10\}=\frac{4}{s^{2}}-\frac{10}{s}$
22. $\mathscr{L}\{7 t+3\}=\frac{7}{s^{2}}+\frac{3}{s}$
23. $\mathscr{L}\left\{t^{2}+6 t-3\right\}=\frac{2}{s^{3}}+\frac{6}{s^{2}}-\frac{3}{s}$
24. $\mathscr{L}\left\{-4 t^{2}+16 t+9\right\}=-4 \frac{2}{s^{3}}+\frac{16}{s^{2}}+\frac{9}{s}$
25. $\mathscr{L}\left\{t^{3}+3 t^{2}+3 t+1\right\}=\frac{3!}{s^{4}}+3 \frac{2}{s^{3}}+\frac{3}{s^{2}}+\frac{1}{s}$
26. $\mathscr{L}\left\{8 t^{3}-12 t^{2}+6 t-1\right\}=8 \frac{3!}{s^{4}}-12 \frac{2}{s^{3}}+\frac{6}{s^{2}}-$.
27. $\mathscr{L}\left\{1+e^{4 t}\right\}=\frac{1}{s}+\frac{1}{s-4}$
28. $\mathscr{L}\left\{t^{2}-e^{-9 t}+5\right\}=\frac{2}{s^{3}}-\frac{1}{s+9}+\frac{5}{s}$
29. $\mathscr{L}\left\{1+2 e^{2 t}+e^{4 t}\right\}=\frac{1}{s}+\frac{2}{s-2}+\frac{1}{s-4}$
30. $\mathscr{L}\left\{e^{2 t}-2+e^{-2 t}\right\}=\frac{1}{s-2}-\frac{2}{s}+\frac{1}{s+\vdots}$
31. $\mathscr{L}\left\{4 t^{2}-5 \sin 3 t\right\}=4 \frac{2}{s^{3}}-5 \frac{3}{s^{2}+9}$
32. $\mathscr{L}\{\cos 5 t+\sin 2 t\}=\frac{s}{s^{2}+25}+\frac{2}{s^{2}+4}$
33. $\mathscr{L}\{\sinh k t\}=\frac{1}{2} \mathscr{L}\left\{e^{k t}-e^{-k t}\right\}=\frac{1}{2}\left[\frac{1}{s-k}-\frac{1}{s+k}\right]=\frac{k}{s^{2}-k^{2}}$
34. $\mathscr{L}\{\cosh k t\}=\frac{1}{2} \mathscr{L}\left\{e^{k t}+e^{k t}\right\}=\frac{s}{s^{2}-k^{2}}$
35. $\mathscr{L}\left\{e^{t} \sinh t\right\}=\mathscr{L}\left\{e^{t} \frac{e^{t}-e^{-t}}{2}\right\}=\mathscr{L}\left\{\frac{1}{2} e^{2 t}-\frac{1}{2}\right\}=\frac{1}{2(s-2)}-\frac{1}{2 s}$
36. $\mathscr{L}\left\{e^{-t} \cosh t\right\}=\mathscr{L}\left\{e^{-t} \frac{e^{t}+e^{-t}}{2}\right\}=\mathscr{L}\left\{\frac{1}{2}+\frac{1}{2} e^{-2 t}\right\}=\frac{1}{2 s}+\frac{1}{2(s+2)}$
3.2 Questions with Solutions on Chapter 7.2 (Find Laplace Inverse)

Exercises 7.2 Inverse Transforms anci Two...... : =

Exercises 7.2

Inverse Iransforms and Transiorms of Derivatives

1. $\mathscr{L}^{-1}\left\{\frac{1}{s^{3}}\right\}=\frac{1}{2} \mathscr{L}^{-1}\left\{\frac{2}{s^{3}}\right\}=\frac{1}{2} t^{2}$
2. $\mathscr{L}^{-1}\left\{\frac{1}{s^{4}}\right\}=\frac{1}{6} \mathscr{L}^{-1}\left\{\frac{3!}{s^{4}}\right\}=\frac{1}{6} t^{3}$
3. $\mathscr{L}^{-1}\left\{\frac{1}{s^{2}}-\frac{48}{s^{5}}\right\}=\mathscr{L}^{-1}\left\{\frac{1}{s^{2}}-\frac{48}{24} \cdot \frac{4!}{s^{5}}\right\}=t-2 t^{4}$
4. $\mathscr{L}^{-1}\left\{\left(\frac{2}{s}-\frac{1}{s^{3}}\right)^{2}\right\}=\mathscr{L}^{-1}\left\{4 \cdot \frac{1}{s^{2}}-\frac{4}{6} \cdot \frac{3!}{s^{4}}+\frac{1}{120} \cdot \frac{5!}{s^{6}}\right\}=4 t-\frac{2}{3} t^{3}+\frac{1}{120} t^{5}$
5. $\mathscr{L}^{-1}\left\{\frac{(s+1)^{3}}{s^{4}}\right\}=\mathscr{L}^{-1}\left\{\frac{1}{s}+3 \cdot \frac{1}{s^{2}}+\frac{3}{2} \cdot \frac{2}{s^{3}}+\frac{1}{6} \cdot \frac{3!}{s^{4}}\right\}=1+3 t+\frac{3}{2} t^{2}+\frac{1}{6} t^{3}$
6. $\mathscr{L}^{-1}\left\{\frac{(s+2)^{2}}{s^{3}}\right\}=\mathscr{L}^{-1}\left\{\frac{1}{s}+4 \cdot \frac{1}{s^{2}}+2 \cdot \frac{2}{s^{3}}\right\}=1+4 t+2 t^{2}$

ㄱ. $\mathscr{L}^{-1}\left\{\frac{1}{s^{2}}-\frac{1}{s}+\frac{1}{s-2}\right\}=t-1+e^{2 t}$
3. $\mathscr{L}^{-1}\left\{\frac{4}{s}+\frac{6}{s^{5}}-\frac{1}{s+8}\right\}=\mathscr{L}^{-1}\left\{4 \cdot \frac{1}{s}+\frac{1}{4} \cdot \frac{4!}{s^{5}}-\frac{1}{s+8}\right\}=4+\frac{1}{4} t^{4}-e^{-8 t}$
9. $\mathscr{L}^{-1}\left\{\frac{1}{4 s+1}\right\}=\frac{1}{4} \mathscr{L}^{-1}\left\{\frac{1}{s+1 / 4}\right\}=\frac{1}{4} e^{-t / 4}$
-0. $\mathscr{L}^{-1}\left\{\frac{1}{5 s-2}\right\}=\mathscr{L}^{-1}\left\{\frac{1}{5} \cdot \frac{1}{s-2 / 5}\right\}=\frac{1}{5} e^{2 t / 5}$
⒈ $\mathscr{L}^{-1}\left\{\frac{5}{s^{2}+49}\right\}=\mathscr{L}^{-1}\left\{\frac{5}{7} \cdot \frac{7}{s^{2}+49}\right\}=\frac{5}{7} \sin 7 t$
$\therefore \mathscr{L}^{-1}\left\{\frac{10 s}{s^{2}+16}\right\}=10 \cos 4 t$
-3. $\mathscr{L}^{-1}\left\{\frac{4 s}{4 s^{2}+1}\right\}=\mathscr{L}^{-1}\left\{\frac{s}{s^{2}+1 / 4}\right\}=\cos \frac{1}{2} t$
-4. $\mathscr{L}^{-1}\left\{\frac{1}{4 s^{2}+1}\right\}=\mathscr{L}^{-1}\left\{\frac{1}{2} \cdot \frac{1 / 2}{s^{2}+1 / 4}\right\}=\frac{1}{2} \sin \frac{1}{2} t$

Exercises 7.2 Inverse Transforms and Transforms of Derivatives
15. $\mathscr{L}^{-1}\left\{\frac{2 s-6}{s^{2}+9}\right\}=\mathscr{L}^{-1}\left\{2 \cdot \frac{s}{s^{2}+9}-2 \cdot \frac{3}{s^{2}+9}\right\}=2 \cos 3 t-2 \sin 3 t$
16. $\mathscr{L}^{-1}\left\{\frac{s+1}{s^{2}+2}\right\}=\mathscr{L}^{-1}\left\{\frac{s}{s^{2}+2}+\frac{1}{\sqrt{2}} \frac{\sqrt{2}}{s^{2}+2}\right\}=\cos \sqrt{2} t+\frac{\sqrt{2}}{2} \sin \sqrt{2} t$
17. $\mathscr{L}^{-1}\left\{\frac{1}{s^{2}+3 s}\right\}=\mathscr{L}^{-1}\left\{\frac{1}{3} \cdot \frac{1}{s}-\frac{1}{3} \cdot \frac{1}{s+3}\right\}=\frac{1}{3}-\frac{1}{3} e^{-3 t} \begin{aligned} & \text { use partial fraction, /(s^2 }+3)=\mathrm{a} / \mathrm{s}+\mathrm{b} /(\mathrm{s}+3) \\ & \text { find a, b by cover method }\end{aligned}$
18. $\mathscr{L}^{-1}\left\{\frac{s+1}{s^{2}-4 s}\right\}=\mathscr{L}^{-1}\left\{-\frac{1}{4} \cdot \frac{1}{s}+\frac{5}{4} \cdot \frac{1}{s-4}\right\}=-\frac{1}{4}+\frac{5}{4} e^{4 t} \quad$ use partial fraction
19. $\mathscr{L}^{-1}\left\{\frac{s}{s^{2}+2 s-3}\right\}=\mathscr{L}^{-1}\left\{\frac{1}{4} \cdot \frac{1}{s-1}+\frac{3}{4} \cdot \frac{1}{s+3}\right\}=\frac{1}{4} e^{t}+\frac{3}{4} e^{-3 t} \quad$ use partial fraction
20. $\mathscr{L}^{-1}\left\{\frac{1}{s^{2}+s-20}\right\}=\mathscr{L}^{-1}\left\{\frac{1}{9} \cdot \frac{1}{s-4}-\frac{1}{9} \cdot \frac{1}{s+5}\right\}=\frac{1}{9} e^{4 t}-\frac{1}{9} e^{-5 t} \quad \begin{aligned} & \text { use partial fraction from } 20 \text { to } 24 \\ & \text { and cover method. }\end{aligned}$
21. $\mathscr{L}^{-1}\left\{\frac{0.9 s}{(s-0.1)(s+0.2)}\right\}=\mathscr{L}^{-1}\left\{(0.3) \cdot \frac{1}{s-0.1}+(0.6) \cdot \frac{1}{s+0.2}\right\}=0.3 e^{0.1 t}+0.6 e^{-0.2 t}$
22. $\mathscr{L}^{-1}\left\{\frac{s-3}{(s-\sqrt{3})(s+\sqrt{3})}\right\}=\mathscr{L}^{-1}\left\{\frac{s}{s^{2}-3}-\sqrt{3} \cdot \frac{\sqrt{3}}{s^{2}-3}\right\}=\cosh \sqrt{3} t-\sqrt{3} \sinh \sqrt{3} t$
23. $\mathscr{L}^{-1}\left\{\frac{s}{(s-2)(s-3)(s-6)}\right\}=\mathscr{L}^{-1}\left\{\frac{1}{2} \cdot \frac{1}{s-2}-\frac{1}{s-3}+\frac{1}{2} \cdot \frac{1}{s-6}\right\}=\frac{1}{2} e^{2 t}-e^{3 t}+\frac{1}{2} e^{6 t}$
24. $\mathscr{L}^{-1}\left\{\frac{s^{2}+1}{s(s-1)(s+1)(s-2)}\right\}=\mathscr{L}^{-1}\left\{\frac{1}{2} \cdot \frac{1}{s}-\frac{1}{s-1}-\frac{1}{3} \cdot \frac{1}{s+1}+\frac{5}{6} \cdot \frac{1}{s-2}\right\}$

$$
=\frac{1}{2}-e^{t}-\frac{1}{3} e^{-t}+\frac{5}{6} e^{2 t}
$$ using Laplace)

Exercises 7.2 Inverse Trane :u.
Solve $y^{\prime}-\mathrm{y}=1, \mathrm{y}(0)=1$
NOTE: Instead of writing $Y(s)$, the author kept it as $L\{y(t)\}$ We know $L\{y(t)\}=Y(s)$.

$$
s \mathscr{L}\{y\}-y(0)-\mathscr{L}\{y\}=\frac{1}{s} .
$$

Solving for $\mathscr{L}\{y\}$ we obtain

$$
\mathscr{L}\{y\}=-\frac{1}{s}+\frac{1}{s-1} .
$$

Thus
$2 y^{\prime}+y=0, y(0)=3$ $u=-1+e^{t}$.

$$
2 s \mathscr{L}\{y\}-2 y(0)+\mathscr{L}\{y\}=0
$$

ミ:-ing for $\mathscr{L}\{y\}$ we obtain

$$
\mathscr{L}\{y\}=\frac{6}{2 s+1}=\frac{3}{s+1 / 2}
$$

-215

$$
\begin{aligned}
\mathrm{y}^{\prime}+6 \mathrm{y}=\mathrm{e}^{\wedge}\{4 \mathrm{t}\}, \mathrm{y}(0)= & u=3 e^{-t / 2} \\
& s \mathscr{L}\{y\}-y(0)+6 \mathscr{L}\{y\}=\frac{1}{s-4}
\end{aligned}
$$

$\therefore \because$ ing for $\mathscr{L}\{y\}$ we obtain

$$
\mathscr{L}\{y\}=\frac{1}{(s-4)(s+6)}+\frac{2}{s+6}=\frac{1}{10} \cdot \frac{1}{s-4}+\frac{19}{10} \cdot \frac{1}{s+6}
$$

$-\cdots=$

$$
y=\frac{1}{10} e^{4 t}+\frac{19}{10} e^{-6 t}
$$

Exercises 7.2 Inverse Transforms and Transforms of Derivatives

Sving for $\mathscr{L}\{y\}$ we obtain

$$
\mathscr{L}\{y\}=\frac{s+5}{s^{2}+5 s+4}=\frac{4}{3} \frac{1}{s+1}-\frac{1}{3} \frac{1}{s+4} .
$$

-bre

$$
y=\frac{4}{3} e^{-t}-\frac{1}{3} e^{-4 t}
$$

$3 . y^{\prime \prime}-4 y^{\prime}=6 e^{\wedge}\{3 t\}-3 e^{\wedge}\{-t\}, y(0)=1, y^{\prime}(0)=-1$
$s^{2} \mathscr{L}\{y\}-s y(0)-y^{\prime}(0)-4[s \mathscr{L}\{y\}-y(0)]=\frac{6}{s-3}-\frac{3}{s+1}$.
\because - ing for $\mathscr{L}\{y\}$ we obtain

$$
\begin{aligned}
\mathscr{L}\{y\} & =\frac{6}{(s-3)\left(s^{2}-4 s\right)}-\frac{3}{(s+1)\left(s^{2}-4 s\right)}+\frac{s-5}{s^{2}-4 s} \\
& =\frac{5}{2} \cdot \frac{1}{s}-\frac{2}{s-3}-\frac{3}{5} \cdot \frac{1}{s+1}+\frac{11}{10} \cdot \frac{1}{s-4} .
\end{aligned}
$$

-us

$$
y=\frac{5}{2}-2 c^{3 t}-\frac{3}{5} e^{-t}+\frac{11}{10} e^{4 t}
$$

3.4 Questions with Solutions

More-Questions-Solutions-Laplace-IVP

Quiz 2, MTH 205, Fall 2019
Ayman Badawi

$$
\frac{20}{20}
$$

QUESTION 1. (i) $\ell^{-1}\left\{\frac{e^{-s}}{(s-4)^{2}}\right\} \quad l^{-1}\left[\frac{1}{(s-4)^{2}}\right]=e^{4 t} \cdot t$

$$
\begin{aligned}
& l^{-1}\left[\frac{e^{-s}}{(s-4)^{2}}\right\}=\left(e^{4(t-1)}(t-1)\right) \frac{u(t-1)}{u_{1}} \\
& l^{-1}\left\{\frac{1}{(s-4)^{2}}\right\}=t e^{4 t}
\end{aligned}
$$

(ii) $\ell^{-1}\left\{\frac{e^{-s}+2}{s^{2}+4}\right\} \quad \ell^{-1}\left\{\frac{e^{-s}}{s^{2}+4}\right\}+l^{-1}\left\{\frac{2}{s^{2}+4}\right\}$

$$
\begin{equation*}
=\frac{1}{2} \sin (2(t-1)) u(t-1)+8 \sin 2 t \tag{153}
\end{equation*}
$$

QUESTION 2. Solve for $y(t), y^{\prime \prime}+6 y^{\prime}+13 y=0$, where $y(0)=0, y^{\prime}(0)=2$.

$$
\begin{aligned}
\Longrightarrow & \begin{array}{c}
s^{2} Y(s)-s y(0)-y^{\prime}(0)+6 s Y(s)-6 y^{\prime}(0)+13 Y(s) \\
=0
\end{array} \\
\Longrightarrow Y(s) & \left(s^{2}+6 s+13\right)-2=0 \\
\Longrightarrow & Y(s)=\frac{2}{s^{2}+6 s+13} \\
\Longrightarrow & l^{-1}\left\{\frac{2}{s^{2}+6 s+13}\right\}=y(t) \\
\Longrightarrow & l^{-1}\left\{\frac{2}{s^{2}+6 s+9-9+13}\right\}=y(t) \\
\Longrightarrow & l^{-1}\left\{\frac{2}{(s+3)^{2}+4}\right\}=y(t) \\
\Longrightarrow & y(t)=e^{-3 t} \sin 2 t
\end{aligned}
$$

$\therefore \mathscr{L}\left\{t e^{10 t}\right\}=\frac{1}{(s-10)^{2}}$

1. $\mathscr{L}\left\{t e^{-6 t}\right\}=\frac{1}{(s+6)^{2}}$
2. $\mathscr{L}\left\{t^{3} e^{-2 t}\right\}=\frac{3!}{(s+2)^{4}}$
$\because \mathscr{L}\left\{t^{10} e^{-7 t}\right\}=\frac{10!}{(s+7)^{11}}$
こ. $\mathscr{L}\left\{t\left(e^{t}+e^{2 t}\right)^{2}\right\}=\mathscr{L}\left\{t e^{2 t}+2 t e^{3 t}+t e^{4 t}\right\}=\frac{1}{(s-2)^{2}}+\frac{2}{(s-3)^{2}}+\frac{1}{(s-4)^{2}}$
$\therefore \mathscr{L}\left\{e^{2 t}(t-1)^{2}\right\}=\mathscr{L}\left\{t^{2} e^{2 t}-2 t e^{2 t}+e^{2 t}\right\}=\frac{2}{(s-2)^{3}}-\frac{2}{(s-2)^{2}}+\frac{1}{s-2}$

- $\mathcal{L}\left\{e^{t} \sin 3 t\right\}=\frac{3}{(s-1)^{2}+9}$
$\geq \nsucceq\left\{e^{-2 t} \cos 4 t\right\}=\frac{s+2}{(s+2)^{2}+16}$

Exercises 7.3 Operational Properties I

9. $\mathcal{\perp}\left\{\left(1-e^{t}+3 e^{-4 t}\right) \cos 5 t\right\}=\mathscr{L}\left\{\cos 5 t-e^{t} \cos 5 t+3 e^{-4 t} \cos 5 t\right\}$

$$
=\frac{s}{s^{2}+25}-\frac{s-1}{(s-1)^{2}+25}+\frac{3(s+4)}{(s+4)^{2}+25}
$$

10. $\left\{e^{3 l}\left(9-4 t+10 \sin \frac{t}{2}\right)\right\}=\mathscr{L}\left\{9 e^{3 t}-4 t e^{3 t}+10 e^{3 t} \sin \frac{t}{2}\right\}=\frac{9}{s-3}-\frac{4}{(s-3)^{2}}+\frac{5}{(s-3)^{2}+1 /:}$
11. $\mathscr{L}^{-1}\left\{\frac{1}{(s+2)^{3}}\right\}=\mathscr{L}^{-1}\left\{\frac{1}{2} \frac{2}{(s+2)^{3}}\right\}=\frac{1}{2} t^{2} e^{-2 l}$
$\therefore 2 . \mathscr{E}^{-2}\left\{\frac{1}{(s-1)^{4}}\right\}=\frac{1}{6} \mathscr{L}^{-1}\left\{\frac{3!}{(s-1)^{4}}\right\}=\frac{1}{6} t^{3} e^{t}$
12. $\mathscr{L}^{-}:\left\{\frac{1}{s^{2}-6 s+10}\right\}=\mathscr{L}^{-1}\left\{\frac{1}{(s-3)^{2}+1^{2}}\right\}=e^{3 t} \sin t$
13. $\mathscr{L}^{-1}\left\{\frac{1}{s^{2}+2 s+5}\right\}=\mathscr{L}^{-1}\left\{\frac{1}{2} \frac{2}{(s+1)^{2}+2^{2}}\right\}=\frac{1}{2} e^{-t} \sin 2 t$
14. $\mathscr{L}^{-1}\left\{\frac{s}{s^{2}+4 s+5}\right\}=\mathscr{L}^{-1}\left\{\frac{s+2}{(s+2)^{2}+1^{2}}-2 \frac{1}{(s+2)^{2}+1^{2}}\right\}=e^{-2 t} \cos t-2 e^{-2 t} \sin t$
15. $\mathscr{L}^{-1}\left\{\frac{2 s+5}{s^{2}+6 s+34}\right\}=\mathscr{L}^{-1}\left\{2 \frac{(s+3)}{(s+3)^{2}+5^{2}}-\frac{1}{5} \frac{5}{(s+3)^{2}+5^{2}}\right\}=2 e^{-3 t} \cos 5 t-\frac{1}{5} e^{-3 t} \sin \bar{\partial} t$
16. $\mathscr{L}^{-1}\left\{\frac{s}{(s+1)^{2}}\right\}=\mathscr{L}^{-1}\left\{\frac{s+1-1}{(s+1)^{2}}\right\}=\mathscr{L}^{-1}\left\{\frac{1}{s+1}-\frac{1}{(s+1)^{2}}\right\}=e^{-t}-t e^{-t}$
17. $\mathscr{L}^{-1}\left\{\frac{5 s}{(s-2)^{2}}\right\}=\mathscr{L}^{-1}\left\{\frac{5(s-2)+10}{(s-2)^{2}}\right\}=\mathscr{L}^{-1}\left\{\frac{5}{s-2}+\frac{10}{(s-2)^{2}}\right\}=5 e^{2 t}+10 t e^{2 t}$

find $\mathrm{y}(\mathrm{t})$, where $\mathrm{y}^{\wedge} \backslash+4 \mathrm{y}=\mathrm{e}^{\wedge}\{-4 \mathrm{t}\}, \mathrm{y}(0)=2$.

21. The Laplace transform of the differential equation is

$$
s \mathscr{L}\{y\}-y(0)+4 \mathscr{L}\{y\}=\frac{1}{s+4}
$$

Solving for $\mathscr{L}\{y\}$ we obtain

$$
\mathscr{L}\{y\}=\frac{1}{(s+4)^{2}}+\frac{2}{s+4}
$$

Thus

$$
y=t e^{-4 t}+2 e^{-4 t}
$$

37. $\mathscr{L}\{(t-1) \mathscr{U}(t-1)\}=\frac{e^{-s}}{s^{2}}$
38. $\mathscr{L}\left\{e^{2-t} \mathfrak{U}(t-2)\right\}=\mathscr{L}\left\{e^{-(t-2)} \mathfrak{U}(t-2)\right\}=\frac{e^{-2 s}}{s+1}$
39. $\mathscr{L}\{t \mathscr{U}(t-2)\}=\mathscr{L}\{(t-2) \mathscr{U}(t-2)+2 \mathscr{U}(t-2)\}=\frac{e^{-2 s}}{s^{2}}+\frac{2 e^{-2 s}}{s}$

Alternatively, (16) of this section in the text could be used:

$$
\mathscr{L}\{t \nVdash(t-2)\}=e^{-2 s} \mathscr{L}\{t+2\}=e^{-2 s}\left(\frac{1}{s^{2}}+\frac{2}{s}\right)
$$

40. $\mathscr{L}\{(3 t+1) \mathscr{U}(t-1)\}=3 \mathscr{L}\{(t-1) \mathscr{U}(t-1)\}+4 \mathscr{L}\{\mathscr{W}(t-1)\}=\frac{3 e^{-s}}{s^{2}}+\frac{4 e^{-s}}{s}$

Alternatively, (16) of this section in the text could be used:

$$
\mathscr{L}\{(3 t+1) \mathscr{U}(t-1)\}=e^{-s} \mathscr{L}\{3 t+4\}=e^{-s}\left(\frac{3}{s^{2}} \perp \frac{4}{s}\right) .
$$

41. $\mathscr{L}\{\cos 2 t \mathscr{U}(t-\pi)\}=\mathscr{L}\{\cos 2(t-\pi) \mathscr{U}(t-\pi)\}=\frac{s e^{-\pi s}}{s^{2}+4}$

Alternatively, (16) of this section in the text could be used:

$$
\mathscr{L}\{\cos 2 t \mathscr{Q} \cdot(t-\pi)\}=e^{-\pi s} \mathscr{L}\{\cos 2(t+\pi)\}=e^{-\pi s} \mathscr{L}\{\cos 2 t\}=e^{-\pi s} \frac{s}{s^{2}+4} .
$$

42. $\mathscr{L}\left\{\sin t\right.$ णु $\left.\left(t-\frac{\pi}{2}\right)\right\}=\mathscr{L}\left\{\cos \left(t-\frac{\pi}{2}\right) \mathscr{U}\left(t-\frac{\pi}{2}\right)\right\}=\frac{s e^{-\pi s / 2}}{s^{2}+1}$

Alternatively, (16) of this section in the text could be used:

$$
\mathscr{L}\left\{\sin t \mathscr{U}\left(t-\frac{\pi}{2}\right)\right\}=e^{-\pi s / 2} \mathscr{L}\left\{\sin \left(t+\frac{\pi}{2}\right)\right\}=e^{-\pi s / 2} \mathscr{L}\{\cos t\}=e^{-\pi s / 2} \frac{s}{s^{2}+1} .
$$

43. $\mathscr{L}^{-1}\left\{\frac{e^{-2 s}}{s^{3}}\right\}=\mathscr{L}^{-1}\left\{\frac{1}{2} \cdot \frac{2}{s^{3}} e^{-2 s}\right\}=\frac{1}{2}(t-2)^{2} थ(t-2)$
44. $\mathscr{L}^{-1}\left\{\frac{\left(1+e^{-2 s}\right)^{2}}{s+2}\right\}=\mathscr{L}^{-1}\left\{\frac{1}{s+2}+\frac{2 e^{-2 s}}{s+2}+\frac{e^{-4 s}}{s+2}\right\}=e^{-2 t}+2 e^{-2(l-2) \mathscr{U}(t-2) \pm e^{-2(t-4)}-t}$
45. $\mathscr{L}^{-1}\left\{\frac{e^{-\pi s}}{s^{2}+1}\right\}=\sin (t-\pi) थ(t-\pi)=-\sin t थ(t-\pi)$

$$
\begin{aligned}
& \text { Total }=\frac{80}{80} \\
& \text { Ayman Badawi } \\
& \frac{5}{(5+3)^{4}}=\frac{5+3-3}{(5+3)^{4}}=\frac{1}{(5+3)^{3}}-\frac{3}{(5+3)^{4}} \\
& \text { (i) } \ell^{-1}\left\{\frac{s}{(s+3)^{4}}\right\} \quad \frac{A}{s+3}+\frac{B}{(s+3)^{2}}+\frac{C}{(s+3)^{3}}+\frac{D}{(s+3)^{4}}=\frac{s}{(s+3)^{4}} \\
& A(S+3)^{3}+B(S+3)^{2}+C(S+3)+D=S \\
& S=-1 \\
& 8 A+4 B+2 C D=-1 \\
& s=-3 \\
& S=0 \\
& 8 A+4 B+2 C=2 \\
& s=1 \\
& D=-3 \\
& 27 A+9 B+3 C+D=0 \\
& 27 A+9 B+3 C=3 \\
& A=0 \quad C=1 \\
& B=0 \\
& 64 A+16 B+4 C-3=1 \\
& 64 A+16 B+4 C=4 \\
& \frac{1}{(s+3)^{3}}-\frac{2}{(s+3)^{4}} \\
& =\frac{1}{2} e^{-3 t} t^{2}-\frac{3}{6} e^{-3 t} t^{3} \\
& \text { (ii) } \begin{array}{l}
\ell^{-1}\left\{\frac{e^{-2 s}}{s^{2}+4 s+13}\right\} \\
\frac{4}{2}=(2)^{2}
\end{array}=\frac{1 / e^{-2 s}}{(s+2)^{2}+9}{ }^{F(s)}=U_{2} F(t-2) \\
& F(t)=\int^{-1} \frac{1}{(5+2)^{2}+9}=\frac{1}{3} e^{-2 t} \sin (3 t) \\
& =U_{2} \frac{1}{3} e^{-2(t-2)} \sin (3(t-2))
\end{aligned}
$$

3.5 Questions with Solutions

More-Questions-Solutions-Laplace-IVP

Quiz 2, MTH 205, Fall 2019
Ayman Badawi

$$
\frac{20}{20}
$$

QUESTION 1. (i) $\ell^{-1}\left\{\frac{e^{-s}}{(s-4)^{2}}\right\} \quad l^{-1}\left[\frac{1}{(s-4)^{2}}\right]=e^{4 t} \cdot t$

$$
\begin{aligned}
& l^{-1}\left[\frac{e^{-s}}{(s-4)^{2}}\right\}=\left(e^{4(t-1)}(t-1)\right) \frac{u(t-1)}{u_{1}} \\
& l^{-1}\left\{\frac{1}{(s-4)^{2}}\right\}=t e^{4 t}
\end{aligned}
$$

(ii) $\ell^{-1}\left\{\frac{e^{-s}+2}{s^{2}+4}\right\} \quad \ell^{-1}\left\{\frac{e^{-s}}{s^{2}+4}\right\}+l^{-1}\left\{\frac{2}{s^{2}+4}\right\}$

$$
\begin{equation*}
=\frac{1}{2} \sin (2(t-1)) u(t-1)+8 \sin 2 t \tag{153}
\end{equation*}
$$

QUESTION 2. Solve for $y(t), y^{\prime \prime}+6 y^{\prime}+13 y=0$, where $y(0)=0, y^{\prime}(0)=2$.

$$
\begin{aligned}
\Longrightarrow & \begin{array}{c}
s^{2} Y(s)-s y(0)-y^{\prime}(0)+6 s Y(s)-6 y^{\prime}(0)+13 Y(s) \\
=0
\end{array} \\
\Longrightarrow Y(s) & \left(s^{2}+6 s+13\right)-2=0 \\
\Longrightarrow & Y(s)=\frac{2}{s^{2}+6 s+13} \\
\Longrightarrow & l^{-1}\left\{\frac{2}{s^{2}+6 s+13}\right\}=y(t) \\
\Longrightarrow & l^{-1}\left\{\frac{2}{s^{2}+6 s+9-9+13}\right\}=y(t) \\
\Longrightarrow & l^{-1}\left\{\frac{2}{(s+3)^{2}+4}\right\}=y(t) \\
\Longrightarrow & y(t)=e^{-3 t} \sin 2 t
\end{aligned}
$$

$$
\begin{aligned}
& \left.s^{2} y(s)-s y(0)-y(0)-4 s y s\right)-4 y\left(00^{\circ}+4 y(s)=\frac{e^{-3 s}}{s^{2}}\right. \\
& \begin{array}{l}
\rightarrow\left(s^{2}-4 s+4\right) Y(s)=\frac{e^{-3 s}}{s^{2}} \\
\rightarrow y(s)=\frac{e^{-3 s}}{s^{2}(s-2)^{2}} \\
\Rightarrow y(t)=l^{-1}\left\{\frac{e^{-3 s}}{s^{2}(s-2)^{2}}\right\}
\end{array} \\
& \frac{\|}{l[(t-3) u(t-3)\}} \\
& =\frac{1}{s^{2}} e^{-3 s} \\
& \text { Partial fraction } \\
& \frac{A}{s}+\frac{B}{s^{2}}+\frac{C}{(s-2)}+\frac{D}{(s-2)^{2}} \\
& B=1 / 4, D=1 / 4 \\
& \left\{\begin{aligned}
& 3 / t y(t)=l^{-1}\left\{\frac{1}{s^{2}(s-2)^{2}}\right\} \\
& \rightarrow l^{-}\left[1 / 4 / s^{2}+1 / s^{2}-1 / 4 / 1 / 4 /(s-2)\right. \\
&\left.=1 / 4+1 / 4(t-3)-1 / 4 e^{22(t-3)}\right\}
\end{aligned}\right. \\
& =1 / 4+1 / 4(t-3)-1 / 4 e^{22(t-3)}+1 / 4(t-3) \quad A s^{3}-4 A s^{2}+4 A s+B s^{2}-4 A s \\
& A s\left(s^{2}-4 s+4\right)+B\left(s^{2}-4 s+4\right) \\
& +C s^{2}(s-2)+D s^{2} \\
& \begin{array}{l}
A s^{3}-4 A s^{2}+4 A s+B s^{2}-4 A s \\
+4 B+C s^{3}-2 C s^{2}+D s^{2}
\end{array} \\
& y(t)=u(t-3)\left[1 / 4+1 / 4(t-3)-1 / 4 e^{2(t-3)}+1 / 4 e^{2(t-3)}(t-3)\right. \\
& \begin{array}{l}
4 A+B-2 C+D=0 \\
4 A-4 B=0 \\
4 B=D \\
A=1 / 4, C=-1 / 4
\end{array} \\
& \begin{array}{l}
\text { QUESTION 4. Let } f(t)=\left\{\begin{array}{ll}
3 & \text { is } \\
0 & t \geq 5 \\
f(t) & =\left(u_{2}(t)-u_{5}(t)\right) \\
f(t)
\end{array} \text {. Find } \ell(f(t)\}\right. \\
\hline
\end{array} \\
& f(t)=3 u_{2}-3 u_{5} \\
& \ell\{f(t)]=\frac{3}{5} e^{-2 s}-\frac{3}{5} e^{-5 s}
\end{aligned}
$$ Email: abadari@aus.edu, er. ayman-badagi.com

$$
V / \cup \backslash[f(t)]=\frac{3}{5}\left(e^{-25}-e^{-5 s}\right)
$$

QUESTION 2. Find $y(t)$, where $y^{(2)}-4 y(t)=4 U_{4}(t) \sin (2 t-g), y(0)=y^{\prime}(0)=0\left(\right.$ note $\left.\left.U_{4}(t)=U(t-4)\right)\right)$

$$
\begin{aligned}
& \left.s^{2} Y(s)-s y(0)-y_{0}^{\prime}(0)-4 Y(s)=\frac{8 e^{-4 s}}{s^{2}+4} \right\rvert\, 14 u_{4} \sin (2 t-8) \\
& Y(s)\left(s^{2}-4\right)=\frac{8 e^{-4 s}}{s^{2}+4} \\
& Y(s)={\frac{8 e^{-4 s}, T(s)}{\left(s^{2}-4\right)\left(s^{2}+4\right)} 8 f(t-4) U_{4}}^{\square} \\
& F(s)=\frac{1}{\left(s^{2}-4\right)\left(s^{2}+4\right)} \\
& F(s)=\int^{-1} \frac{1}{8}\left[\frac{1}{s^{2}-4}-\frac{1}{s^{2}+4}\right] \\
& 4\left[e^{-45}\right) \sin (2(t+4)-5 \\
& 4\left[e^{-4 s}\{\sin (2 t)]\right. \\
& \frac{4\left[e^{-4 s} \frac{2}{s^{2}+4}\right]}{\frac{s^{2}+4-s^{2}+4}{s^{2}-4}-\frac{1}{s^{2}+4}=\frac{8}{s^{2}-4}} \\
& f(t)=\frac{1}{8 * 2} \sinh (2 t)-\frac{1}{8 * 2} \sin (2 t)=\frac{1}{16}[\sinh (2 t)-\sin (2 t)] \\
& f(t)=\frac{8}{16}\left[\sin h(2(t-41)-\sin (2(t-4))] u_{4}\right. \\
& =\frac{1}{2}[\sinh (2(t-4))-\sin (2(t-4))] d_{4}
\end{aligned}
$$

QUESTION 3. Find $y(t)$, where $y^{\prime}-2 y(t)=2^{t}, y(0)=0$

$$
\begin{array}{r}
s Y(s)-y(0)-2 Y(s)=\frac{1}{s-\ln 2} \\
s y Y(s)(s-2)=\frac{1}{s-\ln 2} \\
Y(s)=\frac{1}{(s-\ln 2)(s-2)} \\
Y(s)=\left[\frac{1}{-2+\ln 2}\left[\frac{1}{s-\ln 2}-\frac{1}{s-2}\right]=\right.
\end{array}
$$

Faculty information
Ayman Badawi, Department of Mathematics \& Statistics, American University of Shariah, P.O. Box 26666, Shariah, United Arab Emirates, Email; abadawicaus.edu, wwu.ayman-badaui.com

In Problems 21-30 use the Laplace transform to solve the given initial-value problem.
21. $y^{\prime}+4 y=e^{-4 t}, \quad y(0)=2$
22. $y^{\prime}-y=1+t e^{t}, \quad y(0)=0$
23. $y^{\prime \prime}+2 y^{\prime}+y=0, \quad y(0)=1, y^{\prime}(0)=1$
24. $y^{\prime \prime}-4 y^{\prime}+4 y=t^{3} e^{2 t}, \quad y(0)=0, y^{\prime}(0)=0$
25. $y^{\prime \prime}-6 y^{\prime}+9 y=t, \quad y(0)=0, y^{\prime}(0)=1$
26. $y^{\prime \prime}-4 y^{\prime}+4 y=t^{3}, \quad y(0)=1, y^{\prime}(0)=0$
27. $y^{\prime \prime}-6 y^{\prime}+13 y=0, \quad y(0)=0, y^{\prime}(0)=-3$
28. $2 y^{\prime \prime}+20 y^{\prime}+51 y=0, \quad y(0)=2, y^{\prime}(0)=0$
29. $y^{\prime \prime}-y^{\prime}=e^{t} \cos t, \quad y(0)=0, y^{\prime}(0)=0$
30. $y^{\prime \prime}-2 y^{\prime}+5 y=1+t, \quad y(0)=0, y^{\prime}(0)=4$

FIGURE 7.3.9 Series circuit in Problem 35
36. Use the Laplace transform to find the charge $q(t)$ in an $R C$ series circuit when $q(0)=0$ and $E(t)=E_{0} e^{-k t}, k>0$. Consider two cases: $k \neq 1 / R C$ and $k=1 / R C$.

7.3.2 TRANSLATION ON THE t-AXIS

In Problems 37-48 find either $F(s)$ or $f(t)$, as indicated.
37. $\mathscr{L}\{(t-1) \mathscr{U}(t-1)\}$
38. $\mathscr{L}\left\{e^{2-t} \mathscr{U}(t-2)\right\}$
39. $\mathscr{L}\{t \mathscr{U}(t-2)\}$
40. $\mathscr{L}\{(3 t+1) \mathscr{U}(t-1)\}$
41. $\mathscr{L}\{\cos 2 t \mathscr{U}(t-\pi)\}$
43. $\mathscr{L}^{-1}\left\{\frac{e^{-2 s}}{s^{3}}\right\} \downarrow$
42. $\mathscr{L}\left\{\sin t \mathscr{U}\left(t-\frac{\pi}{2}\right)\right\}$
44. $\mathscr{L}^{-1}\left\{\frac{\left(1+e^{-2 s}\right)^{2}}{s+2}\right\}$
45. $\mathscr{L}^{-1}\left\{\frac{e^{-\pi s}}{s^{2}+1}\right\}$
46. $\mathscr{L}^{-1}\left\{\frac{s e^{-\pi s / 2}}{s^{2}+4}\right\}$
47. $\mathscr{L}^{-1}\left\{\frac{e^{-s}}{s(s+1)}\right\}$
48. $\mathscr{L}^{-1}\left\{\frac{e^{-2 s}}{s^{2}(s-1)}\right\}$

22. The Laplace transform of the differential equation is

$$
s \mathscr{L}\{y\}-\mathscr{L}\{y\}=\frac{1}{s}+\frac{1}{(s-1)^{2}} .
$$

Solving for $\mathscr{L}\{y\}$ we obtain

$$
\mathscr{L}\{y\}=\frac{1}{s(s-1)}+\frac{1}{(s-1)^{3}}=-\frac{1}{s}+\frac{1}{s-1}+\frac{1}{(s-1)^{3}}
$$

Thus

$$
y=-1+e^{t}+\frac{1}{2} t^{2} e^{t}
$$

23. The Laplace transform of the differential equation is

$$
s^{2} \mathscr{L}\{y\}-s y(0)-y^{\prime}(0)+2[s \mathscr{L}\{y\}-y(0)]+\mathscr{L}\{y\}=0 .
$$

Solving for $\mathscr{L}\{y\}$ we obtain

$$
\mathscr{L}\{y\}=\frac{s+3}{(s+1)^{2}}=\frac{1}{s+1}+\frac{2}{(s+1)^{2}}
$$

Thus

$$
y=e^{-t}+2 t e^{-t}
$$

24. The Laplace transform of the differential equation is

$$
s^{2} \mathscr{L}\{y\}-s y(0)-y^{\prime}(0)-4[s \mathscr{L}\{y\}-y(0)]+4 \mathscr{L}\{y\}=\frac{6}{(s-2)^{4}}
$$

Solving for $\mathscr{L}\{y\}$ we obtain $\mathscr{L}\{y\}=\frac{1}{20} \frac{5!}{(s-2)^{6}}$. Thus, $y=\frac{1}{20} t^{5} e^{2 t}$.
-5. The Laplace transform of the differential equation is

$$
s^{2} \mathscr{L}\{y\}-s y(0)-y^{\prime}(0)-6[s \mathscr{L}\{y\}-y(0)]+9 \mathscr{L}\{y\}=\frac{1}{s^{2}}
$$

Solving for $\mathscr{L}\{y\}$ we obtain

$$
\mathscr{L}\{y\}=\frac{1+s^{2}}{s^{2}(s-3)^{2}}=\frac{2}{27} \frac{1}{s}+\frac{1}{9} \frac{1}{s^{2}}-\frac{2}{27} \frac{1}{s-3}+\frac{10}{9} \frac{1}{(s-3)^{2}} .
$$

Thus

$$
y=\frac{2}{27}+\frac{1}{9} t-\frac{2}{27} e^{3 t}+\frac{10}{9} t e^{3 t}
$$

\therefore. The Taplace transform of the differential equation is

$$
s^{2} \mathscr{L}\{y\}-s y(0)-y^{\prime}(0)-4[s \mathscr{L}\{y\}-y(0)]+4 \mathscr{L}\{y\}=\frac{6}{s^{4}}
$$

Solving for $\mathscr{L}\{y\}$ we obtain

$$
\mathscr{L}\{y\}=\frac{s^{5}-4 s^{4}+6}{s^{4}(s-2)^{2}}=\frac{3}{4} \frac{1}{s}+\frac{9}{8} \frac{1}{s^{2}}+\frac{3}{4} \frac{2}{s^{3}}+\frac{1}{4} \frac{3!}{s^{4}}+\frac{1}{4} \frac{1}{s-2}-\frac{13}{8} \frac{1}{(s-2)^{2}} .
$$

Exercises 7.3 Operational Properties I

Thus

$$
y=\frac{3}{4}+\frac{9}{8} t+\frac{3}{4} t^{2}+\frac{1}{4} t^{3}+\frac{1}{4} e^{2 t}-\frac{13}{8} t e^{2 t} .
$$

2-. The Laplace transform of the differential equation is

$$
s^{2} \mathscr{L}\{y\}-s y(0)-y^{\prime}(0)-6[s \mathscr{L}\{y\}-y(0)]+13 \mathscr{L}\{y\}=0 .
$$

Solving for $\mathscr{L}\{y\}$ we obtain

$$
\mathscr{L}\{y\}=-\frac{3}{s^{2}-6 s+13}=-\frac{3}{2} \frac{2}{(s-3)^{2}+2^{2}} .
$$

Thus

$$
y=-\frac{3}{2} e^{3 t} \sin 2 t
$$

28. The Laplace transform of the differential equation is

$$
2\left[s^{2} \mathscr{L}\{y\}-s y(0)\right]+20[s \mathscr{L}\{y\}-y(0)]+\tilde{o} 1 \mathscr{L}\{y\}=0
$$

Solving for $\mathscr{L}\{y\}$ we obtain

$$
\mathscr{L}\{y\}=\frac{4 s+40}{2 s^{2}+20 s+51}=\frac{2 s+20}{(s+5)^{2}+1 / 2}=\frac{2(s+5)}{(s+5)^{2}+1 / 2}+\frac{10}{(s+5)^{2}+1 / 2}
$$

Thus

$$
y=2 e^{-5 t} \cos (t / \sqrt{2})+10 \sqrt{2} e^{-5 t} \sin (t / \sqrt{2})
$$

29. The Laplace transform of the differential equation is

$$
s^{2} \mathscr{L}\{y\}-s y(0)-y^{\prime}(0)-[s \mathscr{L}\{y\}-y(0)]=\frac{s-1}{(s-1)^{2}+1}
$$

Solving for $\mathscr{L}\{y\}$ we obtain

$$
\mathscr{L}\{y\}=\frac{1}{s\left(s^{2}-2 s+2\right)}=\frac{1}{2} \frac{1}{s}-\frac{1}{2} \frac{s-1}{(s-1)^{2}+1}+\frac{1}{2} \frac{1}{(s-1)^{2}+1}
$$

Thus

$$
y=\frac{1}{2}-\frac{1}{2} e^{t} \cos t+\frac{1}{2} e^{t} \sin t
$$

30. The Laplace transform of the differential cquation is

$$
s^{2} \mathscr{L}\{y\}-s y(0)-y^{\prime}(0)-2[s \mathscr{L}\{y\}-y(0)]+\tilde{5} \mathscr{L}\{y\}=\frac{1}{s}+\frac{1}{s^{2}} .
$$

Solving for $\mathscr{L}\{y\}$ we obtain

$$
\begin{aligned}
\mathscr{L}\{y\} & =\frac{4 s^{2}+s+1}{s^{2}\left(s^{2}-2 s+5\right)}=\frac{7}{25} \frac{1}{s}+\frac{1}{5} \frac{1}{s^{2}}+\frac{-7 s / 25-109 / 25}{s^{2}-2 s+5} \\
& =\frac{7}{25} \frac{1}{s}+\frac{1}{5} \frac{1}{s^{2}}-\frac{7}{25} \frac{s-1}{(s-1)^{2}+2^{2}}+\frac{51}{25} \frac{2}{(s-1)^{2}+2^{2}} .
\end{aligned}
$$

37. $\mathscr{L}\{(t-1) \mathscr{U}(t-1)\}=\frac{e^{-s}}{s^{2}}$
38. $\mathscr{L}\left\{e^{2-t} \mathfrak{U}(t-2)\right\}=\mathscr{L}\left\{e^{-(t-2)} \mathfrak{U}(t-2)\right\}=\frac{e^{-2 s}}{s+1}$
39. $\mathscr{L}\{t \mathscr{U}(t-2)\}=\mathscr{L}\{(t-2) \mathscr{U}(t-2)+2 \mathscr{U}(t-2)\}=\frac{e^{-2 s}}{s^{2}}+\frac{2 e^{-2 s}}{s}$

Alternatively, (16) of this section in the text could be used:

$$
\mathscr{L}\{t \nVdash(t-2)\}=e^{-2 s} \mathscr{L}\{t+2\}=e^{-2 s}\left(\frac{1}{s^{2}}+\frac{2}{s}\right)
$$

40. $\mathscr{L}\{(3 t+1) \mathscr{U}(t-1)\}=3 \mathscr{L}\{(t-1) \mathscr{U}(t-1)\}+4 \mathscr{L}\{\mathscr{W}(t-1)\}=\frac{3 e^{-s}}{s^{2}}+\frac{4 e^{-s}}{s}$

Alternatively, (16) of this section in the text could be used:

$$
\mathscr{L}\{(3 t+1) \mathscr{U}(t-1)\}=e^{-s} \mathscr{L}\{3 t+4\}=e^{-s}\left(\frac{3}{s^{2}} \perp \frac{4}{s}\right) .
$$

41. $\mathscr{L}\{\cos 2 t \mathscr{U}(t-\pi)\}=\mathscr{L}\{\cos 2(t-\pi) \mathscr{U}(t-\pi)\}=\frac{s e^{-\pi s}}{s^{2}+4}$

Alternatively, (16) of this section in the text could be used:

$$
\mathscr{L}\{\cos 2 t \mathscr{Q}(t-\pi)\}=e^{-\pi s} \mathscr{L}\{\cos 2(t+\pi)\}=e^{-\pi s} \mathscr{L}\{\cos 2 t\}=e^{-\pi s} \frac{s}{s^{2}+4}
$$

42. $\mathscr{L}\left\{\sin t\right.$ णु $\left.\left(t-\frac{\pi}{2}\right)\right\}=\mathscr{L}\left\{\cos \left(t-\frac{\pi}{2}\right) \mathscr{U}\left(t-\frac{\pi}{2}\right)\right\}=\frac{s e^{-\pi s / 2}}{s^{2}+1}$

Alternatively, (16) of this section in the text could be used:

$$
\mathscr{L}\left\{\sin t थ\left(t-\frac{\pi}{2}\right)\right\}=e^{-\pi s / 2} \mathscr{L}\left\{\sin \left(t+\frac{\pi}{2}\right)\right\}=e^{-\pi s / 2} \mathscr{L}\{\cos t\}=e^{-\pi s / 2} \frac{s}{s^{2}+1} .
$$

43. $\mathscr{L}^{-1}\left\{\frac{e^{-2 s}}{s^{3}}\right\}=\mathscr{L}^{-1}\left\{\frac{1}{2} \cdot \frac{2}{s^{3}} e^{-2 s}\right\}=\frac{1}{2}(t-2)^{2} थ(t-2)$
44. $\mathscr{L}^{-1}\left\{\frac{\left(1+e^{-2 s}\right)^{2}}{s+2}\right\}=\mathscr{L}^{-1}\left\{\frac{1}{s+2}+\frac{2 e^{-2 s}}{s+2}+\frac{e^{-4 s}}{s+2}\right\}=e^{-2 t}+2 e^{-2(l-2) \mathscr{U}(t-2) \pm e^{-2(t-4)}-t}$
45. $\mathscr{L}^{-1}\left\{\frac{e^{-\pi s}}{s^{2}+1}\right\}=\sin (t-\pi) थ(t-\pi)=-\sin t थ(t-\pi)$

Exercises 7．3 Operational Properties I

46． $\mathscr{L}^{-1}\left\{\frac{s e^{-\pi s / 2}}{s^{2}+4}\right\}=\cos 2\left(t-\frac{\pi}{2}\right) \mathscr{U}\left(t-\frac{\pi}{2}\right)=-\cos 2 t \mathscr{}\left(t-\frac{\pi}{2}\right)$
47． $\mathscr{L}^{-1}\left\{\frac{e^{-s}}{s(s+1)}\right\}=\mathscr{L}^{-1}\left\{\frac{e^{-s}}{s}-\frac{e^{-s}}{s+1}\right\}=\mathscr{U}(t-1)-e^{-(t-1)} \mathscr{U}(t-1)$
48． $\mathscr{L}^{-1}\left\{\frac{e^{-2 s}}{s^{2}(s-1)}\right\}=\mathscr{L}^{-1}\left\{-\frac{e^{-2 s}}{s}-\frac{e^{-2 s}}{s^{2}}+\frac{e^{-2 s}}{s-1}\right\}=-\mathscr{U}(t-2)-(t-2) \mathscr{M}(t-2)+e^{t-2} \mathscr{O}(t-2)$
49．（c）
50．（e）
51．（f）
52．（b）
53．（a）
54．（d）

55． $\mathscr{L}\{2-4 \mathscr{}(t-3)\}=\frac{2}{s}-\frac{4}{s} e^{-3 s}$
56． $\mathscr{L}\{1-\mathscr{U}(t-4)+\mathscr{U}(t-5)\}=\frac{1}{s}-\frac{e^{-4 s}}{s}+\frac{e^{-5 s}}{s}$
57． $\mathscr{L}\left\{t^{2} ひ(t-1)\right\}=\mathscr{L}\left\{\left[(t-1)^{2}+2 t-1\right] थ(t-1)\right\}=\mathscr{L}\left\{\left[(t-1)^{2}+2(t-1)+1\right] ひ(t-1)\right\}$

$$
=\left(\frac{2}{s^{3}}+\frac{2}{s^{2}}+\frac{1}{s}\right) e^{-s}
$$

Alternatively，by（16）of this section in the text，

$$
\mathscr{L}\left\{t^{2} \mathscr{U}(t-1)\right\}=e^{-s} \mathscr{L}\left\{t^{2}+2 t+1\right\}=e^{-s}\left(\frac{2}{s^{3}}+\frac{2}{s^{2}}+\frac{1}{s}\right) .
$$

55． $\mathscr{L}\left\{\sin t \Downarrow\left(t-\frac{3 \pi}{2}\right)\right\}=\mathscr{L}\left\{-\cos \left(t-\frac{3 \pi}{2}\right) \mathscr{U}\left(t-\frac{3 \pi}{2}\right)\right\}=-\frac{s e^{-3 \pi s / 2}}{s^{2}+1}$
59． $\mathscr{L}\{t-t \mathscr{U}(t-2)\}=\mathscr{L}\{t-(t-2) \mathscr{U}(t-2)-2 \mathscr{H}(t-2)\}=\frac{1}{s^{2}}-\frac{e^{-2 s}}{s^{2}}-\frac{2 e^{-2 s}}{s}$
j0． $\mathscr{L}\{\sin t-\sin t \mathscr{U}(t-2 \pi)\}=\mathscr{L}\{\sin t-\sin (t-2 \pi) \mathscr{U}(t-2 \pi)\}=\frac{1}{s^{2}+1}-\frac{e^{-2 \pi s}}{s^{2}+1}$
31． $\mathscr{L}\{f(t)\}=\mathscr{L}\{\mathscr{U}(t-a)-\mathscr{U}(t-b)\}=\frac{e^{-a . s}}{s}-\frac{e^{-b s}}{s}$
三2． $\mathscr{L}\{f(t)\}=\mathscr{L}\{\mathscr{\mathscr { L }}(t-1)+\mathscr{U}(t-2)+\mathscr{U}(t-3)+\cdots\}=\frac{e^{-s}}{s}+\frac{e^{-2 s}}{s}+\frac{e^{-3 s}}{s}+\cdots=\frac{1}{s} \frac{e^{-s}}{1-e^{-s}}$
33．The Laplace transform of the differential equation is

$$
s \mathscr{L}\{y\}-y(0)+\mathscr{L}\{y\}=\frac{5}{s} e^{-s} .
$$

Solving for $\mathscr{L}\{y\}$ we obtain

$$
\mathscr{L}\{y\}=\frac{5 e^{-s}}{s(s+1)}=5 e^{-s}\left[\frac{1}{s}-\frac{1}{s+1}\right] .
$$

Exercises 7.3 Operational Properties I

Thus

$$
y=5 y(t-1)-5 e^{-(t-1)} y(t-1)
$$

j4. The Laplace transform of the differential equation is

$$
s \mathscr{L}\{y\}-y(0)+\mathscr{L}\{y\}=\frac{1}{s}-\frac{2}{s} e^{-s} .
$$

Gring for $\mathscr{L}\{y\}$ we obtain

$$
\mathscr{L}\{y\}=\frac{1}{s(s+1)}-\frac{2 e^{-s}}{s(s+1)}=\frac{1}{s}-\frac{1}{s+1}-2 e^{-s}\left[\frac{1}{s}-\frac{1}{s+1}\right] .
$$

Thus

$$
y=1-e^{-t}-2\left[1-e^{-(t-1)}\right] \cdot \vartheta(t-1)
$$

55. The Laplace transform of the differential equation is

$$
s \mathscr{L}\{y\}-y(0)+2 \mathscr{L}\{y\}=\frac{1}{s^{2}}-e^{-s} \frac{s+1}{s^{2}}
$$

Solving for $\mathscr{L}\{y\}$ we obtain

$$
\mathscr{L}\{y\}=\frac{1}{s^{2}(s+2)}-e^{-s} \frac{s+1}{s^{2}(s+2)}=-\frac{1}{4} \frac{1}{s}+\frac{1}{2} \frac{1}{s^{2}}+\frac{1}{4} \frac{1}{s+2}-e^{-s}\left[\frac{1}{4} \frac{1}{s}+\frac{1}{2} \frac{1}{s^{2}}-\frac{1}{4} \frac{1}{s+2}\right]
$$

Thus

$$
y=-\frac{1}{4}+\frac{1}{2} t+\frac{1}{4} e^{-2 t}-\left[\frac{1}{4}+\frac{1}{2}(t-1)-\frac{1}{4} e^{-2(t-1)}\right] \mathscr{W}(t-1) .
$$

Bis. Tine Laplace transform of the differential equation is

$$
s^{2} \mathscr{L}\{y\}-s y(0)-y^{\prime}(0)+4 \mathscr{L}\{y\}=\frac{1}{s}-\frac{e^{-s}}{s}
$$

Solving for $\mathscr{L}\{y\}$ we obtain

$$
\mathscr{L}\{y\}=\frac{1-s}{s\left(s^{2}+4\right)}-e^{-s} \frac{1}{s\left(s^{2}+4\right)}=\frac{1}{4} \frac{1}{s}-\frac{1}{4} \frac{s}{s^{2}+4}-\frac{1}{2} \frac{2}{s^{2}+4}-e^{-s}\left[\frac{1}{4} \frac{1}{s}-\frac{1}{4} \frac{s}{s^{2}+4}\right]
$$

Thus

$$
y=\frac{1}{4}-\frac{1}{4} \cos 2 t-\frac{1}{2} \sin 2 t-\left[\frac{1}{4}-\frac{1}{4} \cos 2(t-1)\right] \mathscr{y}(t-1) .
$$

6i. The Laplace transform of the differential cquation is

$$
s^{2} \mathscr{L}\{y\}-s y(0)-y^{\prime}(0)+4 \mathscr{L}\{y\}=e^{-2 \pi s} \frac{1}{s^{2}+1}
$$

Solving for $\mathscr{L}\{y\}$ we obtain

$$
\mathscr{L}\{y\}=\frac{s}{s^{2}+4}+e^{-2 \pi s}\left[\frac{1}{3} \frac{1}{s^{2}+1}-\frac{1}{6} \frac{2}{s^{2}+4}\right]
$$

Thus

$$
y=\cos 2 t+\left[\frac{1}{3} \sin (t-2 \pi)-\frac{1}{6} \sin 2(t-2 \pi)\right] थ(t-2 \pi)
$$

3.6 Questions with Solutions on Chapter 7.4, Questions-Solutions-Laplace-When-multiply-with- t^{n}

EXERCISES 7.4

Answers to selected odd-numbered problems begin on page ANS-11.

7.4.1 DERIVATIVES OF A TRANSFORM

11. $y^{\prime \prime}+9 y=\cos 3 t, \quad y(0)=2, \quad y^{\prime}(0)=5$

In Problems $1-8$ use Theorem 7.4.1 to evaluate the given Laplace transform.

1. $\mathscr{L}\left\{t e^{-10 t}\right\}$
2. $\mathscr{L}\{t \cos 2 t\}$
3. $\mathscr{L}\left\{t^{3} e^{t}\right\}$
4. $\mathscr{L}\left\{t^{2} \sinh t\right\}$
5. $\mathscr{L}\{t \sinh 3 t\}$
6. $\mathscr{L}\left\{t^{2} \cos t\right\}$
7. $\mathscr{L}\left\{t e^{2 t} \sin 6 t\right\}$
8. $\mathscr{L}\left\{t e^{-3 t} \cos 3 t\right\}$

In Problems 9-14 use the Laplace transform to solve the given initial-value problem. Use the table of Laplace transforms in Appendix III as needed.
9. $y^{\prime}+y=t \sin t, \quad y(0)=0$
10. $y^{\prime}-y=t e^{t} \sin t, \quad y(0)=0$

12. $y^{\prime \prime}+y=\sin t, \quad y(0)=1, \quad y^{\prime}(0)=-1$
13. $y^{\prime \prime}+16 y=f(t), \quad y(0)=0, \quad y^{\prime}(0)=1$, where

$$
f(t)=\left\{\begin{array}{lr}
\cos 4 t, & 0 \leq t<\pi \\
0, & t \geq \pi
\end{array}\right.
$$

14. $y^{\prime \prime}+y=f(t), \quad y(0)=1, \quad y^{\prime}(0)=0$, where

$$
f(t)=\left\{\begin{array}{lr}
1, & 0 \leq t<\pi / 2 \\
\sin t, & t \geq \pi / 2
\end{array}\right.
$$

In Problems 15 and 16 use a graphing utility to graph the indicated solution.
15. $y(t)$ of Problem 13 for $0 \leq t<2 \pi$
16. $y(t)$ of Problem 14 for $0 \leq t<3 \pi$

1. $\mathscr{L}\left\{t e^{-10 t}\right\}=-\frac{d}{d s}\left(\frac{1}{s+10}\right)=\frac{1}{(s+10)^{2}}$
2. $\mathscr{L}\left\{t^{3} e^{t}\right\}=(-1)^{3} \frac{d^{3}}{d s^{3}}\left(\frac{1}{s-1}\right)=\frac{6}{(s-1)^{4}}$
3. $\mathscr{L}\{t \cos 2 t\}=-\frac{d}{d s}\left(\frac{s}{s^{2}+4}\right)=\frac{s^{2}-4}{\left(s^{2}+4\right)^{2}}$
4. $\mathscr{L}\{t \sinh 3 t\}=-\frac{d}{d s}\left(\frac{3}{s^{2}-9}\right)=\frac{6 s}{\left(s^{2}-9\right)^{2}}$
5. $\mathscr{L}\left\{t^{2} \sinh t\right\}=\frac{d^{2}}{d s^{2}}\left(\frac{1}{s^{2}-1}\right)=\frac{6 s^{2}+2}{\left(s^{2}-1\right)^{3}}$
6. $\mathscr{L}\left\{t^{2} \cos t\right\}=\frac{d^{2}}{d s^{2}}\left(\frac{s}{s^{2}+1}\right)=\frac{d}{d s}\left(\frac{1-s^{2}}{\left(s^{2}+1\right)^{2}}\right)=\frac{2 s\left(s^{2}-3\right)}{\left(s^{2}+1\right)^{3}}$
7. $\mathscr{L}\left\{t e^{2 t} \sin 6 t\right\}=-\frac{d}{d s}\left(\frac{6}{(s-2)^{2}+36}\right)=\frac{12(s-2)}{\left[(s-2)^{2}+36\right]^{2}}$
8. $\mathscr{L}\left\{t e^{-3 t} \cos 3 t\right\}=-\frac{d}{d s}\left(\frac{s+3}{(s+3)^{2}+9}\right)=\frac{(s+3)^{2}-9}{\left[(s+3)^{2}+9\right]^{2}}$
9. The Laplace transform of the differential equation is

$$
s \mathscr{L}\{y\}+\mathscr{L}\{y\}=\frac{2 s}{\left(s^{2}+1\right)^{2}} .
$$

Solving for $\mathscr{L}\{y\}$ we obtain

$$
\mathscr{L}\{y\}=\frac{2 s}{(s+1)\left(s^{2}+1\right)^{2}}=-\frac{1}{2} \frac{1}{s+1}-\frac{1}{2} \frac{1}{s^{2}+1}+\frac{1}{2} \frac{s}{s^{2}+1}+\frac{1}{\left(s^{2}+1\right)^{2}}+\frac{s}{\left(s^{2}+1\right)^{2}} .
$$

Exercises 7.4 Operational Properties :-

Thus

$$
\begin{aligned}
y(t) & =-\frac{1}{2} e^{-t}-\frac{1}{2} \sin t+\frac{1}{2} \cos t+\frac{1}{2}(\sin t-t \cos t)+\frac{1}{2} t \sin t \\
& =-\frac{1}{2} e^{-t}+\frac{1}{2} \cos t-\frac{1}{2} t \cos t+\frac{1}{2} t \sin t .
\end{aligned}
$$

10. The Laplace transform of the differential equation is

$$
s \mathscr{L}\{y\}-\mathscr{L}\{y\}=\frac{2(s-1)}{\left((s-1)^{2}+1\right)^{2}} .
$$

Solving for $\mathscr{L}\{y\}$ we obtain

$$
\mathscr{L}\{y\}=\frac{2}{\left((s-1)^{2}+1\right)^{2}} .
$$

Thus

$$
y=e^{t} \sin t-t e^{t} \cos t
$$

21. The Laplace transform of the differential equation is

$$
s^{2} \mathscr{L}\{y\}-s y(0)-y^{\prime}(0)+9 \mathscr{L}\{y\}=\frac{s}{s^{2}+9} .
$$

Letting $y(0)=2$ and $y^{\prime}(0)=5$ and solving for $\mathscr{L}\{y\}$ we obtain

$$
\mathscr{L}\{y\}=\frac{2 s^{3}+5 s^{2}+19 s+4 \overline{5}}{\left(s^{2}+9\right)^{2}}=\frac{2 s}{s^{2}+9}+\frac{5}{s^{2}+9}+\frac{s}{\left(s^{2}+9\right)^{2}} .
$$

Thus

$$
y=2 \cos 3 t+\frac{5}{3} \sin 3 t+\frac{1}{6} t \sin 3 t .
$$

\therefore 2. The Laplace transform of the differential equation is

$$
s^{2} \mathscr{L}\{y\}-s y(0)-y^{\prime}(0)+\mathscr{L}\{y\}=\frac{1}{s^{2}+1} .
$$

Solving for $\mathscr{L}\{y\}$ we obtain

$$
\mathscr{L}\{y\}=\frac{s^{3}-s^{2}+s}{\left(s^{2}+1\right)^{2}}=\frac{s}{s^{2}+1}-\frac{1}{s^{2}+1}+\frac{1}{\left(s^{2}+1\right)^{2}} .
$$

Thus

$$
y=\cos t-\sin t+\left(\frac{1}{2} \sin t-\frac{1}{2} t \cos t\right)=\cos t-\frac{1}{2} \sin t-\frac{1}{2} t \cos t .
$$

-3. The Laplace transform of the differential cquation is

$$
s^{2} \mathscr{L}\{y\}-s y(0)-y^{\prime}(0)+16 \mathscr{L}\{y\}=\mathscr{L}\{\cos 4 t-\cos 4 t \mathscr{U}(t-\pi)\}
$$

or by (16) of Section 7.3,

$$
\begin{aligned}
\left(s^{2}+16\right) \mathscr{L}\{y\} & =1+\frac{s}{s^{2}+16}-e^{-\pi s} \mathscr{L}\{\cos 4(t+\pi)\} \\
& =1+\frac{s}{s^{2}+16}-e^{-\pi s} \mathscr{L}\{\cos 4 t\} \\
& =1+\frac{s}{s^{2}+16}-\frac{s}{s^{2}+16} e^{-\pi s} .
\end{aligned}
$$

3.7 Questions with Solutions on Chapter 7.4, Questions-Solutions-Related-to-Convolution
\square

In Problems 19-30 use Theorem 7.4.2 to evaluate the given Laplace transform. Do not evaluate the integral before transforming.

In Problems 37-46 use the Laplace transform to solve the given integral equation or integrodifferential equation.
37. $f(t)+\int_{0}^{t}(t-\tau) f(\tau) d \tau=t$
38. $f(t)=2 t-4 \int_{0}^{t} \sin \tau f(t-\tau) d \tau$
39. $f(t)=t e^{t}+\int_{0}^{t} \tau f(t-\tau) d \tau$
40. $f(t)+2 \int_{0}^{t} f(\tau) \cos (t-\tau) d \tau=4 e^{-t}+\sin t$
41. $f(t)+\int_{0}^{t} f(\tau) d \tau=1$ 42. $f(t)=\cos t+\int_{0}^{t} e^{-\tau} f(t-\tau) d \tau$
43. $f(t)=1+t-\frac{8}{3} \int_{0}^{t}(\tau-t)^{3} f(\tau) d \tau$
21. $\mathscr{L}\left\{e^{-t} * e^{t} \cos t\right\}$
20. $\mathscr{L}\left\{t^{2} * t e^{t}\right\}$
23. $\mathscr{L}\left\{\int_{0}^{t} e^{\tau} d \tau\right\}$
22. $\mathscr{L}\left\{e^{2 t} * \sin t\right\}$
24. $\mathscr{L}\left\{\int_{0}^{t} \cos \tau d \tau\right\}$

25. $\mathscr{L}\left\{\int_{0}^{t} e^{-\tau} \cos \tau d \tau\right\}$
26. $\mathscr{L}\left\{\int_{0}^{t} \tau \sin \tau d \tau\right\}$
27. $\mathscr{L}\left\{\int_{0}^{t} \tau e^{t-\tau} d \tau\right\}$
45. $y^{\prime}(t)=1-\sin t-\int_{0}^{t} y(\tau) d \tau, \quad y(0)=0$
29. $\mathscr{L}\left\{t \int_{0}^{t} \sin \tau d \tau\right\}$
28. $\mathscr{L}\left\{\int_{0}^{t} \sin \tau \cos (t-\tau) d \tau\right\}$
30. $\mathscr{L}\left\{t \int_{0}^{t} \tau e^{-\tau} d \tau\right\}$
v

In Problems 31-34 use (8) to evaluate the given inverse transform.
31. $\mathscr{L}^{-1}\left\{\frac{1}{s(s-1)}\right\}$
32. $\mathscr{L}^{-1}\left\{\frac{1}{s^{2}(s-1)}\right\}>$
33. $\mathscr{L}^{-1}\left\{\frac{1}{s^{3}(s-1)}\right\}$
34. $\mathscr{L}^{-1}\left\{\frac{1}{s(s-a)^{2}}\right\}$

Exercises 7.4 Operational Properties II
22. $\mathscr{L}\left\{e^{2 t} * \sin t\right\}=\frac{1}{(s-2)\left(s^{2}+1\right)}$
23. $\mathscr{L}\left\{\int_{0}^{t} e^{\tau} d \tau\right\}=\frac{1}{s} \mathscr{L}\left\{e^{t}\right\}=\frac{1}{s(s-1)}$
24. $\mathscr{L}\left\{\int_{0}^{t} \cos \tau d \tau\right\}=\frac{1}{s} \mathscr{L}\{\cos t\}=\frac{s}{s\left(s^{2}+1\right)}=\frac{1}{s^{2}+1}$
2.5. $\mathscr{L}\left\{\int_{0}^{t} e^{-\tau} \cos \tau d \tau\right\}=\frac{1}{s} \mathscr{L}\left\{e^{-t} \cos t\right\}=\frac{1}{s} \frac{s+1}{(s+1)^{2}+1}=\frac{s+1}{s\left(s^{2}+2 s+2\right)}$
26. $\mathscr{L}\left\{\int_{0}^{t} \tau \sin \tau d \tau\right\}=\frac{1}{s} \mathscr{L}\{t \sin t\}=\frac{1}{s}\left(-\frac{d}{d s} \frac{1}{s^{2}+1}\right)=-\frac{1}{s} \frac{-2 s}{\left(s^{2}+1\right)^{2}}=\frac{2}{\left(s^{2}+1\right)^{2}}$
27. $\mathscr{L}\left\{\int_{0}^{t} \tau e^{t-\tau} d \tau\right\}=\mathscr{L}\{t\} \mathscr{L}\left\{e^{t}\right\}=\frac{1}{s^{2}(s-1)}$
28. $\mathscr{L}\left\{\int_{0}^{t} \sin \tau \cos (t-\tau) d \tau\right\}=\mathscr{L}\{\sin t\} \mathscr{L}\{\cos t\}=\frac{s}{\left(s^{2}+1\right)^{2}}$
29. $\mathscr{L}\left\{t \int_{0}^{t} \sin \tau d \tau\right\}=-\frac{d}{d s} \mathscr{L}\left\{\int_{0}^{t} \sin \tau d \tau\right\}=-\frac{d}{d s}\left(\frac{1}{s} \frac{1}{s^{2}+1}\right)=\frac{3 s^{2}+1}{s^{2}\left(s^{2}+1\right)^{2}}$
30. $\mathscr{L}\left\{t \int_{0}^{t} \tau e^{-\tau} d \tau\right\}=-\frac{d}{d s} \mathscr{L}\left\{\int_{0}^{t} \tau e^{-\tau} d \tau\right\}=-\frac{d}{d s}\left(\frac{1}{s} \frac{1}{(s+1)^{2}}\right)=\frac{3 s+1}{s^{2}(s+1)^{3}}$
31. $\mathscr{L}^{-1}\left\{\frac{1}{s(s-1)}\right\}=\mathscr{L}^{-1}\left\{\frac{1 /(s-1)}{s}\right\}=\int_{0}^{t} e^{\tau} d \tau=e^{t}-1$
32. $\mathscr{L}^{-1}\left\{\frac{1}{s^{2}(s-1)}\right\}=\mathscr{L}^{-1}\left\{\frac{1 / s(s-1)}{s}\right\}=\int_{0}^{t}\left(e^{\tau}-1\right) d \tau=e^{t}-t-1$
33. $\mathscr{L}^{-1}\left\{\frac{1}{s^{3}(s-1)}\right\}=\mathscr{L}^{-1}\left\{\frac{1 / s^{2}(s-1)}{s}\right\}=\int_{0}^{t}\left(e^{\tau}-\tau-1\right) d \tau=e^{t}-\frac{1}{2} t^{2}-t-1$
34. Üsing $\mathscr{L}^{-1}\left\{\frac{1}{(s-a)^{2}}\right\}=t e^{a t},(8)$ in the text gives

$$
\mathscr{L}^{-1}\left\{\frac{1}{s(s-a)^{2}}\right\}=\int_{0}^{t} \tau e^{a \tau} d \tau=\frac{1}{a^{2}}\left(a t e^{a t}-e^{a t}+1\right)
$$

35. (a) The result in (4) in the text is $\mathscr{L}^{-1}\{F(s) G(s)\}=f * g$, so identify

$$
F(s)=\frac{2 k^{3}}{\left(s^{2}+k^{2}\right)^{2}} \quad \text { and } \quad G(s)=\frac{4 s}{s^{2}+k^{2}} .
$$

Exercises 7.4 Operational Properties II

Solving for $\mathscr{L}\{f\}$ we obtain

$$
\mathscr{L}\{f\}=\frac{2 s^{2}+2}{s^{2}\left(s^{2}+5\right)}=\frac{2}{5} \frac{1}{s^{2}}+\frac{8}{5 \sqrt{5}} \frac{\sqrt{5}}{s^{2}+5} .
$$

Thus

$$
f(t)=\frac{2}{5} t+\frac{8}{5 \sqrt{5}} \sin \sqrt{5} t
$$

39. The Laplace transform of the given equation is

$$
\mathscr{L}\{f\}=\mathscr{L}\left\{t e^{t}\right\}+\mathscr{L}\{t\} \mathscr{L}\{f\}
$$

Solving for $\mathscr{L}\{f\}$ we obtain

$$
\mathscr{L}\{f\}=\frac{s^{2}}{(s-1)^{3}(s+1)}=\frac{1}{8} \frac{1}{s-1}+\frac{3}{4} \frac{1}{(s-1)^{2}}+\frac{1}{4} \frac{2}{(s-1)^{3}}-\frac{1}{8} \frac{1}{s+1} .
$$

Thus

$$
f(t)=\frac{1}{8} e^{t}+\frac{3}{4} t e^{t}+\frac{1}{4} t^{2} e^{t}-\frac{1}{8} e^{-t}
$$

40. The Laplace transform of the given equation is

$$
\mathscr{L}\{f\}+2 \mathscr{L}\{\cos t\} \mathscr{L}\{f\}=4 \mathscr{L}\left\{e^{-t}\right\}+\mathscr{L}\{\sin t\}
$$

Solving for $\mathscr{L}\{f\}$ we obtain

$$
\mathscr{L}\{f\}=\frac{4 s^{2}+s+5}{(s+1)^{3}}=\frac{4}{s+1}-\frac{7}{(s+1)^{2}}+4 \frac{2}{(s+1)^{3}} .
$$

Thus

$$
f(t)=4 e^{-t}-7 t e^{-t}+4 t^{2} e^{-t}
$$

41. The Laplace transform of the given equation is

$$
\mathscr{L}\{f\}+\mathscr{L}\{1\} \mathscr{L}\{f\}=\mathscr{L}\{1\} .
$$

Solving for $\mathscr{L}\{f\}$ we obtain $\mathscr{L}\{f\}=\frac{1}{s+1}$. Thus, $f(t)=e^{-t}$.
42. The Laplace transform of the given equation is

$$
\mathscr{L}\{f\}=\mathscr{L}\{\cos t\}+\mathscr{L}\left\{e^{-t}\right\} \mathscr{L}\{f\} .
$$

Solving for $\mathscr{L}\{f\}$ we obtain

$$
\mathscr{L}\{f\}=\frac{s}{s^{2}+1}+\frac{1}{s^{2}+1} .
$$

Thus

$$
f(t)=\cos t+\sin t
$$

43. The Laplace transform of the given equation is

$$
\begin{aligned}
\mathscr{L}\{f\} & =\mathscr{L}\{1\}+\mathscr{L}\{t\}-\mathscr{L}\left\{\frac{8}{3} \int_{0}^{t}(t-\tau)^{3} f(\tau) d \tau\right\} \\
& =\frac{1}{s}+\frac{1}{s^{2}}+\frac{8}{3} \mathscr{L}\left\{t^{3}\right\} \mathscr{L}\{f\}=\frac{1}{s}+\frac{1}{s^{2}}+\frac{16}{s^{4}} \mathscr{L}\{f\} .
\end{aligned}
$$

Solving for $\mathscr{L}\{f\}$ we obtain

$$
\mathscr{L}\{f\}=\frac{s^{2}(s+1)}{s^{4}-16}=\frac{1}{8} \frac{1}{s+2}+\frac{3}{8} \frac{1}{s-2}+\frac{1}{4} \frac{2}{s^{2}+4}+\frac{1}{2} \frac{s}{s^{2}+4}
$$

Thus

$$
f(t)=\frac{1}{8} e^{-2 t}+\frac{3}{8} e^{2 t}+\frac{1}{4} \sin 2 t+\frac{1}{2} \cos 2 t
$$

44. The Laplace transform of the given equation is

$$
\mathscr{L}\{t\}-2 \mathscr{L}\{f\}=\mathscr{L}\left\{e^{t}-e^{-t}\right\} \mathscr{L}\{f\} .
$$

Solving for $\mathscr{L}\{f\}$ we obtain

$$
\mathscr{L}\{f\}=\frac{s^{2}-1}{2 s^{4}}=\frac{1}{2} \frac{1}{s^{2}}-\frac{1}{12} \frac{3!}{s^{4}}
$$

Thus

$$
f(t)=\frac{1}{2} t-\frac{1}{12} t^{3}
$$

$\therefore 5$. The Laplace transform of the given equation is

$$
s \mathscr{L}\{y\}-y(0)=\mathscr{L}\{1\}-\mathscr{L}\{\sin t\}-\mathscr{L}\{1\} \mathscr{L}\{y\}
$$

Solving for $\mathscr{L}\{f\}$ we obtain

$$
\mathscr{L}\{y\}=\frac{s^{2}-s+1}{\left(s^{2}+1\right)^{2}}=\frac{1}{s^{2}+1}-\frac{1}{2} \frac{2 s}{\left(s^{2}+1\right)^{2}}
$$

Thus

$$
y=\sin t-\frac{1}{2} t \sin t
$$

$=-$ The Laplace transform of the given equation is

$$
s \mathscr{L}\{y\}-y(0)+6 \mathscr{L}\{y\}+9 \mathscr{L}\{1\} \mathscr{L}\{y\}=\mathscr{L}\{1\}
$$

Solving for $\mathscr{L}\{f\}$ we obtain $\mathscr{L}\{y\}=\frac{1}{(s+3)^{2}}$. Thus, $y=t e^{-3 t}$.

1. The Laplace transform of the differential equation yields

$$
\mathscr{L}\{y\}=\frac{1}{s-3} e^{-2 s}
$$

so that

$$
y=e^{3(t-2)}(t-2) .
$$

2. The Laplace transform of the differential equation yields

$$
\mathscr{L}\{y\}=\frac{2}{s+1}+\frac{e^{-s}}{s+1}
$$

so that

$$
\left.y=2 e^{-t}+e^{-(t-1)}\right)(t-1)
$$

3. The Laplace transform of the differential equation yields

$$
\mathscr{L}\{y\}=\frac{1}{s^{2}+1}\left(1+\epsilon^{-2 \pi s}\right)
$$

so that

$$
y=\sin t+\sin t \cdot(t-2 \pi)
$$

\therefore The Laplace transform of the differential equation yields

$$
\mathscr{L}\{y\}=\frac{1}{4} \frac{4}{s^{2}+16} e^{-2 \pi s}
$$

so that

$$
y=\frac{1}{4} \sin 4(t-2 \pi) \mathscr{U}(t-2 \pi)=\frac{1}{4} \sin 4 t थ(t-2 \pi)
$$

\equiv The Laplace transform of the differential equation yields

$$
\mathscr{L}\{y\}=\frac{1}{s^{2}+1}\left(e^{-\pi s / 2}+e^{-3 \pi s / 2}\right)
$$

so that

$$
\begin{aligned}
y & =\sin \left(t-\frac{\pi}{2}\right) थ\left(t-\frac{\pi}{2}\right)+\sin \left(t-\frac{3 \pi}{2}\right) थ\left(t-\frac{3 \pi}{2}\right) \\
& =-\cos t थ\left(t-\frac{\pi}{2}\right)+\cos t थ\left(t-\frac{3 \pi}{2}\right)
\end{aligned}
$$

-he Laplace transform of the differential equation yields

$$
\mathscr{L}\{y\}=\frac{s}{s^{2}+1}+\frac{1}{s^{2}+1}\left(e^{-2 \pi s}+e^{-4 \pi s}\right)
$$

Exercises 7.5 The Dirac Delta Function
so that

$$
y=\cos t+\sin t[\mathscr{U}(t-2 \pi)+\mathscr{U}(t-4 \pi)] .
$$

7. The Laplace transform of the differential equation yields

$$
\mathscr{L}\{y\}=\frac{1}{s^{2}+2 s}\left(1+e^{-s}\right)=\left[\frac{1}{2} \frac{1}{s}-\frac{1}{2} \frac{1}{s+2}\right]\left(1+e^{-s}\right)
$$

so that

$$
y=\frac{1}{2}-\frac{1}{2} e^{-2 t}+\left[\frac{1}{2}-\frac{1}{2} e^{-2(t-1)}\right] थ(t-1)
$$

5. The Laplace transform of the differential equation yields

$$
\mathscr{L}\{y\}=\frac{s+1}{s^{2}(s-2)}+\frac{1}{s(s-2)} e^{-2 s}=\frac{3}{4} \frac{1}{s-2}-\frac{3}{4} \frac{1}{s}-\frac{1}{2} \frac{1}{s^{2}}+\left[\frac{1}{2} \frac{1}{s-2}-\frac{1}{2} \frac{1}{s}\right] e^{-2 s}
$$

so that

$$
y=\frac{3}{4} e^{2 t}-\frac{3}{4}-\frac{1}{2} t+\left[\frac{1}{2} e^{2(t-2)}-\frac{1}{2}\right] \vartheta(t-2) .
$$

9. The Laplace transform of the differential equation yields

$$
\mathscr{L}\{y\}=\frac{1}{(s+2)^{2}+1} e^{-2 \pi s}
$$

so that

$$
y=e^{-2(t-2 \pi)} \sin t \mathscr{U}(t-2 \pi)
$$

20. The Laplace transform of the differential equation yields

$$
\mathscr{L}\{y\}=\frac{1}{(s+1)^{2}} e^{-s}
$$

so that

$$
y=(t-1) e^{-(t-1)} u(t-1)
$$

11. The Laplace transform of the differential equation yiclds

$$
\begin{aligned}
\mathscr{L}\{y\} & =\frac{4+s}{s^{2}+4 s+13}+\frac{e^{-\pi s}+e^{-3 \pi s}}{s^{2}+4 s+13} \\
& =\frac{2}{3} \frac{3}{(s+2)^{2}+3^{2}}+\frac{s+2}{(s+2)^{2}+3^{2}}+\frac{1}{3} \frac{3}{(s+2)^{2}+3^{2}}\left(e^{-\pi s}+e^{-3 \pi s}\right)
\end{aligned}
$$

so that

$$
\begin{aligned}
& y=\frac{2}{3} e^{-2 t} \sin 3 t+e^{-2 t} \cos 3 t+\frac{1}{3} e^{-2(t-\pi)} \sin 3(t-\pi)^{\mathscr{U}}(t-\pi) \\
&+\frac{1}{3} e^{-2(t-3 \pi)} \sin 3(t-3 \pi) \mathscr{U}(t-3 \pi) .
\end{aligned}
$$

In Problems 1-12 use the Laplace transform to solve the given system of differential equations.

12. $\frac{d x}{d t}=4 x-2 y+2 थ(t-1)$
$\frac{d y}{d t}=3 x-y+U(t-1)$
$x(0)=0, \quad y(0)=\frac{1}{2}$

\square

1. Taking the Laplace transform of the system gives

$$
\begin{aligned}
s \mathscr{L}\{x\} & =-\mathscr{L}\{x\}+\mathscr{L}\{y\} \\
s \mathscr{L}\{y\}-1 & =2 \mathscr{L}\{x\}
\end{aligned}
$$

so that

$$
\mathscr{L}\{x\}=\frac{1}{(s-1)(s+2)}=\frac{1}{3} \frac{1}{s-1}-\frac{1}{3} \frac{1}{s+2}
$$

and

$$
\mathscr{L}\{y\}=\frac{1}{s}+\frac{2}{s(s-1)(s+2)}=\frac{2}{3} \frac{1}{s-1}+\frac{1}{3} \frac{1}{s+2}
$$

Then

$$
x=\frac{1}{3} e^{t}-\frac{1}{3} e^{-2 t} \quad \text { and } \quad y=\frac{2}{3} e^{t}+\frac{1}{3} e^{-2 t}
$$

2. Taking the Laplace transform of the system gives

$$
\begin{aligned}
& s \mathscr{L}\{x\}-1=2 \mathscr{L}\{y\}+\frac{1}{s-1} \\
& s \mathscr{L}\{y\}-1=8 \mathscr{L}\{x\}-\frac{1}{s^{2}}
\end{aligned}
$$

so that

$$
\mathscr{L}\{y\}=\frac{s^{3}+7 s^{2}-s+1}{s(s-1)\left(s^{2}-16\right)}=\frac{1}{16} \frac{1}{s}-\frac{8}{15} \frac{1}{s-1}+\frac{173}{96} \frac{1}{s-4}-\frac{53}{160} \frac{1}{s+4}
$$

and

$$
y=\frac{1}{16}-\frac{8}{15} e^{t}+\frac{173}{96} e^{4 t}-\frac{53}{160} e^{-4 t}
$$

Then

$$
x=\frac{1}{8} y^{\prime}+\frac{1}{8} t=\frac{1}{8} t-\frac{1}{15} e^{t}+\frac{173}{192} e^{4 t}+\frac{53}{320} e^{-4 t}
$$

3. Taking the Laplace transform of the system gives

$$
\begin{aligned}
& s \mathscr{L}\{x\}+1=\mathscr{L}\{x\}-2 \mathscr{L}\{y\} \\
& s \mathscr{L}\{y\}-2=5 \mathscr{L}\{x\}-\mathscr{L}\{y\}
\end{aligned}
$$

so that

$$
\mathscr{L}\{x\}=\frac{-s-5}{s^{2}+9}=-\frac{s}{s^{2}+9}-\frac{\tilde{5}}{3} \frac{3}{s^{2}+9}
$$

and

Exercises 7.6 Systems of Linear Differential Equat:

$$
x=-\cos 3 t-\frac{5}{3} \sin 3 t
$$

Then

$$
y=\frac{1}{2} x-\frac{1}{2} x^{\prime}=2 \cos 3 t-\frac{7}{3} \sin 3 t
$$

4. Taking the Laplace transform of the system gives

$$
\begin{aligned}
(s+3) \mathscr{L}\{x\}+s \mathscr{L}\{y\} & =\frac{1}{s} \\
(s-1) \mathscr{L}\{x\}+(s-1) \mathscr{L}\{y\} & =\frac{1}{s-1}
\end{aligned}
$$

so that

$$
\mathscr{L}\{y\}=\frac{5 s-1}{3 s(s-1)^{2}}=-\frac{1}{3} \frac{1}{s}+\frac{1}{3} \frac{1}{s-1}+\frac{4}{3} \frac{1}{(s-1)^{2}}
$$

and

$$
\mathscr{L}\{x\}=\frac{1-2 s}{3 s(s-1)^{2}}=\frac{1}{3} \frac{1}{s}-\frac{1}{3} \frac{1}{s-1}-\frac{1}{3} \frac{1}{(s-1)^{2}}
$$

Then

$$
x=\frac{1}{3}-\frac{1}{3} e^{t}-\frac{1}{3} t \epsilon^{t} \quad \text { and } \quad y=-\frac{1}{3}+\frac{1}{3} e^{t}+\frac{4}{3} t e^{t}
$$

5. Taking the Laplace transform of the system gives

$$
\begin{aligned}
(2 s-2) \mathscr{L}\{x\}+s \mathscr{L}\{y\} & =\frac{1}{s} \\
(s-3) \mathscr{L}\{x\}+(s-3) \mathscr{L}\{y\} & =\frac{2}{s}
\end{aligned}
$$

so that

$$
\mathscr{L}\{x\}=\frac{-s-3}{s(s-2)(s-3)}=-\frac{1}{2} \frac{1}{s}+\frac{5}{2} \frac{1}{s-2}-\frac{2}{s-3}
$$

and

$$
\mathscr{L}\{y\}=\frac{3 s-1}{s(s-2)(s-3)}=-\frac{1}{6} \frac{1}{s}-\frac{5}{2} \frac{1}{s-2}+\frac{8}{3} \frac{1}{s-3} .
$$

Then

$$
x=-\frac{1}{2}+\frac{5}{2} e^{2 t}-2 e^{3 t} \quad \text { and } \quad y=-\frac{1}{6}-\frac{5}{2} e^{2 t}+\frac{8}{3} e^{3 t}
$$

6. Taking the Laplace transform of the system gives

$$
\begin{aligned}
(s+1) \mathscr{L}\{x\}-(s-1) \mathscr{L}\{y\} & =-1 \\
s \mathscr{L}\{x\}+(s+2) \mathscr{L}\{y\} & =1
\end{aligned}
$$

so that

$$
\mathscr{L}\{y\}=\frac{s+1 / 2}{s^{2}+s+1}=\frac{s+1 / 2}{(s+1 / 2)^{2}+(\sqrt{3} / 2)^{2}}
$$

and

Exercises 7.6 Systems of Linear Differential Equations

$$
\mathscr{L}\{x\}=\frac{-3 / 2}{s^{2}+s+1}=-\sqrt{3} \frac{\sqrt{3} / 2}{(s+1 / 2)^{2}+(\sqrt{3} / 2)^{2}}
$$

-ien

$$
y=e^{-t / 2} \cos \frac{\sqrt{3}}{2} t \quad \text { and } \quad x=-\sqrt{3} e^{-t / 2} \sin \frac{\sqrt{3}}{2} t
$$

-. -ahing the Laplace transform of the system gives

$$
\begin{aligned}
\left(s^{2}+1\right) \mathscr{L}\{x\}-\mathscr{L}\{y\} & =-2 \\
-\mathscr{L}\{x\}+\left(s^{2}+1\right) \mathscr{L}\{y\} & =1
\end{aligned}
$$

so that

$$
\mathscr{L}\{x\}=\frac{-2 s^{2}-1}{s^{4}+2 s^{2}}=-\frac{1}{2} \frac{1}{s^{2}}-\frac{3}{2} \frac{1}{s^{2}+2}
$$

and

$$
x=-\frac{1}{2} t-\frac{3}{2 \sqrt{2}} \sin \sqrt{2} t
$$

Then

$$
y=x^{\prime \prime}+x=-\frac{1}{2} t+\frac{3}{2 \sqrt{2}} \sin \sqrt{2} t
$$

玉. Taking the Laplace transform of the system gives

$$
\begin{array}{r}
(s+1) \mathscr{L}\{x\}+\mathscr{L}\{y\}=1 \\
4 \mathscr{L}\{x\}-(s+1) \mathscr{L}\{y\}=1
\end{array}
$$

so that

$$
\mathscr{L}\{x\}=\frac{s+2}{s^{2}+2 s+5}=\frac{s+1}{(s+1)^{2}+2^{2}}+\frac{1}{2} \frac{2}{(s+1)^{2}+2^{2}}
$$

and

$$
\mathscr{L}\{y\}=\frac{-s+3}{s^{2}+2 s+5}=-\frac{s+1}{(s+1)^{2}+2^{2}}+2 \frac{2}{(s+1)^{2}+2^{2}}
$$

Then

$$
x=e^{-t} \cos 2 t+\frac{1}{2} e^{-t} \sin 2 t \quad \text { and } \quad y=-e^{-t} \cos 2 t+2 e^{-t} \sin 2 t
$$

9. Adding the equations and then subtracting them gives

$$
\begin{aligned}
& \frac{d^{2} x}{d t^{2}}=\frac{1}{2} t^{2}+2 t \\
& \frac{d^{2} y}{d t^{2}}=\frac{1}{2} t^{2}-2 t
\end{aligned}
$$

Taking the Laplace transform of the system gives

$$
\mathscr{L}\{x\}=8 \frac{1}{s}+\frac{1}{24} \frac{4!}{s^{5}}+\frac{1}{3} \frac{3!}{s^{4}}
$$

and

Exercises 7.6 Systems of Linear Differential Equations

$$
\mathscr{L}\{y\}=\frac{1}{24} \frac{4!}{s^{5}}-\frac{1}{3} \frac{3!}{s^{4}}
$$

so that

$$
x=8+\frac{1}{24} t^{4}+\frac{1}{3} t^{3} \quad \text { and } \quad y=\frac{1}{24} t^{4}-\frac{1}{3} t^{3} .
$$

-D. Taking the Laplace transform of the system gives

$$
\begin{aligned}
(s-4) \mathscr{L}\{x\}+s^{3} \mathscr{L}\{y\} & =\frac{6}{s^{2}+1} \\
(s+2) \mathscr{L}\{x\}-2 s^{3} \mathscr{L}\{y\} & =0
\end{aligned}
$$

so that

$$
\mathscr{L}\{x\}=\frac{4}{(s-2)\left(s^{2}+1\right)}=\frac{4}{5} \frac{1}{s-2}-\frac{4}{5} \frac{s}{s^{2}+1}-\frac{8}{5} \frac{1}{s^{2}+1}
$$

and

$$
\mathscr{L}\{y\}=\frac{2 s+4}{s^{3}(s-2)\left(s^{2}+1\right)}=\frac{1}{s}-\frac{2}{s^{2}}-2 \frac{2}{s^{3}}+\frac{1}{5} \frac{1}{s-2}-\frac{6}{5} \frac{s}{s^{2}+1}+\frac{8}{5} \frac{1}{s^{2}+1}
$$

Then

$$
x=\frac{4}{5} e^{2 t}-\frac{4}{5} \cos t-\frac{8}{5} \sin t
$$

and

$$
y=1-2 t-2 t^{2}+\frac{1}{5} e^{2 t}-\frac{6}{5} \cos t+\frac{8}{5} \sin t
$$

\therefore Taking the Laplace transform of the system gives

$$
\begin{aligned}
s^{2} \mathscr{L}\{x\}+3(s+1) \mathscr{L}\{y\} & =2 \\
s^{2} \mathscr{L}\{x\}+3 \mathscr{L}\{y\} & =\frac{1}{(s+1)^{2}}
\end{aligned}
$$

\therefore that

$$
\mathscr{L}\{x\}=-\frac{2 s+1}{s^{3}(s+1)}=\frac{1}{s}+\frac{1}{s^{2}}+\frac{1}{2} \frac{2}{s^{3}}-\frac{1}{s+1} .
$$

Then

$$
x=1+t+\frac{1}{2} t^{2}-e^{-t}
$$

$\therefore 1 d$

$$
y=\frac{1}{3} t e^{-t}-\frac{1}{3} x^{\prime \prime}=\frac{1}{3} t e^{-t}+\frac{1}{3} e^{-t}-\frac{1}{3} .
$$

$\therefore \quad$-aking the Laplace transform of the system gives

$$
\begin{aligned}
(s-4) \mathscr{L}\{x\}+2 \mathscr{L}\{y\} & =\frac{2 e^{-s}}{s} \\
-3 \mathscr{L}\{x\}+(s+1) \mathscr{L}\{y\} & =\frac{1}{2}+\frac{e^{-s}}{s}
\end{aligned}
$$

${ }_{3.10}$ Questions with Solutions,
More-Questions-Periodic-Solving-System-LDE

Quiz 3, MTH 205, Fall 2019
Ayman Badawi
QUESTION 1. Find $x(t), y(t)$ such that $x(0)=3, y(0)=0$ and

$$
\begin{aligned}
& x^{\prime}(t)+x(t)-9 y(t)=0 \\
& y^{\prime}(t)+x(t)+y(t)=0
\end{aligned}
$$

$$
\begin{aligned}
& s X(s)-x^{3}(0)+X(s)-9 Y(s)=0 \\
& s Y(s)-Y(0)+X(s)+Y(s)=0
\end{aligned}
$$

(1) $x(s)(s+1)-9 Y(s)=3$
(2) $x(s)+(s+1) Y(s)=0$

$$
\begin{aligned}
& X(s)=\frac{\left|\begin{array}{cc}
3 & -9 \\
0 & s+1
\end{array}\right|}{\left|\begin{array}{cc}
x(s) \\
s+1 \\
1 & x(s) \\
-9 \\
s+1
\end{array}\right|}=\frac{3(s+1)-0}{\begin{array}{c}
(s+1)(s+1)+9 \\
s^{2}+s+s+1
\end{array}}=\frac{3(s+1)}{s^{2}+2 s+10}=\frac{3(s+1)}{(s+1)^{2}+9} \\
& X(s)=\frac{23 s+3}{s^{2}+2 s+40}, f^{-1} x(s)=\int^{-1} \frac{3(s+1)}{(s+1)^{2}+9} \\
& x(t)=3 e^{-t} \cos (3 t) \\
& Y(s)=\frac{\left|\begin{array}{c}
s+1 \\
1
\end{array}<\begin{array}{c}
3 \\
0
\end{array}\right|}{\left|\begin{array}{c}
x(s) \\
s+1 \\
1
\end{array} \ll \begin{array}{c}
-9 \\
s+1
\end{array}\right|}=\frac{0-3}{(s+1)(s+1)+9}=\frac{-3}{(s+1)^{2}+9}
\end{aligned}
$$

QUESTION 2. (8 points) Given $f(t)$ is periodic on the interval [$0, \infty$]. The first period of $f(t)$ is determined by $f(t)=2$, when $0 \leq t<4$. Use Laplace-Transformation and find $y(t)$, where $y^{\prime \prime}-4 y^{\prime}+3 y=f(t), y(0)=0, y^{\prime}(0)=0$.

$$
y(t)=\frac{2}{3}+\frac{1}{3} e^{3 t}-e^{t}
$$

$$
s^{2} 9-s^{2}-1
$$

$$
\frac{1}{5+1}-\frac{1}{s^{2}-9}=1
$$

$$
\begin{aligned}
& \text { QUESTION 3. (8 points) let } f(t)=\int_{0}^{t} \cos (u) d u \text {, where } 0 \leq t<\infty \text {. Use Laplace-Transformation and find } y(t) \text {, } \\
& \text { where } y^{\prime \prime}-9 y=f(t), y(0)=0, y^{\prime}(0)=0 \text {. }
\end{aligned}
$$

$$
\begin{aligned}
& s^{2} Y(s)-s y\left(0 T-y^{\prime}(0)-9 Y(s)=\frac{1}{s^{2}+1}\right. \\
& Y(s)\left(s^{2}-9\right)=\frac{1}{s^{2}+1} \\
& \begin{array}{l}
\frac{s^{2}+1}{s}=\frac{1}{s^{2}+1} \\
\begin{array}{l}
s^{2}-9-s^{2}-1 \quad Y(s)=\frac{1}{\left(s^{2}+1\right.} \\
\frac{1}{s^{2}+1}-\frac{1}{s^{2}-9}=\frac{1}{\left(s^{2}+1\right)\left(s^{2}-9\right)}
\end{array}=\frac{A}{\left(s^{2}+1\right)(s-3)(s+3)}+\frac{B}{s-3}+\frac{(s+1)}{s^{2}+1}=1 \\
\frac{(s-3)(s+3)}{\left(s^{2}+1\right)}
\end{array} \\
& \frac{1}{-10}\left[\frac{1}{s^{2}+1}-\frac{1}{s^{2}-9}\right] \int^{-1} y(s)=\frac{-1}{10}\left[\frac{1}{s^{2}+1}-\frac{1}{s^{2}-9}\right] \\
& y(t)=\frac{-1}{10} \sin t+\frac{1}{30} \sinh (3 t)
\end{aligned}
$$

$$
\begin{aligned}
& s^{2} Y(s)-s y(0)-y_{0}^{\prime}(0)-4 s Y(s)-4 y(0)+3 Y(s)=\frac{2-2 e^{-4 s}}{s\left(1-e^{-4 s}\right)} \text {, } \\
& Y(s)\left(s^{2}-4 s+3\right)=\frac{2-2 e^{-4 s}}{s\left(1-e^{-4 s}\right)} \\
& Y(s)=\frac{2-2 e^{-4 s}}{S\left(1-e^{-4 s}\right)(s-3)(s-1)}=\frac{2\left(1-e^{-4 s}\right)}{S\left(1 e^{-4 s}\right)(s-3)(3-1)} \\
& Y(s)=\frac{2}{s(s-3)(s-1)}=\frac{A}{s}+\frac{B}{s-3}+\frac{C}{s-1} \\
& A=2 / 3 \quad B=\frac{1}{3} \quad C=-1 \\
& \frac{1}{S-1} \\
& \begin{array}{c}
\int_{0}^{4} e^{-s t}(2) d t \\
f(t)=\mid 2\left[u_{0}-u_{4}\right] \\
=\left\{2 u_{0}-2 u_{4}\right.
\end{array} \\
& \frac{2 e^{8}}{5}-\frac{2 e^{-45}}{5} \\
& =\frac{\frac{2}{5}-\frac{2 e^{-45}}{5}}{1-e^{-45}}
\end{aligned}
$$

QUESTION 2. (8 points) Use Laplace to solve the differential equation :

$$
y^{\prime}(t)=e^{3 t}+\int_{0}^{t} 4 y(u) d u, y(0)=0
$$

$\int 4 y(n) d u$
$4 * y(t)-$
$y^{\prime}(t)=e^{3 t}+4 * y(t)$
$\mathcal{L}\left(y^{\prime}(t)\right)=\mathcal{L}\left(e^{3 t}\right)+\mathcal{L}(4 * y(t))$
$s Y(s)-y(0)=\frac{1}{s-3}+\frac{4 Y(s)}{s}$
$5 Y(s)-\frac{4}{5} y(s)=\frac{1}{s-3}$
$y(s)\left[s-\frac{4}{5}\right]=\frac{1}{s-3}$
$y(s)=\frac{1}{(s-3)} \times \frac{s}{\left(s^{2}-4\right)}$
$Y(s)=\frac{s}{(s-3)(s-2)(s+2)}$
$\frac{s}{(s-3)(s-2)(s+2)}=\frac{A}{s-3}+\frac{B}{s-2}+\frac{C}{s+2}$
$s=3 \quad s=2 \quad s=-2$
$A=\frac{3}{5} \quad B=\frac{-1}{2} \quad C=-\frac{1}{10}$
$y(t)=\mathcal{L}^{-1}(y(s))=\mathcal{L}^{-1}\left\{\frac{3 / 5}{s-3}+\frac{1 / 2}{s-2}-\frac{Y_{0}}{s+2}\right\}$
$y(t)=\frac{3}{5} e^{3 t}-\frac{1}{2} e^{2 t}-\frac{1}{10} e^{-2 t}$

QUESTION 6. (10 points) Use Laplace and solve the following system of Linear Diff. Equations:

$$
\begin{gathered}
x^{\prime}(t)-y(t)=0, x(0)=2 \\
y^{\prime}(t)-x(t)=-t, y(0)=1
\end{gathered}
$$

$$
\begin{aligned}
& s X(s)-x(0)-Y(s)=0 \\
& s X(s)-Y(s)=2
\end{aligned}
$$

$$
s Y(s)-y(0)-X(s)=-\frac{1}{s^{2}}
$$

$$
-X(s)+s y(s)=-\frac{1}{s^{2}}+1 \rightarrow \frac{s^{2}-1}{s^{2}}-(3)
$$

$$
\begin{aligned}
& x(s)=\frac{\left|\begin{array}{cc}
2 & -1 \\
\frac{s^{2}-1}{s^{2}} & s
\end{array}\right|}{\left|\begin{array}{cc}
s & -1 \\
-1 & s
\end{array}\right|}=\frac{2 s+\frac{s^{2}-1}{s^{2}}}{s^{2}-1} \\
& x(s)=\frac{2 s^{3}+s^{2}-1}{s^{2}\left(s^{2}-1\right)}=\frac{2 s^{2}}{s^{2}\left(s^{2}-1\right)}+\frac{s^{2}-1}{s^{2}\left(s^{2}-1\right)} \\
& x(s)=\frac{2 s}{s^{2}-1}+\frac{1}{s^{2}} \\
& x(t)=\mathcal{L}^{-1}\left\{\frac{2 s}{s^{2}-1}+\frac{1}{s^{2}}\right\} \\
& x(s)=2 \cosh (t)+t
\end{aligned}
$$

$$
\begin{aligned}
& Y(s)=\frac{\left|\begin{array}{cc}
s & 2 \\
-1 & \frac{s^{2}-1}{s^{2}}
\end{array}\right|}{\left|\begin{array}{cc}
-1 \\
-1 & s
\end{array}\right|}=\frac{s\left(s^{2}-1\right)}{s^{2}}+2 \\
& s^{2}-1
\end{aligned}=\frac{s\left(s^{2}-1\right)+2 s^{2}}{s^{2}\left(s^{2}-1\right)} .
$$

Exam I, MTH 205, Fall 2014

QUESTION 1. (6 points) Find the largest interval around x so that the LDE: $\frac{\sqrt{\sqrt{x-4}}}{\sqrt{12-2}} y^{(3)}+$ $\frac{x-1}{x-7} y^{\prime}+3 y \stackrel{\text { R }}{=} x^{2}+13, y^{(2)}(5)=y^{\prime}(5)=7$, and $y(5)=-6$ has a unique solution.

$$
\begin{array}{cc}
\frac{\sqrt{x-4}}{\sqrt{12-x}} & 12-x>0 \\
x-7 & 12>x \\
(-\infty, 7) \cup(7, \infty) \\
\mathbb{R} & x<12 \\
&
\end{array}
$$

$$
(-\infty, 12)
$$

$$
(-\infty, 4) \cup(4,12)
$$

$$
I=(4,7)
$$

QUESTION 2. (10 points) Solve for $x(t), y(t)$

$$
\begin{aligned}
& x^{\prime}(t)-y(t)=2 \\
& x(t)+y^{\prime}(t)=2, \text { whee } x(0)=2 y(0)=-1, x^{\prime}(0)=1, y^{\prime}(0)=0
\end{aligned}
$$

$$
\int_{0}^{x} 2 \sin u d u
$$

$$
-2 \cos x+2
$$

$$
s x(s)-x(0)-y(s)=\frac{2}{s}
$$

$$
s x(s)-2-Y(s)=\frac{2}{5}
$$

$$
s x(s)-y(s)=\frac{2+25}{5}
$$

$$
x(s)+s y(5)+1=\frac{2}{5}
$$

$$
X(S)+s y(S)=\frac{2-5}{S}
$$

$$
5 \times(5)-\frac{2+25}{s}=4(5)
$$

$$
x(s)+s^{2} x(s)-2-2 s=\frac{2-s}{5}
$$

$$
x(5)\left(1+5^{2}\right)=\frac{2-5}{5}+2+25
$$

$$
=\frac{2-s+2 s+2 s^{2}}{s}
$$

$$
x(s)=\frac{2 s^{2}+s+2}{s\left(1+s^{2}\right)}
$$

$$
=\frac{2 s}{\left(s^{2}+1\right)}+\frac{1}{\left(s^{2}+1\right)}+\frac{s\left(1+s^{2}\right)}{5\left(s^{2}+1\right)}
$$

$$
(t)=2 \cos t+\sin t-12 * \sin t
$$

$$
=2 \cos t+\sin t-2 \cos t+2
$$

$$
\begin{aligned}
& \text { (iii) } \left.y^{(2)}+\int_{0}^{x}\left(y(r) e^{x-r} d r=\int_{0}^{x}(x-r) \theta^{\prime} d r, y(0)=0\right) y^{\prime}(0)=1\right) \\
& s^{2} Y(s)-s y(5)-y^{\prime}(\sigma)^{1}+Y(s)\left(\frac{1}{s-1}\right)=\left(\frac{1}{s^{2}}\right)\left(\frac{1}{s-1}\right) \\
& Y(s)\left(\frac{1}{s-1}+s^{2}\right)-1=\frac{1}{s^{2}(s-1)} \\
& Y(s)\left(\frac{1+s^{2}(s-1)}{(s-1)}\right)=\frac{1+s^{2}(s-1)}{s^{2}(s-1)} \\
& Y(s)= \\
& \left.s^{2}\left(1+s^{2}(y-1)\right)=\frac{1}{s^{2}}\right) \\
& \left.y(x)=l-1) \frac{1}{s^{2}}\right)=
\end{aligned}
$$

(iv) $y^{(2)}+2 y^{\prime}+2 y=x e^{-x}, y(0)=0$ and $y^{\prime}(0)=1$. [Hint: note that by completing the square method we have $s^{2}+b s+c=(s+b / 2)^{2}+c-b^{2} / 4$ and $\left.\frac{e}{f}+d=\frac{c+f d}{f}\right]$

$$
\begin{gathered}
s^{2} y(s)-s y(0)-y^{\prime}(0)+2 s y(s)-2 y(0)+2 Y(s)=\frac{1}{(s+1)^{2}} \\
Y(s)\left[s^{2}+2 s+2\right]=\frac{1+(s+1)^{2}}{(s+1)^{2}} \\
Y(s)\left[s^{2}+2 s+1-1+2\right]=\frac{1+(s+1)^{2}}{(s+1)^{2}} \\
Y(s)\left[(s+1)^{2}+1\right]=\frac{1+1)^{2}}{(s+1)^{2}}=l^{-1}=\frac{1}{(s+1)^{2}}=e^{-x} \\
y(s)=1
\end{gathered}
$$

3.11 Questions with Solutions on Chapter 4.4, Questions-Solutions-Undetermined-Coefficient-Method

```
Note: Solve the INITIAL VALUE Problem, (means, conditions
are given at the SAME X-VALUE, i.e., y(0) = ..., y^\(0) = ....
(here }\textrm{x}=0\mathrm{ ) or }\textrm{y}(1)=\ldots,\mp@subsup{y}{}{\wedge}\(1)=\ldots.,\mp@subsup{y}{}{\wedge}\\(1)=\ldots.....(here x
1)(see 27-31)
Solve the boundary value problem: (means, The given
conditions NEED not be the same x; i.e y(0) = ..., y^\prime (1)
= ..., (here the conditions are given at x=0 and at x=1), see
37-- }4
```

In Problems $1-26$ solve the given differential equation by undetermined coefficients.

1. $y^{\prime \prime}+3 y^{\prime}+2 y=6$
2. $4 y^{\prime \prime}+9 y=15$
3. $y^{\prime \prime}-10 y^{\prime}+25 y=30 x+3$
4. $y^{\prime \prime}+y^{\prime}-6 y=2 x$
5. $\frac{1}{4} y^{\prime \prime}+y^{\prime}+y=x^{2}-2 x$
6. $y^{\prime \prime}-8 y^{\prime}+20 y=100 x^{2}-26 x e^{x}$
7. $y^{\prime \prime}+3 y=-48 x^{2} e^{3 x}$
8. $4 y^{\prime \prime}-4 y^{\prime}-3 y=\cos 2 x$
9. $y^{\prime \prime}-y^{\prime}=-3$
10. $y^{\prime \prime}+2 y^{\prime}=2 x+5-e^{-2 x}$
11. $y^{\prime \prime}-y^{\prime}+\frac{1}{4} y=3+e^{x / 2}$
12. $y^{\prime \prime}-16 y=2 e^{4 x}$
13. $y^{\prime \prime}+4 y=3 \sin 2 x$
14. $y^{\prime \prime}-4 y=\left(x^{2}-3\right) \sin 2 x$
15. $y^{\prime \prime}+y=2 x \sin x$
$16 .{ }^{1 \prime \prime}-5 . v^{\prime}-2 x^{3}-1 x^{2}-\cdots+6$

In Problems 27-36 solve the given initial-value problem.
27. $y^{\prime \prime}+4 y=-2, \quad y\left(\frac{\pi}{8}\right)=\frac{1}{2}, y^{\prime}\left(\frac{\pi}{8}\right)=2$
28. $2 y^{\prime \prime}+3 y^{\prime}-2 y=14 x^{2}-4 x-11, \quad y(0)=0, y^{\prime}(0)=0$
29. $5 y^{\prime \prime}+y^{\prime}=-6 x, \quad y(0)=0, y^{\prime}(0)=-10$
30. $y^{\prime \prime}+4 y^{\prime}+4 y=(3+x) e^{-2 x}, \quad y(0)=2, y^{\prime}(0)=5$
31. $y^{\prime \prime}+4 y^{\prime}+5 y=35 e^{-4 x}, \quad y(0)=-3, y^{\prime}(0)=1$

In Problems 37-40 solve the given boundary-value problem.
37. $y^{\prime \prime}+y=x^{2}+1, \quad y(0)=5, y(1)=0$
38. $y^{\prime \prime}-2 y^{\prime}+2 y=2 x-2, \quad y(0)=0, y(\pi)=\pi$
39. $y^{\prime \prime}+3 y=6 x, \quad y(0)=0, y(1)+y^{\prime}(1)=0$

FIGURE 4.4.1 Solution curve
40. $y^{\prime \prime}+3 y=6 x, \quad y(0)+y^{\prime}(0)=0, y(1)=0$

Exercises 4.4

Undetermined Coefficients Superposition Approach

1. From $m^{2}+3 m+2=0$ we find $m_{1}=-1$ and $m_{2}=-2$. Then $y_{c}=c_{1} e^{-x}+c_{2} e^{-2 x}$ and we assum $y_{p}=A$. Substituting into the differential equation we obtain $2 A=6$. Then $A=3, y_{p}=3$ and

$$
y=c_{1} e^{x}+c_{2} e^{-2 x}+3 .
$$

2. From $4 m^{2}+9=0$ we find $m_{1}=-\frac{3}{2} i$ and $m_{2}=\frac{3}{2} i$. Then $y_{c}=c_{1} \cos \frac{3}{2} x+c_{2} \sin \frac{3}{2} x$ and we assum: $y_{p}=A$. Substituting into the differential equation we obtain $9 A=15$. Then $A=\frac{5}{3}, y_{p}=\frac{5}{3}$ and

$$
y=c_{1} \cos \frac{3}{2} x+c_{2} \sin \frac{3}{2} x+\frac{5}{3}
$$

3. From $m^{2}-10 m+25=0$ we find $m_{1}=m_{2}=5$. Then $y_{c}=c_{1} c^{5 x}+c_{2} x c^{5 x}$ and we assum: $y_{p}=A x+B$. Substituting into the differential equation we obtain $25 A=30$ and $-10 A+25 B=$ Then $A=\frac{6}{5}, B=\frac{3}{5}, y_{p}=\frac{6}{5} x+\frac{3}{5}$, and

$$
y=c_{1} e^{5 x}+c_{2} x e^{5 x}+\frac{6}{5} x+\frac{3}{5} .
$$

4. From $m^{2}+m-6=0$ we find $m_{1}=-3$ and $m_{2}=2$. Then $y_{c}=c_{1} e^{-3 x}+c_{2} e^{2 x}$ and we assur: $y_{p}=A x+B$. Substituting into the differential equation we obtain $-6 A=2$ and $A-6 B=0$. Th: $-A=-\frac{1}{3}, B=-\frac{1}{18}, y_{p}=-\frac{1}{3} x-\frac{1}{18}$, and

$$
y=c_{1} e^{-3 x}+c_{2} e^{2 x}-\frac{1}{3} x-\frac{1}{18}
$$

5. From $\frac{1}{A} m^{2}+m+1=0$ we find $m_{1}=m_{2}=-2$. Then $y_{c}=c_{1} e^{-2 x}+c_{2} x e^{-2 x}$ and we assu:. $y_{p}=A x^{2}+B x+C$. Substituting into the differential equation we obtain $A=1,2 A+B=-$. and $\frac{1}{2} A+B+C=0$. Then $A=1, B=-4, C=\frac{7}{2}, y_{p}=x^{2}-4 x+\frac{7}{2}$, and

$$
y=c_{1} e^{-2 x}+c_{2} x e^{-2 x}+x^{2}-4 x+\frac{7}{2}
$$

5. From $m^{2}-8 m+20=0$ we find $m_{1}=4+2 i$ and $m_{2}=4-2 i$. Then $y_{c}=e^{4 x}\left(c_{1} \cos 2 x+c_{2} \sin 2\right.$: and we assume $y_{p}=A x^{2}+B x+C+(D x+E) e^{x}$. Substituting into the differential equation :-

Exercises 4.4 Undetermined Coefficients - Superposition Approach

Stain

$$
\begin{aligned}
2 A-8 B+20 C & =0 \\
-6 D+13 E & =0 \\
-16 A+20 B & =0 \\
13 D & =-26 \\
20 A & =100 .
\end{aligned}
$$

Then $A=5, B=4, C=\frac{11}{10}, D=-2, E=-\frac{12}{13}, y_{p}=5 x^{2}+4 x+\frac{11}{10}+\left(-2 x-\frac{12}{13}\right) e^{x}$ and

$$
y=e^{4 x}\left(c_{1} \cos 2 x+c_{2} \sin 2 x\right)+5 x^{2}+4 x+\frac{11}{10}+\left(-2 x-\frac{12}{13}\right) e^{x}
$$

-. From $m^{2}+3=0$ we find $m_{1}=\sqrt{3} i$ and $m_{2}=-\sqrt{3} i$. Then $y_{c}=c_{1} \cos \sqrt{3} x+c_{2} \sin \sqrt{3} x$ and we assume $y_{p}=\left(A x^{2}+B x+C\right) e^{3 x}$. Substituting into the differential equation we obtain $24+6 B+12 C=0,12 A+12 B=0$, and $12 A=-48$. Then $A=-4, B=4, C=-\frac{4}{3}$, $y_{p}=\left(-4 x^{2}+4 x-\frac{4}{3}\right) e^{3 x}$ and

$$
y=c_{1} \cos \sqrt{3} x+c_{2} \sin \sqrt{3} x+\left(-4 x^{2}+4 x-\frac{4}{3}\right) e^{3 x}
$$

i. From $4 m^{2}-4 m-3=0$ wc find $m_{1}=\frac{3}{2}$ and $m_{2}=-\frac{1}{2}$. Then $y_{c}=c_{1} e^{3 x / 2}+c_{2} e^{-x / 2}$ and we assume $y_{p}=A \cos 2 x+B \sin 2 x$. Substituting into the differential equation we obtain $-19-8 B=1$ and $\overline{\mathrm{y}} A-19 B=0$. Then $A=-\frac{19}{425}, B=-\frac{8}{425}, y_{p}=-\frac{19}{425} \cos 2 x-\frac{8}{425} \sin 2 x$, and

$$
y=c_{1} e^{3 x / 2}+c_{2} e^{-x / 2}-\frac{19}{425} \cos 2 x-\frac{8}{425} \sin 2 x
$$

9. From $m^{2}-m=0$ we find $m_{1}=1$ and $m_{2}=0$. Then $y_{c}=c_{1} e^{x}+c_{2}$ and we assume $y_{p}=A x$. Substituting into the differential equation we obtain $-A=-3$. Then $A=3, y_{p}=3 x$ and $y=c_{1} e^{x}+c_{2}+3 x$.
-0. From $m^{2}+2 m=0$ we find $m_{1}=-2$ and $m_{2}=0$. Then $y_{c}=c_{1} e^{-2 x}+c_{2}$ and we assume $y_{p}=A x^{2}+B x+C x e^{-2 x}$. Substituting into the differential equation we obtain $2 A+2 B=5$, $4 A=2$, and $-2 C=-1$. Then $A=\frac{1}{2}, B=2, C=\frac{1}{2}, y_{p}=\frac{1}{2} x^{2}+2 x+\frac{1}{2} x e^{-2 x}$, and

$$
y=c_{1} e^{-2 x}+c_{2}+\frac{1}{2} x^{2}+2 x+\frac{1}{2} x e^{-2 x}
$$

21. From $m^{2}-m+\frac{1}{4}=0$ we find $m_{1}=m_{2}=\frac{1}{2}$. Then $y_{c}=c_{1} e^{x / 2}+c_{2} x e^{x / 2}$ and we assume $y_{p}=A+B x^{2} e^{x / 2}$. Substituting into the differential equation we obtain $\frac{1}{4} A=3$ and $2 B=1$. Then $A=12, B=\frac{1}{2}, y_{p}=12+\frac{1}{2} x^{2} e^{x / 2}$, and

$$
y=c_{1} e^{x / 2}+c_{2} x e^{x / 2}+12+\frac{1}{2} x^{2} e^{x / 2}
$$

Exercises 4.4 Undetermined Coefficients - Superposition Approach
12. From $m^{2}-16=0$ we find $m_{1}=4$ and $m_{2}=-4$. Then $y_{c}=c_{1} e^{4 x}+c_{2} e^{-4 x}$ and we ass: $y_{p}=A x e^{4 x}$. Substituting into the differential equation we obtain $8 A=2$. Then $A=\frac{1}{4}, y_{p}=\frac{1}{1}$: and

$$
y=c_{1} e^{4 x}+c_{2} e^{-4 x}+\frac{1}{4} x e^{4 x}
$$

13. From $m^{2}+4=0$ we find $m_{1}=2 i$ and $m_{2}=-2 i$. Then $y_{e}=c_{1} \cos 2 x+c_{2} \sin 2 x$ and we as: ${ }^{\prime}$ $y_{p}=A x \cos 2 x+B x \sin 2 x$. Substituting into the differential equation we obtain $4 B=0$ $-4 A=3$. Then $A=-\frac{3}{4}, B=0, y_{p}=-\frac{3}{4} x \cos 2 x$, and

$$
y=c_{1} \cos 2 x+c_{2} \sin 2 x-\frac{3}{4} x \cos 2 x
$$

14. From $m^{2}-4=0$ we find $m_{1}=2$ and $m_{2}=-2$. Then $y_{c}=c_{1} e^{2 x}+c_{2} e^{-2 x}$ and we assume $y_{p}=\left(A x^{2}+B x+C\right) \cos 2 x+\left(D x^{2}+E x+F\right) \sin 2 x$. Substituting into the differential equatic :. obtain

$$
\begin{aligned}
-8 A & =0 \\
-8 B+8 D & =0 \\
2 A-8 C+4 E & =0 \\
-8 D & =1 \\
-8 A-8 E & =0 \\
-4 B+2 D-8 F & =-3 .
\end{aligned}
$$

Then $A=0, B=-\frac{1}{8}, C=0, D=-\frac{1}{8} ; E=0, F=\frac{13}{32}$, so $y_{p}=-\frac{1}{8} x \cos 2 x+\left(-\frac{1}{8} x^{2}+\frac{13}{32}\right)$: and

$$
y=c_{1} e^{2 x}+c_{2} e^{-2 x}-\frac{1}{8} x \cos 2 x+\left(-\frac{1}{8} x^{2}+\frac{13}{32}\right) \sin 2 x .
$$

15. From $m^{2}+1=0$ we find $m_{1}=i$ and $m_{2}=-i$. Then $y_{c}=c_{1} \cos x+c_{2} \sin x$ and we as$y_{p}=\left(A x^{2}+B x\right) \cos x+\left(C x^{2}+D x\right) \sin x$. Substituting into the differential cquation we: $4 C=0,2 A+2 D=0,-4 A=2$, and $-2 B+2 C=0$. Then $A=-\frac{1}{2}, B=0, C=0, D=$ $y_{p}=-\frac{1}{2} x^{2} \cos x+\frac{1}{2} x \sin x$, and

$$
y=c_{1} \cos x+c_{2} \sin x-\frac{1}{2} x^{2} \cos x+\frac{1}{2} x \sin x
$$

16. From $m^{2}-5 m=0$ we find $m_{1}=5$ and $m_{2}=0$. Then $y_{c}=c_{1} e^{5 x}+c_{2}$ and we a.. $y_{p}=A x^{4}+B x^{3}+C x^{2}+D x$. Substituting into the differential cquation we obtain $-20 \div=$ $12 A-15 B=-4,6 B-10 C=-1$, and $2 C-5 D=6$. Then $A=-\frac{1}{10}, B=\frac{14}{75}, C=\cdot$ $D=-\frac{697}{625}, y_{p}=-\frac{1}{10} x^{4}+\frac{14}{75} x^{3}+\frac{53}{250} x^{2}-\frac{697}{625} x$, and

$$
y=c_{1} e^{5 x}+c_{2}-\frac{1}{10} x^{4}+\frac{14}{75} x^{3}+\frac{53}{250} x^{2}-\frac{697}{625} x
$$

Exercises 4.4 Undetermined Cocfficients - Superposition Approach
\therefore - From $m^{2}-2 m+5=0$ we find $m_{1}=1+2 i$ and $m_{2}=1-2 i$. Then $y_{c}=e^{x}\left(c_{1} \cos 2 x+c_{2} \sin 2 x\right)$ and $\because e$ assume $y_{p}=A x e^{x} \cos 2 x+B x e^{x} \sin 2 x$. Substituting into the differential equation we obtain $\therefore B=1$ and $-4 A=0$. Then $A=0, B=\frac{1}{4}, y_{p}=\frac{1}{4} x e^{x} \sin 2 x$, and

$$
y=e^{x}\left(c_{1} \cos 2 x+c_{2} \sin 2 x\right)+\frac{1}{4} x e^{x} \sin 2 x
$$

-E. Eom $m^{2}-2 m+2=0$ we find $m_{1}=1+i$ and $m_{2}=1-i$. Then $y_{c}=e^{x}\left(c_{1} \cos x+c_{2} \sin x\right)$ \therefore and we assume $y_{p}=A e^{2 x} \cos x+B e^{2 x} \sin x$. Substituting into the differential equation we obtain $-\frac{1}{4} \div 2 B=1$ and $-2 A+B=-3$. Then $A=\frac{7}{5}, B=-\frac{1}{5}, y_{p}=\frac{7}{5} e^{2 x} \cos x-\frac{1}{5} e^{2 x} \sin x$ and

$$
y=e^{x}\left(c_{1} \cos x+c_{2} \sin x\right)+\frac{7}{5} e^{2 x} \cos x-\frac{1}{5} e^{2 x} \sin x
$$

2.- Te have $y_{c}=c_{1} \cos 2 x+c_{2} \sin 2 x$ and we assume $y_{p}=A$. Substituting into the differential cqua:. \cdots find $A=-\frac{1}{2}$. Thus $y=c_{1} \cos 2 x+c_{2} \sin 2 x-\frac{1}{2}$. From the initial conditions we obtain $c_{1}=$ ad c $c_{2}=\sqrt{2}$, so $y=\sqrt{2} \sin 2 x-\frac{1}{2}$.
25. We have $y_{c}=c_{1} e^{-2 x}+c_{2} e^{x / 2}$ and we assume $y_{p}=A x^{2}+B x+C$. Substituting into the differe:. -quation we find $A=-7, B=-19$, and $C=-37$. Thus $y=c_{1} e^{-2 x}+c_{2} e^{x / 2}-7 x^{2}-19 x-$ Erom the initial conditions we obtain $c_{1}=-\frac{1}{5}$ and $c_{2}=\frac{186}{5}$, so

$$
y=-\frac{1}{5} e^{-2 x}+\frac{186}{5} e^{x / 2}-7 x^{2}-19 x-37
$$

2. Te have $y_{c}=c_{1} e^{-x / 5}+c_{2}$ and we assume $y_{p}=A x^{2}+B x$. Substituting into the differential equ: \because find $A=-3$ and $B=30$. Thus $y=c_{1} e^{-x / 5}+c_{2}-3 x^{2}+30 x$. From the initial conditio:Stain $c_{1}=200$ and $c_{2}=-200$, so

$$
y=200 e^{-x / 5}-200-3 x^{2}+30 x
$$

30. We have $y_{c}=c_{1} e^{-2 x}+c_{2} x e^{-2 x}$ and we assume $y_{p}=\left(A x^{3}+B x^{2}\right) e^{-2 x}$. Substituting int ziferential equation we find $A=\frac{1}{6}$ and $B=\frac{3}{2}$. Thus $y=c_{1} e^{-2 x}+c_{2} x e^{-2 x}+\left(\frac{1}{6} x^{3}+\frac{3}{2} x^{2}\right)$ Fom the initial conditions we obtain $c_{1}=2$ and $c_{2}=9$, so

$$
y=2 e^{-2 x}+9 x e^{-2 x}+\left(\frac{1}{6} x^{3}+\frac{3}{2} x^{2}\right) e^{-2 x} .
$$

37. We have $y_{c}=c_{1} \cos x+c_{2} \sin x$ and we assume $y_{p}=A x^{2}+B x+C$. Substituting into the differercquation we find $A=1 . B=0$, and $C=-1$. Thus $y=c_{1} \cos x+c_{2} \sin x+x^{2}-1$. From $y(0)=$ and $y(1)=0$ we obtain

$$
\begin{gathered}
c_{1}-1=5 \\
(\cos 1) c_{1}+(\sin 1) c_{2}=0
\end{gathered}
$$

Solving this system we find $c_{1}=6$ and $c_{2}=-6 \cot 1$. The solution of the boundary-value prof: is

$$
y=6 \cos x-6(\cot 1) \sin x+x^{2}-1
$$

38. We havc $y_{c}=e^{x}\left(c_{1} \cos x+c_{2} \sin x\right)$ and we assume $y_{p}=A x+B$. Substituting into the differe: $:$ equation we find $A=1$ and $B=0$. Thus $y=e^{x}\left(c_{1} \cos x+c_{2} \sin x\right)+x$. From $y(0)=0$ and $y(\pi=$ we obtain

$$
\begin{array}{r}
c_{1}=0 \\
\pi-e^{\pi} c_{1}=\pi .
\end{array}
$$

Solving this system we find $c_{1}=0$ and c_{2} is any real number. The solution of the boundary-v: problem is

$$
y=c_{2} e^{x} \sin x+x .
$$

39. The general solution of the differential equation $y^{\prime \prime}+3 y=6 x$ is $y=c_{1} \cos \sqrt{3} x+c_{2} \sin \sqrt{3} x-$. The condition $y(0)=0$ implics $c_{1}=0$ and so $y=c_{2} \sin \sqrt{3} x+2 x$. The condition $y(1)+y^{\prime}(1=$ implies $c_{2} \sin \sqrt{3}+2+c_{2} \sqrt{3} \cos \sqrt{3}+2=0$ so $c_{2}=-4 /(\sin \sqrt{3}+\sqrt{3} \cos \sqrt{3})$. The solution is

$$
y=\frac{-4 \sin \sqrt{3} x}{\sin \sqrt{3}+\sqrt{3} \cos \sqrt{3}}+2 x
$$

40. Using the general solution $y=c_{1} \cos \sqrt{3} x+c_{2} \sin \sqrt{3} x+2 x$, the boundary conditions $y(0)+y^{\prime}(0)=$ $y(1)=0$ yield the systom

$$
\begin{aligned}
c_{1}+\sqrt{3} c_{2}+2 & =0 \\
c_{1} \cos \sqrt{3}+c_{2} \sin \sqrt{3}+2 & =0
\end{aligned}
$$

Solving gives

$$
c_{1}=\frac{2(-\sqrt{3}+\sin \sqrt{3})}{\sqrt{3} \cos \sqrt{3}-\sin \sqrt{3}} \quad \text { and } \quad c_{2}=\frac{2(1-\cos \sqrt{3})}{\sqrt{3} \cos \sqrt{3}-\sin \sqrt{3}}
$$

3.12 Questions with Solutions on Chapter 4.7, Questions-Solutions-Cauchy-Euler

1. The auxiliary equation is $m^{2}-m-2=(m+1)(m-2)=0$ so that $y=c_{1} x^{-1}+c_{2} x^{2}$.
2. The auxiliary equation is $4 m^{2}-4 m+1=(2 m-1)^{2}=0$ so that $y=c_{1} x^{1 / 2}+c_{2} x^{1 / 2} \ln x$.
3. The auxiliary equation is $m^{2}=0$ so that $y=c_{1}+c_{2} \ln x$.
4. The auxiliary equation is $m^{2}-4 m=m(m-4)=0$ so that $y=c_{1}+c_{2} x^{4}$.
5. The auxiliary equation is $m^{2}+4=0$ so that $y=c_{1} \cos (2 \ln x)+c_{2} \sin (2 \ln x)$.
6. The auxiliary equation is $m^{2}+4 m+3=(m+1)(m+3)=0$ so that $y=c_{1} x^{-1}+c_{2} x^{-3}$.
7. The auxiliary equation is $m^{2}-4 m-2=0$ so that $y=c_{1} x^{2-\sqrt{6}}+c_{2} x^{2+\sqrt{6}}$.
8. The auxiliary equation is $m^{2}+2 m-4=0$ so that $y=c_{1} x^{-1+\sqrt{5}}+c_{2} x^{-1-\sqrt{5}}$.
9. The auxiliary equation is $25 m^{2}+1=0$ so that $y=c_{1} \cos \left(\frac{1}{5} \ln x\right)+c_{2} \sin \left(\frac{1}{5} \ln x\right)$.
10. The auxiliary equation is $4 m^{2}-1=(2 m-1)(2 m+1)=0$ so that $y=c_{1} x^{1 / 2}+c_{2} x^{-1 / 2}$.
11. The auxiliary equation is $m^{2}+4 m+4=(m+2)^{2}=0$ so that $y=c_{1} x^{-2}+c_{2} x^{-2} \ln x$.
12. The auxiliary equation is $m^{2}+7 m+6=(m+1)(m+6)=0$ so that $y=c_{1} x^{-1}+c_{2} x^{-6}$.
13. The auxiliary equation is $3 m^{2}+3 m+1=0$ so that

$$
y=x^{-1 / 2}\left[c_{1} \cos \left(\frac{\sqrt{3}}{6} \ln x\right)+c_{2} \sin \left(\frac{\sqrt{3}}{6} \ln x\right)\right] .
$$

14. The auxiliary equation is $m^{2}-8 m+41=0$ so that $y=x^{4}\left[c_{1} \cos (5 \ln x)+c_{2} \sin (5 \ln x)\right]$.

Exercises 4.7 Cauchy-Euler Equation

-5. Assuming that $y=x^{m}$ and substituting into the differential equation we obtain

$$
m(m-1)(m-2)-6=m^{3}-3 m^{2}+2 m-6=(m-3)\left(m^{2}+2\right)=0 .
$$

Thus

$$
y=c_{1} x^{3}+c_{2} \cos (\sqrt{2} \ln x)+c_{3} \sin (\sqrt{2} \ln x)
$$

- Assuming that $y=x^{m}$ and substituting into the differential cquation we obtain

$$
m(m-1)(m-2)+m-1=m^{3}-3 m^{2}+3 m-1=(m-1)^{3}=0 .
$$

Thus

$$
y=c_{1} x+c_{2} x \ln x+c_{3} x(\ln x)^{2} .
$$

\therefore - Assuming that $y=x^{m}$ and substituting into the differential equation we obtain $n(m-1)(m-2)(m-3)+6 m(m-1)(m-2)=m^{4}-7 m^{2}+6 m=m(m-1)(m-2)(m+3)=0$.

Thus

$$
y=c_{1}+c_{2} x+c_{3} x^{2}+c_{4} x^{-3}
$$

- Assuming that $y=x^{m}$ and substituting into the differential equation we obtain

$$
(m-1)(m-2)(m-3)+6 m(m-1)(m-2)+9 m(m-1)+3 m+1=m^{4}+2 m^{2}+1=\left(m^{2}+1\right)^{2}=0
$$

Thus
\because. The auxiliary equation is $m^{2}+2 m=m(m+2)=0$, so that $y=c_{1}+c_{2} x^{-2}$ and $i^{\prime}=-2 c_{2} x^{-3}$. The initial conditions imply

$$
\begin{aligned}
c_{1}+c_{2} & =0 \\
-2 c_{2} & =4
\end{aligned}
$$

Thus, $c_{1}=2, c_{2}=-2$, and $y=2-2 x^{-2}$. The graph is given to the right.

2. -he auxiliary equation is $m^{2}-6 m+8=(m-2)(m-4)=0$, so that

$$
y=c_{1} x^{2}+c_{2} x^{4} \quad \text { and } \quad y^{\prime}=2 c_{1} x+4 c_{2} x^{3}
$$

The initial conditions imply

$$
\begin{aligned}
& 4 c_{1}+16 c_{2}=32 \\
& 4 c_{1}+32 c_{2}=0
\end{aligned}
$$

Fius, $c_{1}=16, c_{2}=-2$, and $y=16 x^{2}-2 x^{4}$. The graph is given to the right.

Exercises 4.7 Cauchy-Euler Equation

2-. The auxiliary equation is $m^{2}+1=0$, so that

$$
y=c_{1} \cos (\ln x)+c_{2} \sin (\ln x)
$$

and

$$
y^{\prime}=-c_{1} \frac{1}{x} \sin (\ln x)+c_{2} \frac{1}{x} \cos (\ln x) .
$$

The initial conditions imply $c_{1}=1$ and $c_{2}=2$. Thus $y=\cos (\ln x)+2 \sin (\ln x)$. The graph is given to the right.

2玉. The auxiliary equation is $m^{2}-4 m+4=(m-2)^{2}=0$, so that

$$
y=c_{1} x^{2}+c_{2} x^{2} \ln x \quad \text { and } \quad y^{\prime}=2 c_{1} x+c_{2}(x+2 x \ln x)
$$

The initial conditions imply $c_{1}=5$ and $c_{2}+10=3$. Thus $y=5 x^{2}-7 x^{2} \ln x$. The graph is given to the right.
 With Contant Coef. LDE

Variation and undetermined method

In Problems 1-18 solve each differential equation by varia-

11. $y^{\prime \prime}+3 y^{\prime}+2 y=\frac{1}{1+e^{x}}$
2. $y^{\prime \prime}+y=\tan x$
4. $y^{\prime \prime}+y=\sec \theta \tan \theta$
6. $y^{\prime \prime}+y=\sec ^{2} x$
8. $y^{\prime \prime}-y=\sinh 2 x$
10. $y^{\prime \prime}-9 y=\frac{9 x}{e^{3 x}}$

Exercises 4.5 Undetermined Coefficients - Annihilator Approach

Exercises 4.6
 Variation of Paraneters

The particular solution, $y_{p}=u_{1} y_{1} \div u_{2} y_{2}$. in the following problems can take on a variety of especially where trigonometric functions are involved. The validity of a particular form can checked by substituting it back into the differential equation.

1. The auxiliary equation is $m^{2}+1=0$, so $y_{c}=c_{1} \cos x+c_{2} \sin x$ and

$$
W=\left|\begin{array}{rr}
\cos x & \sin x \\
-\sin x & \cos x
\end{array}\right|=1
$$

Identifying $f(x)=\sec x$ we obtain

$$
\begin{aligned}
& u_{1}^{\prime}=-\frac{\sin x \sec x}{1}=-\tan x \\
& u_{2}^{\prime}=\frac{\cos x \sec x}{1}=1
\end{aligned}
$$

Then $u_{1}=\ln |\cos x|, u_{2}=x$, and

$$
y=c_{1} \cos x+c_{2} \sin x+\cos x \ln |\cos x|+x \sin x .
$$

2. The auxiliary cquation is $m^{2}+1=0$, so $y_{c}=c_{1} \cos x+c_{2} \sin x$ and

$$
W=\left|\begin{array}{rr}
\cos x & \sin x \\
-\sin x & \cos x
\end{array}\right|=1
$$

Identifying $f(x)=\tan x$ we obtain

$$
\begin{aligned}
& u_{1}^{\prime}=-\sin x \tan x=\frac{\cos ^{2} x-1}{\cos x}=\cos x-\sec x \\
& u_{2}^{\prime}=\sin x
\end{aligned}
$$

Then $u_{1}=\sin x-\ln |\sec x+\tan x|, u_{2}=-\cos x$, and

$$
\begin{aligned}
y & =c_{1} \cos x+c_{2} \sin x+\cos x(\sin x-\ln \mid \sec x+\tan x!)-\cos x \sin x \\
& =c_{1} \cos x+c_{2} \sin x-\cos x \ln |\sec x+\tan x|
\end{aligned}
$$

3. The auxiliary equation is $m^{2}+1=0$, so $y_{c}=c_{1} \cos x+c_{2} \sin x$ and

$$
W=\left|\begin{array}{rr}
\cos x & \sin x \\
-\sin x & \cos x
\end{array}\right|=1
$$

Identifying $f(x)=\sin x$ we obtain

$$
\begin{aligned}
u_{1}^{\prime} & =-\sin ^{2} x \\
u_{2}^{\prime} & =\cos x \sin x .
\end{aligned}
$$

Then

$$
\begin{aligned}
& u_{1}=\frac{1}{4} \sin 2 x-\frac{1}{2} x=\frac{1}{2} \sin x \cos x-\frac{1}{2} x \\
& u_{2}=-\frac{1}{2} \cos ^{2} x
\end{aligned}
$$

and

$$
\begin{aligned}
y & =c_{1} \cos x+c_{2} \sin x+\frac{1}{2} \sin x \cos ^{2} x-\frac{1}{2} x \cos x-\frac{1}{2} \cos ^{2} x \sin x \\
& =c_{1} \cos x+c_{2} \sin x-\frac{1}{2} x \cos x
\end{aligned}
$$

4. The auxiliary equation is $m^{2}+1=0$, so $y_{c}=c_{1} \cos x+c_{2} \sin x$ and

$$
W=\left|\begin{array}{rr}
\cos x & \sin x \\
-\sin x & \cos x
\end{array}\right|=1
$$

Idcntifying $f(x)=\sec x \tan x$ we obtain

$$
\begin{aligned}
& u_{1}^{\prime}=-\sin x(\sec x \tan x)=-\tan ^{2} x=1-\sec ^{2} x \\
& u_{2}^{\prime}=\cos x(\sec x \tan x)=\tan x
\end{aligned}
$$

Then $u_{1}=x-\tan x, u_{2}=-\ln |\cos x|$, and

$$
\begin{aligned}
y & =c_{1} \cos x+c_{2} \sin x+x \cos x-\sin x-\sin x \ln |\cos x| \\
& =c_{1} \cos x+c_{3} \sin x+x \cos x-\sin x \ln |\cos x|
\end{aligned}
$$

5. The auxiliary cquation is $m^{2}+1=0$, so $y_{c}=c_{1} \cos x+c_{2} \sin x$ and

$$
W=\left|\begin{array}{rr}
\cos x & \sin x \\
-\sin x & \cos x
\end{array}\right|=1
$$

Identifying $f(x)=\cos ^{2} x$ we obtain

$$
\begin{aligned}
& u_{1}^{\prime}=-\sin x \cos ^{2} x \\
& u_{2}^{\prime}=\cos ^{3} x=\cos x\left(1-\sin ^{2} x\right)
\end{aligned}
$$

Exercises 4.6 Variation of Parameters

Then $u_{1}=\frac{1}{3} \cos ^{3} x, u_{2}=\sin x-\frac{1}{3} \sin ^{3} x$, and

$$
\begin{aligned}
y & =c_{1} \cos x+c_{2} \sin x+\frac{1}{3} \cos ^{4} x+\sin ^{2} x-\frac{1}{3} \sin ^{4} x \\
& =c_{1} \cos x+c_{2} \sin x+\frac{1}{3}\left(\cos ^{2} x+\sin ^{2} x\right)\left(\cos ^{2} x-\sin ^{2} x\right)+\sin ^{2} x \\
& =c_{1} \cos x+c_{2} \sin x+\frac{1}{3} \cos ^{2} x+\frac{2}{3} \sin ^{2} x \\
& =c_{1} \cos x+c_{2} \sin x+\frac{1}{3}+\frac{1}{3} \sin ^{2} x .
\end{aligned}
$$

6. The auxiliary equation is $m^{2}+1=0$, so $y_{c}=c_{1} \cos x+c_{2} \sin x$ and

$$
W=\left|\begin{array}{rr}
\cos x & \sin x \\
-\sin x & \cos x
\end{array}\right|=1
$$

Identifying $f(x)=\sec ^{2} x$ we obtain

$$
\begin{aligned}
u_{1}^{\prime} & =-\frac{\sin x}{\cos ^{2} x} \\
u_{2}^{\prime} & =\sec x
\end{aligned}
$$

Then

$$
\begin{aligned}
& u_{1}=-\frac{1}{\cos x}=-\sec x \\
& u_{2}=\ln |\sec x+\tan x|
\end{aligned}
$$

and

$$
\begin{aligned}
y & =c_{1} \cos x+c_{2} \sin x-\cos x \sec x+\sin x \ln |\sec x+\tan x| \\
& =c_{1} \cos x+c_{2} \sin x-1+\sin x \ln |\sec x+\tan x| .
\end{aligned}
$$

7. The auxiliary equation is $m^{2}-1=0$, so $y_{c}=c_{1} e^{x}+c_{2} e^{-x}$ and

$$
W=\left|\begin{array}{rr}
e^{x} & e^{-x} \\
e^{x} & -e^{-x}
\end{array}\right|=-2
$$

Identifying $f(x)=\cosh x=\frac{1}{2}\left(e^{-x}+e^{x}\right)$ we obtain

$$
\begin{aligned}
& u_{1}^{\prime}=\frac{1}{4} e^{-2 x}+\frac{1}{4} \\
& u_{2}^{\prime}=-\frac{1}{4}-\frac{1}{4} e^{2 x}
\end{aligned}
$$

Then

$$
\begin{aligned}
& u_{1}=-\frac{1}{8} e^{-2 x}+\frac{1}{4} x \\
& u_{2}=-\frac{1}{8} e^{2 x}-\frac{1}{4} x
\end{aligned}
$$

Exercises 4.6 Variation of Parameters
$\therefore \mathrm{id}$

$$
\begin{aligned}
y & =c_{1} e^{x}+c_{2} e^{-x}-\frac{1}{8} e^{-x}+\frac{1}{4} x e^{x}-\frac{1}{8} e^{x}-\frac{1}{4} x e^{-x} \\
& =c_{3} e^{x}+c_{4} e^{-x}+\frac{1}{4} x\left(e^{x}-e^{-x}\right) \\
& =c_{3} e^{x}+c_{4} e^{-x}+\frac{1}{2} x \sinh x
\end{aligned}
$$

- Fe auxiliary equation is $m^{2}-1=0$, so $y_{c}=c_{1} e^{x}+c_{2} e^{-x}$ and

$$
W=\left|\begin{array}{rr}
e^{x} & e^{-x} \\
e^{x} & -e^{-x}
\end{array}\right|=-2
$$

- Entifying $f(x)=\sinh 2 x$ we obtain

$$
\begin{aligned}
& u_{1}^{\prime}=-\frac{1}{4} e^{-3 x}+\frac{1}{4} e^{x} \\
& u_{2}^{\prime}=\frac{1}{4} e^{-x}-\frac{1}{4} e^{3 x}
\end{aligned}
$$

- - en

$$
\begin{aligned}
& u_{1}=\frac{1}{12} e^{-3 x}+\frac{1}{4} e^{x} \\
& u_{2}=-\frac{1}{4} e^{-x}-\frac{1}{12} e^{3 x} .
\end{aligned}
$$

ad

$$
\begin{aligned}
y & =c_{1} e^{x}+c_{2} e^{-x}+\frac{1}{12} e^{-2 x}+\frac{1}{4} e^{2 x}-\frac{1}{4} e^{-2 x}-\frac{1}{12} e^{2 x} \\
& =c_{1} e^{x}+c_{2} e^{-x}+\frac{1}{6}\left(e^{2 x}-e^{-2 x}\right) \\
& =c_{1} e^{x}+c_{2} e^{-x}+\frac{1}{3} \sinh 2 x .
\end{aligned}
$$

1. -ie auxiliary equation is $m^{2}-4=0$, so $y_{c}=c_{1} e^{2 x}+c_{2} e^{-2 x}$ and

$$
W=\left|\begin{array}{rr}
e^{2 x} & e^{-2 x} \\
2 e^{2 x} & -2 e^{-2 x}
\end{array}\right|=-4
$$

\therefore - \because ntifying $f(x)=e^{2 x} / x$ we obtain $u_{1}^{\prime}=1 / 4 x$ and $u_{2}^{\prime}=-e^{4 x} / 4 x$. Then

$$
\begin{aligned}
& u_{1}=\frac{1}{4} \ln |x| \\
& u_{2}=-\frac{1}{4} \int_{x_{0}}^{x} \frac{e^{4 t}}{t} d t
\end{aligned}
$$

$\cdots 1$

$$
y=c_{1} e^{2 x}+c_{2} e^{-2 x}+\frac{1}{4}\left(e^{2 x} \ln |x|-e^{-2 x} \int_{x_{0}}^{x} \frac{e^{4 t}}{t} d t\right), \quad x_{0}>0
$$

Exercises 4.6 Variation of Parametcrs

10. The auxiliary equation is $m^{2}-9=0$, so $y_{c}=c_{1} e^{3 x}+c_{2} e^{-3 x}$ and

$$
W=\left|\begin{array}{rr}
e^{3 x} & e^{-3 x} \\
3 e^{3 x} & -3 e^{-3 x}
\end{array}\right|=-6
$$

Identifying $f(x)=9 x / e^{3 x}$ we obtain $u_{1}^{\prime}=\frac{3}{2} x e^{-6 x}$ and $u_{2}^{\prime}=-\frac{3}{2} x$. Then

$$
\begin{aligned}
& u_{1}=-\frac{1}{24} e^{-6 x}-\frac{1}{4} x e^{-6 x}, \\
& u_{2}=-\frac{3}{4} x^{2}
\end{aligned}
$$

and

$$
\begin{aligned}
y & =c_{1} e^{3 x}+c_{2} e^{-3 x}-\frac{1}{24} e^{-3 x}-\frac{1}{4} x e^{-3 x}-\frac{3}{4} x^{2} e^{-3 x} \\
& =c_{1} e^{3 x}+c_{3} e^{-3 x}-\frac{1}{4} x e^{-3 x}(1-3 x)
\end{aligned}
$$

11. The auxiliary equation is $m^{2}+3 m+2=(m+1)(m+2)=0$, so $y_{c}=c_{1} e^{-x}+c_{2} e^{-2 x}$ and

$$
W=\left|\begin{array}{rr}
e^{-x} & e^{-2 x} \\
-e^{-x} & -2 e^{-2 x}
\end{array}\right|=-e^{-3 x}
$$

Identifying $f(x)=1 /\left(1+e^{x}\right)$ we obtain

$$
\begin{aligned}
u_{1}^{\prime} & =\frac{e^{x}}{1+e^{x}} \\
u_{2}^{\prime} & =-\frac{e^{2 x}}{1+e^{x}}=\frac{e^{x}}{1+e^{x}}-e^{x}
\end{aligned}
$$

Then $u_{1}=\ln \left(1+e^{x}\right), u_{2}=\ln \left(1+e^{x}\right)-e^{x}$, and

$$
\begin{aligned}
y & =c_{1} e^{-x}+c_{2} e^{-2 x}+e^{-x} \ln \left(1+e^{x}\right)+e^{-2 x} \ln \left(1+e^{x}\right)-e^{-x} \\
& =c_{3} e^{-x}+c_{2} e^{-2 x}+\left(1+e^{-x}\right) e^{-x} \ln \left(1+e^{x}\right)
\end{aligned}
$$

12. The auxiliary equation is $m^{2}-2 m+1=(m-1)^{2}=0$, so $y_{c}=c_{1} e^{x}+c_{2} x e^{x}$ and

$$
W=\left|\begin{array}{cc}
e^{x} & x e^{x} \\
e^{x} & x e^{x}+e^{x}
\end{array}\right|=e^{2 x} .
$$

Identifying $f(x)=e^{x} /\left(1+x^{2}\right)$ we obtain

$$
\begin{aligned}
& u_{1}^{\prime}=-\frac{x e^{x} e^{x}}{e^{2 x}\left(1+x^{2}\right)}=-\frac{x}{1+x^{2}} \\
& u_{2}^{\prime}=\frac{e^{x} e^{x}}{e^{2 x}\left(1+x^{2}\right)}=\frac{1}{1+x^{2}} .
\end{aligned}
$$

3.14 Questions with Solutions on Chapter 4.7, Variation with Cauchy Euler LDE

Variation Method and Cauchy-Euler Equations

In Problems 19-24 solve the given differential equation by
variation of parameters.
19. $x y^{\prime \prime}-4 y^{\prime}=x^{4}$
20. $2 x^{2} y^{\prime \prime}+5 x y^{\prime}+y=x^{2}-x$
21. $x^{2} y^{\prime \prime}-x y^{\prime}+y=2 x$
22. $x^{2} y^{\prime \prime}-2 x y^{\prime}+2 y=x^{4} e^{x}$
23. $x^{2} y^{\prime \prime}+x y^{\prime}-y=\ln x$
24. $x^{2} y^{\prime \prime}+x y^{\prime}-y=\frac{1}{x+1}$

Exercises 4.7 Cauchy-Euler Equation

1 A $^{-:}$-he auxiliary equation is $m^{2}-5 m=m(m-5)=0$ so that $y_{c}=c_{1}+c_{2} x^{5}$ and

$$
W\left(1, x^{\overline{5}}\right)=\left|\begin{array}{cc}
1 & x^{5} \\
0 & 5 x^{4}
\end{array}\right|=5 x^{4}
$$

-ientifying $f(x)=x^{3}$ we obtain $u_{1}^{\prime}=-\frac{1}{5} x^{4}$ and $u_{2}^{\prime}=1 / 5 x$. Then $u_{1}=-\frac{1}{25} x^{5}, u_{2}=\frac{1}{5} \ln x$, and

$$
y=c_{1}+c_{2} x^{5}-\frac{1}{25} x^{5}+\frac{1}{5} x^{5} \ln x=c_{1}+c_{3} x^{5}+\frac{1}{5} x^{5} \ln x
$$

7. -a auxiliary equation is $2 m^{2}+3 m+1=(2 m+1)(m+1)=0$ so that $y_{c}=c_{1} x^{-1}+c_{2} x^{-1 / 2}$ and

$$
W\left(x^{-1}, x^{-1 / 2}\right)=\left|\begin{array}{cc}
x^{-1} & x^{-1 / 2} \\
-x^{-2} & -\frac{1}{2} x^{-3 / 2}
\end{array}\right|=\frac{1}{2} x^{-5 / 2}
$$

- Sntifying $f(x)=\frac{1}{2}-\frac{1}{2 x}$ we obtain $u_{1}^{\prime}=x-x^{2}$ and $u_{2}^{\prime}=x^{3 / 2}-x^{1 / 2}$. Then $u_{1}=\frac{1}{2} x^{2}-\frac{1}{3} x^{3}$,

$$
=\frac{2}{5} x^{5 / 2}-\frac{2}{3} x^{3 / 2}: \text { and }
$$

$$
y=c_{1} x^{-1}+c_{2} x^{-1 / 2}+\frac{1}{2} x-\frac{1}{3} x^{2}+\frac{2}{5} x^{2}-\frac{2}{3} x=c_{1} x^{-1}+c_{2} x^{-1 / 2}-\frac{1}{6} x+\frac{1}{15} x^{2}
$$

Exercises 4.7 Cauchy-Euler Equation
21. The auxiliary equation is $m^{2}-2 m+1=(m-1)^{2}=0$ so that $y_{c}=c_{1} x+c_{2} x \ln x$ and

$$
W(x, x \ln x)=\left|\begin{array}{cc}
x & x \ln x \\
1 & 1+\ln x
\end{array}\right|=x
$$

Iientifying $f(x)=2 / x$ we obtain $u_{1}^{\prime}=-2 \ln x / x$ and $u_{2}^{\prime}=2 / x$. Then $u_{1}=-(\ln x)^{2}, u_{2}=2$. and

$$
\begin{aligned}
y & =c_{1} x+c_{2} x \ln x-x(\ln x)^{2}+2 x(\ln x)^{2} \\
& =c_{1} x+c_{2} x \ln x+x(\ln x)^{2}, \quad x>0 .
\end{aligned}
$$

22. The auxiliary equation is $m^{2}-3 m+2=(m-1)(m-2)=0$ so that $y_{c}=c_{1} x+c_{2} x^{2}$ and

$$
W\left(x, x^{2}\right)=\left|\begin{array}{ll}
x & x^{2} \\
1 & 2 x
\end{array}\right|=x^{2}
$$

Identifying $f(x)=x^{2} e^{x}$ we obtain $u_{1}^{\prime}=-x^{2} e^{x}$ and $u_{2}^{\prime}=x e^{x}$. Then $u_{1}=-x^{2} e^{x}+2 x e^{x}-$ $\therefore 2=x e^{x}-e^{x}$, and

$$
\begin{aligned}
y & =c_{1} x+c_{2} x^{2}-x^{3} e^{x}+2 x^{2} e^{x}-2 x e^{x}+x^{3} e^{x}-x^{2} e^{x} \\
& =c_{1} x+c_{2} x^{2}+x^{2} e^{x}-2 x e^{x}
\end{aligned}
$$

23. Ti.e auxiliary equation $m(m-1)+m-1=m^{2}-1=0$ has roots $m_{1}=-1, m_{2}=$: $\therefore=c_{1} x^{-1}+c_{2} x$. With $y_{1}=x^{-1}, y_{2}=x$, and the identification $f(x)=\ln x / x^{2}$, we get

$$
W=2 x^{-1}, \quad W_{1}=-\ln x / x, \quad \text { and } \quad W_{2}=\ln x / x^{3}
$$

-ien $u_{1}^{\prime}=W_{1} / W=-(\ln x) / 2, u_{2}^{\prime}=W_{2} / W=(\ln x) / 2 x^{2}$, and integration by parts gives

$$
\begin{aligned}
& u_{1}=\frac{1}{2} x-\frac{1}{2} x \ln x \\
& u_{2}=-\frac{1}{2} x^{-1} \ln x-\frac{1}{2} x^{-1}
\end{aligned}
$$

\because

$$
y_{p}=u_{1} y_{1}+u_{2} y_{2}=\left(\frac{1}{2} x-\frac{1}{2} x \ln x\right) x^{-1}+\left(-\frac{1}{2} x^{-1} \ln x-\frac{1}{2} x^{-1}\right) x=-\ln x
$$

\cdots

$$
y=y_{c}+y_{p}=c_{1} x^{-1}+c_{2} x-\ln x, \quad x>0
$$

$\therefore-\therefore$ - auxiliary equation $m(m-1)+m-1=m^{2}-1=0$ has roots $m_{1}=-1, m_{2}=$ $\therefore=c_{1} x^{-1}+c_{2} x$. With $y_{1}=x^{-1}, y_{2}=x$, and the identification $f(x)=1 / x^{2}(x+1)$, we get:

$$
W=2 x^{-1} ; \quad W_{1}=-1 / x(x+1), \quad \text { and } \quad W_{2}=1 / x^{3}(x+1)
$$

Exercises 4.7 Cauchy-Euler Equation

Then $u_{1}^{\prime}=W_{1} / W=-1 / 2(x+1), \quad u_{2}^{\prime}=W_{2} / W=1 / 2 x^{2}(x+1)$, and integration (by partial fractions for u_{2}^{\prime}) gives

$$
\begin{aligned}
& u_{1}=-\frac{1}{2} \ln (x+1) \\
& u_{2}=-\frac{1}{2} x^{-1}-\frac{1}{2} \ln x+\frac{1}{2} \ln (x+1)
\end{aligned}
$$

so

$$
\begin{aligned}
y_{p} & =u_{1} y_{1}+u_{2} y_{2}=\left[-\frac{1}{2} \ln (x+1)\right] x^{-1}+\left[-\frac{1}{2} x^{-1}-\frac{1}{2} \ln x+\frac{1}{2} \ln (x+1)\right] x \\
& =-\frac{1}{2}-\frac{1}{2} x \ln x+\frac{1}{2} x \ln (x+1)-\frac{\ln (x+1)}{2 x}=-\frac{1}{2}+\frac{1}{2} x \ln \left(1+\frac{1}{x}\right)-\frac{\ln (x+1)}{2 x}
\end{aligned}
$$

and

$$
y=y_{c}+y_{p}=c_{1} x^{-1}+c_{2} x-\frac{1}{2}+\frac{1}{2} x \ln \left(1+\frac{1}{x}\right)-\frac{\ln (x+1)}{2 x}, \quad x>0 .
$$

3.15 Questions with Solutions on Chapter 2.3, Questions-Solutions-on-First-Order-LDE

EXERCISES 2.3

In Problems 1-24 find the general solution of the given ifferential equation. Give the largest interval I over which the general solution is defined. Determine whether there are any transient terms in the general solution.

1. $\frac{d y}{d x}=5 y$
V
2. $\frac{d y}{d x}+2 y=0$
3. $\frac{d y}{d x}+y=e^{3 x}$
4. $3 \frac{d y}{d x}+12 y=4$

Answers to selected odd-numbered problems begin on page ANS-2.
5. $y^{\prime}+3 x^{2} y=x^{2} \quad$ V. $y^{\prime}+2 x y=x^{3}$
7. $x^{2} y^{\prime}+x y=1 \quad$ 8. $y^{\prime}=2 y+x^{2}+5$
9. $x \frac{d y}{d x}-y=x^{2} \sin x$ 10. $x \frac{d y}{d x}+2 y=3$
11. $x \frac{d y}{d x}+4 y=x^{3}-x \quad$ 12. $(1+x) \frac{d y}{d x}-x y=x+x^{2}$
13. $x^{2} y^{\prime}+x(x+2) y=e^{x}$
14. $x y^{\prime}+(1+x) y=e^{-x} \sin 2 x$
15. $y d x-4\left(x+y^{6}\right) d y=0$

Exercises 2.3

1. For $y^{\prime}-5 y=0$ an integrating factor is $e^{-\int 5 d x}=e^{-5 x}$ so that $\frac{d}{d x}\left[e^{-5 x} y\right]=0$ and $y=c e^{5 x}$ for $-\infty<x<\infty$. There is no transient term.
2. For $y^{\prime}+2 y=0$ an integrating factor is $e^{\int 2 d x}=e^{2 x}$ so that $\frac{d}{d x}\left[e^{2 x} y\right]=0$ and $y=c e^{-2 x}$ for $-\infty<x<\infty$. The transient term is $c e^{-2 x}$.
3. For $y^{\prime}+y=e^{3 x}$ an integrating factor is $e^{\int d x}=e^{x}$ so that $\frac{d}{d x}\left[e^{x} y\right]=e^{4 x}$ and $y=\frac{1}{4} e^{3 x}+c e^{-x}$ for $-\infty<x<\infty$. The transient term is $c e^{-x}$.
4. For $y^{\prime}+4 y=\frac{4}{3}$ an integrating factor is $e^{\int 4 d x}=e^{4 x}$ so that $\frac{d}{d x}\left[e^{4 x} y\right]=\frac{4}{3} e^{4 x}$ and $y=\frac{1}{3}+c e^{-4 x}$ for $-\infty<x<\infty$. The transient term is $c e^{-4 x}$.

Exercises 2.3 Lincar Equations

5. For $y^{\prime}+3 x^{2} y=x^{2}$ an integrating factor is $e^{\int 3 x^{2} d x}=e^{x^{3}}$ so that $\frac{d}{d x}\left[e^{x^{3}} y\right]=x^{2} e^{x^{3}}$ and $y=\frac{1}{3}+c^{*}-$: for $-\infty<x<\infty$. The transient term is $c e^{-x^{3}}$.
6. For $y^{\prime}+2 x y=x^{3}$ an integrating factor is $e^{\int 2 x d x}=e^{x^{2}}$ so that $\frac{d}{d x}\left[e^{x^{2}} y\right]=x^{3} e^{x^{2}}$ and $:=$ $\frac{1}{2} x^{2}-\frac{1}{2}+c e^{-x^{2}}$ for $-\infty<x<\infty$. The transient term is $c e^{-x^{2}}$.
7. For $y^{\prime}+\frac{1}{x} y=\frac{1}{x^{2}}$ an integrating factor is $e^{\int(1 / x) d x}=x$ so that $\frac{d}{d x}[x y]=\frac{1}{x}$ and $y=\frac{1}{x} \ln x-\frac{1}{\vdots}$ for $0<x<\infty$. The entire solution is transient.
8. For $y^{\prime}-2 y=x^{2}+\check{y}$ an integrating factor is $e^{-\int 2 d x}=e^{-2 x}$ so that $\frac{d}{d x}\left[e^{-2 x} y\right]=x^{2} e^{-2 x}+\check{\partial} \epsilon^{-2}$ and $y=-\frac{1}{2} x^{2}-\frac{1}{2} x-\frac{11}{1}+c e^{2 x}$ for $-\infty<x<\infty$. There is no transient term.
9. For $y^{\prime}-\frac{1}{x} y=x \sin x$ an intcgrating factor is $e^{-\int(1 / x) d x}=\frac{1}{x}$ so that $\frac{d}{d x}\left[\frac{1}{x} y\right]=\sin x$. $y=c x-x \cos x$ for $0<x<\infty$. There is no transient term.
10. For $y^{\prime}+\frac{2}{x} y=\frac{3}{x}$ an integrating factor is $e^{\int(2 / x) d x}=x^{2}$ so that $\frac{d}{d x}\left[x^{2} y\right]=3 x$ and $y=\frac{3}{2}+c^{-2}$ for $0<x<\infty$. The transient term is $c x^{-2}$.
11. For $y^{\prime}+\frac{4}{x} y=x^{2}-1$ an integrating factor is $e^{\int(4 / x) d x}=x^{4}$ so that $\frac{d}{d x}\left[x^{4} y\right]=x^{6}-x^{4}$ $y=\frac{1}{7} x^{3}-\frac{1}{5} x+c x^{-4}$ for $0<x<\infty$. The transient term is $c x^{-4}$.
12. For $y^{\prime}-\frac{x}{(1+x)} y=x$ an integrating factor is $e^{-\int[x /(1+x)] d x}=(x+1) e^{-x}$ so that $\frac{d}{d x}\left[(x+1) e^{-x} y^{-}=\right.$ $x(x+1) e^{-x}$ and $y=-x-\frac{2 x+3}{x+1}+\frac{c e^{x}}{x+1}$ for $-1<x<\infty$. There is no transient term.
13. For $y^{\prime}+\left(1+\frac{2}{x}\right) y=\frac{e^{x}}{x^{2}}$ an integrating factor is $e^{\int[1+(2 / x)] d x}=x^{2} e^{x}$ so that $\frac{d}{d x}\left[x^{2} e^{x} y\right]=e^{2 x}$ a.: $y=\frac{1}{2} \frac{e^{x}}{x^{2}}+\frac{c e^{-x}}{x^{2}}$ for $0<x<\infty$. The transicnt term is $\frac{c e^{-x}}{x^{2}}$.
14. For $y^{\prime}+\left(1+\frac{1}{x}\right) y=\frac{1}{x} e^{-x} \sin 2 x$ an integrating factor is $e^{\int[1+(1 / x)] d x}=x e^{x}$ so that $\frac{d}{d x}\left[x e^{x} y .=\right.$ $\sin 2 x$ and $y=-\frac{1}{2 x} e^{-x} \cos 2 x+\frac{c e^{-x}}{x}$ for $0<x<\infty$. The entire solution is transient.
15. For $\frac{d x}{d y}-\frac{4}{y} x=4 y^{\overline{5}}$ and integrating factor is $e^{-\int(4 / y) d y}=e^{\ln y^{-4}}=y^{-4}$ so that $\frac{d}{d y}\left[y^{-4} x\right]=4 y$ and $x=2 y^{6}+c y^{4}$ for $0<y<\infty$. There is no transient term.

3.16 Questions with Solutions on Chapter 2.5, Bernoulli AND Substitution

Each DE in Problems 1-14 is homogeneous.
In Problems 1-10 solve the given differential equation by using an appropriate substitution.

Each DE in Problems 15-22 is a Bernoulli equation.
In Problems 15-20 solve the given differential equation by using an appropriate substitution.
15. $x \frac{d y}{d x}+y=\frac{1}{y^{2}}$
16. $\frac{d y}{d x}-y=e^{x} y^{2}$
17. $\frac{d y}{d x}=y\left(x y^{3}-1\right)$
18. $x \frac{d y}{d x}-(1+x) y=x y^{2}$
19. $t^{2} \frac{d y}{d t}+y^{2}=t y$
20. $3\left(1+t^{2}\right) \frac{d y}{d t}=2 \operatorname{ty}\left(y^{3}-1\right)$

In Problems 21 and 22 solve the given initial-value problem.
21. $x^{2} \frac{d y}{d x}-2 x y=3 y^{4}, \quad y(1)=\frac{1}{2}$
22. $y^{1 / 2} \frac{d y}{d x}+y^{3 / 2}=1, \quad y(0)=4$

Each DE in Problems 23-30 is of the form given in (5).
In Problems 23-28 solve the given differential equation by using an appropriate substitution.
23. $\frac{d y}{d x}=(x+y+1)^{2}$
24. $\frac{d y}{d x}=\frac{1-x-y}{x+y}$
25. $\frac{d y}{d x}=\tan ^{2}(x+y)$
26. $\frac{d y}{d x}=\sin (x+y)$
27. $\frac{d y}{d x}=2+\sqrt{y-2 x+3}$
28. $\frac{d y}{d x}=1+e^{y-x+5}$

In Problems 29 and 30 solve the given initial-value problem.
29. $\frac{d y}{d x}=\cos (x+y), \quad y(0)=\pi / 4$
30. $\frac{d y}{d x}=\frac{3 x+2 y}{3 x+2 y+2}, \quad y(-1)=-1$

Discussion Problems

Note for Bernoulli
I used $v=y^{\wedge}(1-n) /$ here they use $w=y^{\wedge}(1-n)$
so $w^{\wedge} \backslash$ prime $=(1-n) y^{\wedge}(-n) X y^{\wedge} \backslash$ prime so y^{\wedge} \prime $+a _0(t) y=f(t) y^{\wedge} n, n$ not $=1$.
by substitution....
w^{\wedge} \prime $+(1-n) a _0(t) w=(1-n) f(t)$. Find w/ then
$y=w^{\wedge}\{1 /(1-n)\}$
Note $23-30$ can be done (but i explain in class)
2. From $y^{\prime}-y=e^{x} y^{2}$ and $w=y^{-1}$ we obtain $\frac{d w}{d x}+w=-e^{x}$. An integrating factor is e^{x} so that $\epsilon^{x} w=-\frac{1}{2} e^{2 x}+c$ or $y^{-1}=-\frac{1}{2} e^{x}+c e^{-x}$.
\therefore-. From $y^{\prime}+y=x y^{4}$ and $w=y^{-3}$ we obtain $\frac{d w}{d x}-3 w=-3 x$. An integrating factor is $e^{-3 x}$ so that $\epsilon^{-3 x} w=x e^{-3 x}+\frac{1}{3} e^{-3 x}+c$ or $y^{-3}=x+\frac{1}{3}+c e^{3 x}$.
\therefore. From $y^{\prime}-\left(1+\frac{1}{x}\right) y=y^{2}$ and $w=y^{-1}$ we obtain $\frac{d w}{d x}+\left(1+\frac{1}{x}\right) w=-1$. An integrating factor is $x e^{x}$ so that $x e^{x} w=-x e^{x}+e^{x}+c$ or $y^{-1}=-1+\frac{1}{x}+\frac{c}{x} e^{-x}$.
\therefore. From $y^{\prime}-\frac{1}{t} y=-\frac{1}{t^{2}} y^{2}$ and $w=y^{-1}$ we obtain $\frac{d w}{d t}+\frac{1}{t} w=\frac{1}{t^{2}}$. An integrating factor is t so that $t w=\ln t+c$ or $y^{-1}=\frac{1}{t} \ln t+\frac{c}{t}$. Writing this in the form $\frac{t}{y}=\ln t+c$, we see that the solution can also be expressed in the form $e^{t / y}=c_{1} t$.
\therefore From $y^{\prime}+\frac{2}{3\left(1+t^{2}\right)} y=\frac{2 t}{3\left(1+t^{2}\right)} y^{4}$ and $u^{\prime}=y^{-3}$ we obtain $\frac{d w}{d t}-\frac{2 t}{1+t^{2}} w=\frac{-2 t}{1+t^{2}}$. An integrating factor is $\frac{1}{1+t^{2}}$ so that $\frac{w}{1+t^{2}}=\frac{1}{1+t^{2}}+c$ or $y^{-3}=1+c\left(1+t^{2}\right)$.
21. From $y^{\prime}-\frac{2}{x} y=\frac{3}{x^{2}} y^{4}$ and $w=y^{-3}$ we obtain $\frac{d w}{d x}+\frac{6}{x} w=-\frac{9}{x^{2}}$. An integrating factor is x^{6} so the: $x^{6} w=-\frac{9}{5} x^{5}+c$ or $y^{-3}=-\frac{9}{5} x^{-1}+c x^{-6}$. If $y(1)=\frac{1}{2}$ then $c=\frac{49}{5}$ and $y^{-3}=-\frac{9}{5} x^{-1}+\frac{49}{5} x^{-6}$.
22. From $y^{\prime}+y=y^{-1 / 2}$ and $w=y^{3 / 2}$ we obtain $\frac{d w}{d x}+\frac{3}{2} w=\frac{3}{2}$. An intcgrating factor is $e^{3 x / 2}$ so tha: $e^{3 x / 2} w=e^{3 x / 2}+c$ or $y^{3 / 2}=1+c e^{-3 x / 2}$. If $y(0)=4$ then $c=7$ and $y^{3 / 2}=1+7 e^{-3 x / 2}$.
23. Let $u=x+y+1$ so that $d u / d x=1+d y / d x$. Then $\frac{d u}{d x}-1=u^{2}$ or $\frac{1}{1+u^{2}} d u=d x$. Thu: $\tan ^{-1} u=x+c$ or $u=\tan (x+c)$, and $x+y+1=\tan (x+c)$ or $y=\tan (x+c)-x-1$.
24. Let $u=x+y$ so that $d u / d x=1+d y / d x$. Then $\frac{d u}{d x}-1=\frac{1-u}{u}$ or $u d u=d x$. Thus $\frac{1}{2} u^{2}=x+$. or $u^{2}=2 x+c_{1}$, and $(x+y)^{2}=2 x+c_{1}$.
25. Let $u=x+y$ so that $d u / d x=1+d y / d x$. Then $\frac{d u}{d x}-1=\tan ^{2} u$ or $\cos ^{2} u d u=d x$. Thu: $\frac{1}{2} u+\frac{1}{4} \sin 2 u=x+c$ or $2 u+\sin 2 u=4 x+c_{1}$, and $2(x+y)+\sin 2(x+y)=4 x+c_{1}$ or $2 y+\sin 2(x+y)=$ $2 x+c_{1}$.
26. Let $u=x+y$ so that $d u / d x=1+d y / d x$. Then $\frac{d u}{d x}-1=\sin u$ or $\frac{1}{1+\sin u} d u=d x$. Multiplyin: by $(1-\sin u) /(1-\sin u)$ we have $\frac{1-\sin u}{\cos ^{2} u} d u=d x$ or $\left(\sec ^{2} u-\sec u \tan u\right) d u=d x$. Thu: $\tan u-\sec u=x+c$ or $\tan (x+y)-\sec (x+y)=x+c$.
27. Let $u=y-2 x+3$ so that $d u / d x=d y / d x-2$. Then $\frac{d u}{d x}+2=2+\sqrt{u}$ or $\frac{1}{\sqrt{u}} d u=d x$. The: $2 \sqrt{u}=x+c$ and $2 \sqrt{y-2 x+3}=x+c$.
28. Let $u=y-x+5$ so that $d u / d x=d y / d x-1$. Then $\frac{d u}{d x}+1=1+e^{u}$ or $e^{-u} d u=d x$. The: $-e^{-u}=x+c$ and $-e^{y-x+5}=x+c$.
29. Let $u=x+y$ so that $d u / d x=1+d y / d x$. Then $\frac{d u}{d x}-1=\cos u$ and $\frac{1}{1+\cos u} d u=d x$. Now

$$
\frac{1}{1+\cos u}=\frac{1-\cos u}{1-\cos ^{2} u}=\frac{1-\cos u}{\sin ^{2} u}=\csc ^{2} u-\csc u \cot u
$$

so we have $\int\left(\csc ^{2} u-\csc u \cot u\right) d u=\int d x$ and $-\cot u+\csc u=x+c$. Thus $-\cot (x+y)+\csc (x+y)=$ $x+c$. Setting $x=0$ and $y=\pi / 4$ we obtain $c=\sqrt{2}-1$. The solution is

$$
\csc (x+y)-\cot (x+y)=x+\sqrt{2}-1
$$

30. Let $u=3 x+2 y$ so that $d u / d x=3+2 d y / d x$. Then $\frac{d u}{d x}=3+\frac{2 u}{u+2}=\frac{5 u+6}{u+2}$ and $\frac{u+2}{5 u+6} d u=d s$ Now by long division

$$
\frac{u+2}{5 u+6}=\frac{1}{5}+\frac{4}{25 u+30}
$$

EXERCISES 2.4

Answers to selected odd-numbered problems begin on page ANS-2.

In Problems 1-20 determine whether the given differential equation is exact. If it is exact, solve it.

1. $(2 x-1) d x+(3 y+7) d y=0$
2. $(2 x+y) d x-(x+6 y) d y=0$
3. $(5 x+4 y) d x+\left(4 x-8 y^{3}\right) d y=0$
4. $(\sin y-y \sin x) d x+(\cos x+x \cos y-y) d y=0$
5. $\left(2 x y^{2}-3\right) d x+\left(2 x^{2} y+4\right) d y=0$
6. $\left(2 y-\frac{1}{x}+\cos 3 x\right) \frac{d y}{d x}+\frac{y}{x^{2}}-4 x^{3}+3 y \sin 3 x=0$
7. $\left(x^{2}-y^{2}\right) d x+\left(x^{2}-2 x y\right) d y=0$
8. $\left(1+\ln x+\frac{y}{x}\right) d x=(1-\ln x) d y$
9. $\left(x-y^{3}+y^{2} \sin x\right) d x=\left(3 x y^{2}+2 y \cos x\right) d y$
10. $\left(x^{3}+y^{3}\right) d x+3 x y^{2} d y=0$
11. $\left(y \ln y-e^{-x y}\right) d x+\left(\frac{1}{y}+x \ln y\right) d y=0$
12. $\left(3 x^{2} y+e^{y}\right) d x+\left(x^{3}+x e^{y}-2 y\right) d y=0$
13. $x \frac{d y}{d x}=2 x e^{x}-y+6 x^{2}$
14. $\left(1-\frac{3}{y}+x\right) \frac{d y}{d x}+y=\frac{3}{x}-1 \quad$ V
15. $\left(x^{2} y^{3}-\frac{1}{1+9 x^{2}}\right) \frac{d x}{d y}+x^{3} y^{2}=0$
16. $(5 y-2 x) y^{\prime}-2 y=0$
17. $(\tan x-\sin x \sin y) d x+\cos x \cos y d y=0$
18. $\left(2 y \sin x \cos x-y+2 y^{2} e^{x y^{2}}\right) d x$

$$
=\left(x-\sin ^{2} x-4 x y e^{x y^{2}}\right) d y
$$

19. $\left(4 t^{3} y-15 t^{2}-y\right) d t+\left(t^{4}+3 y^{2}-t\right) d y=0$
20. $\left(\frac{1}{t}+\frac{1}{t^{2}}-\frac{y}{t^{2}+y^{2}}\right) d t+\left(y e^{y}+\frac{t}{t^{2}+y^{2}}\right) d y=0$

In Problems 21-26 solve the given initial-value problem.
21. $(x+y)^{2} d x+\left(2 x y+x^{2}-1\right) d y=0, \quad y(1)=1 \quad \sqrt{ }$
22. $\left(e^{x}+y\right) d x+\left(2+x+y e^{y}\right) d y=0, \quad y(0)=1$
23. $(4 y+2 t-5) d t+(6 y+4 t-1) d y=0, \quad y(-1)=2$
24. $\left(\frac{3 y^{2}-t^{2}}{y^{5}}\right) \frac{d y}{d t}+\frac{t}{2 y^{4}}=0, \quad y(1)=1$

Exercises 2.4

Exact Equilions

1. Let $M=2 x-1$ and $N=3 y+7$ so that $M_{y}=0=N_{x}$. From $f_{x}=2 x-1$ we obtain $f=x^{2}-x+h(y$ $h^{\prime}(y)=3 y+7$, and $h(y)=\frac{3}{2} y^{2}+7 y$. A solution is $x^{2}-x+\frac{3}{2} y^{2}+7 y=c$.
2. Let $M=2 x+y$ and $N=-x-6 y$. Then $M_{y}=1$ and $N_{x}=-1$, so the equation is not exact.
3. Let $M=5 x+4 y$ and $N=4 x-8 y^{3}$ so that $M_{y}=4=N_{x}$. From $f_{x}=5 x+4 y$ we obta:$f=\frac{5}{2} x^{2}+4 x y+h(y), h^{\prime}(y)=-8 y^{3}$, and $h(y)=-2 y^{4}$. A solution is $\frac{5}{2} x^{2}+4 x y-2 y^{4}=c$.
4. Let $M=\sin y-y \sin x$ and $N=\cos x+x \cos y-y$ so that $M_{y}=\cos y-\sin x=N_{x}$. Fro:.. $f_{x}=\sin y-y \sin x$ we obtain $f=x \sin y+y \cos x+h(y), h^{\prime}(y)=-y$, and $h(y)=-\frac{1}{2} y^{2}$. A solutic. is $x \sin y+y \cos x-\frac{1}{2} y^{2}=c$.
5. Let $M=2 y^{2} x-3$ and $N=2 y x^{2}+4$ so that $M_{y}=4 x y=N_{x}$. From $f_{x}=2 y^{2} x-3$ we obta:: $f=x^{2} y^{2}-3 x+h(y), h^{\prime}(y)=4$, and $h(y)=4 y$. A solution is $x^{2} y^{2}-3 x+4 y=c$.
6. Let $M=4 x^{3}-3 y \sin 3 x-y / x^{2}$ and $N=2 y-1 / x+\cos 3 x$ so that $M_{y}=-3 \sin 3 x-1 / x^{2}$ ar: $N_{x}=1 / x^{2}-3 \sin 3 x$. The equation is not exact.
7. Let $M=x^{2}-y^{2}$ and $N=x^{2}-2 x y$ so that $M_{y}=-2 y$ and $N_{x}=2 x-2 y$. The equation is $n \cdot$ exact.
․ Let $M=1+\ln x+y / x$ and $N=-1+\ln x$ so that $M_{y}=1 / x=N_{x}$. From $f_{y}=-1+\ln x$ we obtain $\therefore=-y+y \ln x+h(y), h^{\prime}(x)=1+\ln x$, and $h(y)=x \ln x$. A solution is $-y+y \ln x+x \ln x=c$.
\#. Let $M=y^{3}-y^{2} \sin x-x$ and $N=3 x y^{2}+2 y \cos x$ so that $M_{y}=3 y^{2}-2 y \sin x=N_{x}$. From $\therefore=y^{3}-y^{2} \sin x-x$ we obtain $f=x y^{3}+y^{2} \cos x-\frac{1}{2} x^{2}+h(y), h^{\prime}(y)=0$, and $h(y)=0$. A solution is $x y^{3}+y^{2} \cos x-\frac{1}{2} x^{2}=c$.
\therefore Let $M=x^{3}+y^{3}$ and $N=3 x y^{2}$ so that $M_{y}=3 y^{2}=N_{x}$. From $f_{x}=x^{3}+y^{3}$ we obtain $t=\frac{1}{4} x^{4}+x y^{3}+h(y), h^{\prime}(y)=0$, and $h(y)=0$. A solution is $\frac{1}{4} x^{4}+x y^{3}=c$.
\therefore Let $M=y \ln y-e^{-x y}$ and $N=1 / y+x \ln y$ so that $M_{y}=1+\ln y+x e^{-x y}$ and $N_{x}=\ln y$. The quation is not exact.
\therefore-et $M=3 x^{2} y+e^{y}$ and $N=x^{3}+x e^{y}-2 y$ so that $M_{y}=3 x^{2}+e^{y}=N_{x}$. From $f_{x}=3 x^{2} y+e^{y}$ we btain $f=x^{3} y+x e^{y}+h(y), h^{\prime}(y)=-2 y$, and $h(y)=-y^{2}$. A solution is $x^{3} y+x e^{y}-y^{2}=c$.
-3. Let $M=y-6 x^{2}-2 x e^{x}$ and $N=x$ so that $M_{y}=1=N_{x}$. From $f_{x}=y-6 x^{2}-2 x e^{x}$ we obtain $\div=x y-2 x^{3}-2 x e^{x}+2 e^{x}+h(y), h^{\prime}(y)=0$, and $h(y)=0$. A solution is $x y-2 x^{3}-2 x e^{x}+2 e^{x}=c$.
\therefore Let $M=1-3 / x+y$ and $N=1-3 / y+x$ so that $M_{y}=1=N_{x}$. From $f_{x}=1-3 / x+y$ we obtain $f=x-3 \ln |x|+x y+h(y), h^{\prime}(y)=1-\frac{3}{y}$, and $h(y)=y-3 \ln |y|$. A solution is $\because+y+x y-3 \ln |x y|=c$.
\therefore Let $M=x^{2} y^{3}-1 /\left(1+9 x^{2}\right)$ and $N=x^{3} y^{2} \quad$ so that $M_{y}=3 x^{2} y^{2}=N_{x}$. From ${ }^{\prime}{ }_{x}=x^{2} y^{3}-1 /\left(1+9 x^{2}\right)$ we obtain $f=\frac{1}{3} x^{3} y^{3}-\frac{1}{3} \arctan (3 x)+h(y), h^{\prime}(y)=0$, and $h(y)=0$. A solution is $x^{3} y^{3}-\arctan (3 x)=c$.
\therefore Let $M=-2 y$ and $N=5 y-2 x$ so that $M_{y}=-2=N_{x}$. From $f_{x}=-2 y$ we obtain $f=-2 x y+h(y)$, $\xi^{\prime}(y)=5 y$, and $h(y)=\frac{5}{2} y^{2}$. A solution is $-2 x y+\frac{5}{2} y^{2}=c$.
\because. Let $M=\tan x-\sin x \sin y$ and $N=\cos x \cos y$ so that $M_{y}=-\sin x \cos y=N_{x}$. From $f_{x}=\tan x-\sin x \sin y$ we obtain $f=\ln |\sec x|+\cos x \sin y+h(y), h^{\prime}(y)=0$, and $h(y)=0$. A solution is $\ln |\sec x|+\cos x \sin y=c$.
\therefore Let $M=2 y \sin x \cos x-y+2 y^{2} e^{x y^{2}}$ and $N=-x+\sin ^{2} x+4 x y e^{x y^{2}}$ so that

$$
M_{y}=2 \sin x \cos x-1+4 x y^{3} e^{x y^{2}}+4 y c^{x y^{2}}=N_{x} .
$$

From $f_{x}=2 y \sin x \cos x-y+2 y^{2} e^{x y^{2}}$ we obtain $f=y \sin ^{2} x-x y+2 e^{x y^{2}}+h(y), h^{\prime}(y)=0$, and $h(y)=0$. A solution is $y \sin ^{2} x-x y+2 e^{x y^{2}}=c$.
\therefore Let $M=4 t^{3} y-15 t^{2}-y$ and $N=t^{4}+3 y^{2}-t$ so that $M_{y}=4 t^{3}-1=N_{t}$. From $f_{t}=4 t^{3} y-15 t^{2}-y$ we obtain $f=t^{4} y-5 t^{3}-t y+h(y), h^{\prime}(y)=3 y^{2}$, and $h(y)=y^{3}$. A solution is $t^{4} y-5 t^{3}-t y+y^{3}=c$.
\therefore Let $M=1 / t+1 / t^{2}-y /\left(t^{2}+y^{2}\right)$ and $N=y e^{y}+t /\left(t^{2}+y^{2}\right)$ so that $M_{y}=\left(y^{2}-t^{2}\right) /\left(t^{2}+y^{2}\right)^{2}=$. x_{t}. From $f_{l}=1 / t+1 / t^{2}-y /\left(t^{2}+y^{2}\right)$ we obtain $f=\ln |t|-\frac{1}{t}-\arctan \left(\frac{t}{y}\right)+h(y), h^{\prime}(y)=y e^{y}$,

Exercises 2.4 Exact Equations
and $h(y)=y e^{y}-e^{y}$. A solution is

$$
\ln |t|-\frac{1}{t}-\arctan \left(\frac{t}{y}\right)+y e^{y}-e^{y}=c
$$

21. Let $M=x^{2}+2 x y+y^{2}$ and $N=2 x y+x^{2}-1$ so that $M_{y}=2(x+y)=N_{x}$. From $f_{x}=x^{2}+2 x y+y^{2} w$ obtain $f=\frac{1}{3} x^{3}+x^{2} y+x y^{2}+h(y), h^{\prime}(y)=-1$, and $h(y)=-y$. The solution is $\frac{1}{3} x^{3}+x^{2} y+x y^{2}-y=c$ If $y(1)=1$ then $c=4 / 3$ and a solution of the initial-value problem is $\frac{1}{3} x^{3}+x^{2} y+x y^{2}-y=\frac{4}{3}$.
22. Let $M=e^{x}+y$ and $N=2+x+y e^{y}$ so that $M_{y}=1=N_{x}$. From $f_{x}=e^{x}+y$ we obtain. $f=e^{x}+x y+h(y), h^{\prime}(y)=2+y e^{y}$, and $h(y)=2 y+y e^{y}-y$. The solution i$e^{x}+x y+2 y+y e^{y}-e^{y}=c$. If $y(0)=1$ then $c=3$ and a solution of the initial-value prol: lem is $e^{x}+x y+2 y+y e^{y}-e^{y}=3$.
23. Let $M=4 y+2 t-5$ and $N=6 y+4 t-1$ so that $M_{y}=4=N_{t}$. From $f_{t}=4 y+2 t-5$ we obtais. $f=4 t y+t^{2}-5 t+h(y), h^{\prime}(y)=6 y-1$, and $h(y)=3 y^{2}-y$. The solution is $4 t y+t^{2}-5 t+3 y^{2}-y=i$ If $y(-1)=2$ then $c=8$ and a solution of the initial-value problem is $4 t y+t^{2}-5 t+3 y^{2}-y=8$.
24. Let $M=t / 2 y^{4}$ and $N=\left(3 y^{2}-t^{2}\right) / y^{5}$ so that $M_{y}=-2 t / y^{5}=N_{t}$. From $f_{t}=t / 2 y^{4}$ we obtai:: $f=\frac{t^{2}}{4 y^{4}}+h(y), h^{\prime}(y)=\frac{3}{y^{3}}$, and $h(y)=-\frac{3}{2 y^{2}}$. The solution is $\frac{t^{2}}{4 y^{4}}-\frac{3}{2 y^{2}}=c$. If $y(1)=1$ the: $c=-5 / 4$ and a solution of the initial-value problem is $\frac{t^{2}}{4 y^{4}}-\frac{3}{2 y^{2}}=-\frac{5}{4}$. DE

	Answers to selected odd-numbered problems begin on page ANS-1.	
	21. $\frac{d y}{d x}=x \sqrt{1-y^{2}}$	22. $\left(e^{x}+e^{-x}\right) \frac{d y}{d x}=y^{2}$

In Problems 23-28 find an explicit solution of the given initial-value problem.
23. $\frac{d x}{d t}=4\left(x^{2}+1\right), \quad x(\pi / 4)=1$
24. $\frac{d y}{d x}=\frac{y^{2}-1}{x^{2}-1}, \quad y(2)=2$
25. $x^{2} \frac{d y}{d x}=y-x y, \quad y(-1)=-1$
26. $\frac{d y}{d t}+2 y=1, \quad y(0)=\frac{5}{2}$
11. $\csc y d x+\sec ^{2} x d y=0$
12. $\sin 3 x d x+2 y \cos ^{3} 3 x d y=0$
3. $\left(e^{y}+1\right)^{2} e^{-y} d x+\left(e^{x}+1\right)^{3} e^{-x} d y=0$
14. $x\left(1+y^{2}\right)^{1 / 2} d x=y\left(1+x^{2}\right)^{1 / 2} d y$
15. $\frac{d S}{d r}=k S$
16. $\frac{d Q}{d t}=k(Q-70)$
17. $\frac{d P}{d t}=P-P^{2}$
18. $\frac{d N}{d t}+N=N t e^{t+2}$
19. $\frac{d y}{d x}=\frac{x y+3 x-y-3}{x y-2 x+4 y-8}$ 2b. $\frac{d y}{d x}=\frac{x y+2 y-x-2}{x y-3 y+x-3}$
\therefore Fin dy $=\sin 5 x d x$ we obtain $y=-\frac{1}{5} \cos 5 x+c$.
$=こ \ldots \mathrm{~m} d y=(x+1)^{2} d x$ we obtain $y=\frac{1}{3}(x+1)^{3}+c$.
$\therefore \mathrm{md} d y=-e^{-3 x} d x$ we obtain $y=\frac{1}{3} e^{-3 x}+c$.
$\Varangle \min \frac{1}{(y-1)^{2}} d y=d x$ we obtain $-\frac{1}{y-1}=x+c$ or $y=1-\frac{1}{x+c}$.
$\equiv=\mathrm{m} \frac{1}{y} d y=\frac{4}{x} d x$ we obtain $\ln |y|=4 \ln |x|+c$ or $y=c_{1} x^{4}$.
$\div \equiv$ min $\frac{1}{y^{2}} d y=-2 x d x$ we obtain $-\frac{1}{y}=-x^{2}+c$ or $y=\frac{1}{x^{2}+c_{1}}$.

- E.en $e^{-2 y} d y=e^{3 x} d x$ we obtain $3 e^{-2 y}+2 e^{3 x}=c$.
$=\operatorname{Fin} y e^{y} d y=\left(e^{-x}+e^{-3 x}\right) d x$ we obtain $y e^{y}-e^{y}+e^{-x}+\frac{1}{3} e^{-3 x}=c$.
$\equiv \cdots \min \left(y+2+\frac{1}{y}\right) d y=x^{2} \ln x d x$ we obtain $\frac{y^{2}}{2}+2 y+\ln |y|=\frac{x^{3}}{3} \ln |x|-\frac{1}{9} x^{3}+c$.
$\therefore=\operatorname{mm} \frac{1}{(2 y+3)^{2}} d y=\frac{1}{(4 x+5)^{2}} d x$ we obtain $\frac{2}{2 y+3}=\frac{1}{4 x+5}+c$.
$\therefore=\operatorname{mom} \frac{1}{\csc y} d y=-\frac{1}{\sec ^{2} x} d x$ or $\sin y d y=-\cos ^{2} x d x=-\frac{1}{2}(1+\cos 2 x) d x$ we obtain
$-\operatorname{os} y=-\frac{1}{2} x-\frac{1}{4} \sin 2 x+c$ or $4 \cos y=2 x+\sin 2 x+c_{1}$.
$\therefore=-\operatorname{man} 2 y d y=-\frac{\sin 3 x}{\cos ^{3} 3 x} d x$ or $2 y d y=-\tan 3 x \sec ^{2} 3 x d x$ we obtain $y^{2}=-\frac{1}{6} \sec ^{2} 3 x+c$.
$\therefore=\operatorname{Fim} \frac{e^{y}}{\left(e^{y}+1\right)^{2}} d y=\frac{-e^{x}}{\left(\epsilon^{x}+1\right)^{3}} d x$ we obtain $-\left(e^{y}+1\right)^{-1}=\frac{1}{2}\left(e^{x}+1\right)^{-2}+c$.
$\therefore=\operatorname{mom} \frac{y}{\left(1+y^{2}\right)^{1 / 2}} d y=\frac{x}{\left(1+x^{2}\right)^{1 / 2}} d x$ we obtain $\left(1+y^{2}\right)^{1 / 2}=\left(1+x^{2}\right)^{1 / 2}+c$.
$\because \equiv n \frac{1}{S} d S=k d r$ we obtain $S=c e^{k r}$.
$\therefore \quad=\mathrm{m} \frac{1}{Q-70} d Q=k d t$ we obtain $\ln |Q-70|=k t+c$ or $Q-70=c_{1} e^{k \cdot t}$.

Exercises 2.2 Separable Variables
17. From $\frac{1}{P-} \frac{P^{2}}{} d P=\left(\frac{1}{P}+\frac{1}{1-P}\right) d P=d t$ we obtain $\ln |P|-\ln |1-P|=t+c$ so that $\ln \left|\frac{P}{1-P}\right|=$ $t+c$ or $\frac{P}{1-P}=c_{1} e^{t}$. Solving for P we have $P=\frac{c_{1} e^{t}}{1+c_{1} e^{t}}$.
18. From $\frac{1}{N} d N=\left(t e^{t+2}-1\right) d t$ we obtain $\ln |N|=t e^{t+2}-e^{t+2}-t+c$ or $N=c_{1} e^{t e^{t+2}-e^{t+2}-t}$.
19. From $\frac{y-2}{y+3} d y=\frac{x-1}{x+4} d x$ or $\left(1-\frac{5}{y+3}\right) d y=\left(1-\frac{5}{x+4}\right) d x$ we obtain $y-5 \ln |y+3|=$ $x-5 \ln |x+4|+c$ or $\left(\frac{x+4}{y+3}\right)^{5}=c_{1} e^{x-y}$.
20. From $\frac{y+1}{y-1} d y=\frac{x+2}{x-3} d x$ or $\left(1+\frac{2}{y-1}\right) d y=\left(1+\frac{5}{x-3}\right) d x$ we obtain $y+2 \ln |y-1|=$ $x+5 \ln |x-3|+c$ or $\frac{(y-1)^{2}}{(x-3)^{5}}=c_{1} e^{x-y}$.
21. From $x d x=\frac{1}{\sqrt{1-y^{2}}} d y$ we obtain $\frac{1}{2} x^{2}=\sin ^{-1} y+c$ or $y=\sin \left(\frac{x^{2}}{2}+c_{1}\right)$.
22. From $\frac{1}{y^{2}} d y=\frac{1}{e^{x}+e^{-x}} d x=\frac{e^{x}}{\left(e^{x}\right)^{2}+1} d x$ we obtain $-\frac{1}{y}=\tan ^{-1} e^{x}+c$ or $y=-\frac{1}{\tan ^{-1} e^{x}+c}$.
23. From $\frac{1}{x^{2}+1} d x=4 d t$ we obtain $\tan ^{-1} x=4 t+c$. Using $x(\pi / 4)=1$ we find $c=-3 \pi / 4$. The solution of the initial-value problem is $\tan ^{-1} x=4 t-\frac{3 \pi}{4}$ or $x=\tan \left(4 t-\frac{3 \pi}{4}\right)$.
24. Froin $\frac{1}{y^{2}-1} d y=\frac{1}{x^{2}-1} d x$ or $\frac{1}{2}\left(\frac{1}{y-1}-\frac{1}{y+1}\right) d y=\frac{1}{2}\left(\frac{1}{x-1}-\frac{1}{x+1}\right) d x$ we obtain $\ln |y-1|-\ln |y+1|=\ln |x-1|-\ln |x+1|+\ln c$ or $\frac{y-1}{y+1}=\frac{c(x-1)}{x+1}$. Using $y(2)=2$ we find $c=1$. A solution of the initial-value problem is $\frac{y-1}{y+1}=\frac{x-1}{x+1}$ or $y=x$.
25. From $\frac{1}{y} d y=\frac{1-x}{x^{2}} d x=\left(\frac{1}{x^{2}}-\frac{1}{x}\right) d x$ we obtain $\ln |y|=-\frac{1}{x}-\ln |x|=c$ or $x y=c_{1} e^{-1 / x}$. Using $y(-1)=-1$ we find $c_{1}=e^{-1}$. The solution of the initial-value problem is $x y=e^{-1-1 / x}$ or $y=e^{-(1+1 / x)} / x$.
26. From $\frac{1}{1-2 y} d y=d t$ we obtain $-\frac{1}{2} \ln |1-2 y|=t+c$ or $1-2 y=c_{1} e^{-2 t}$. Using $y(0)=5 / 2$ we finc $c_{1}=-4$. The solution of the initial-value problem is $1-2 y=-4 e^{-2 t}$ or $y=2 e^{-2 t}+\frac{1}{2}$.
27. Scparating variables and integrating we obtain

$$
\frac{d x}{\sqrt{1-x^{2}}}-\frac{d y}{\sqrt{1-y^{2}}}=0 \quad \text { and } \quad \sin ^{-1} x-\sin ^{-1} y=c .
$$

Exercises 2.2 Separable Variables

Setting $x=0$ and $y=\sqrt{3} / 2$ we obtain $c=-\pi / 3$. Thus, an implicit solution of the initial-value problem is $\sin ^{-1} x-\sin ^{-1} y=-\pi / 3$. Solving for y and using an addition formula from trigonometry, we get

$$
y=\sin \left(\sin ^{-1} x+\frac{\pi}{3}\right)=x \cos \frac{\pi}{3}+\sqrt{1-x^{2}} \sin \frac{\pi}{3}=\frac{x}{2}+\frac{\sqrt{3} \sqrt{1-x^{2}}}{2}
$$

25. From $\frac{1}{1+(2 y)^{2}} d y=\frac{-x}{1+\left(x^{2}\right)^{2}} d x$ we obtain

$$
\frac{1}{2} \tan ^{-1} 2 y=-\frac{1}{2} \tan ^{-1} x^{2}+c \quad \text { or } \quad \tan ^{-1} 2 y+\tan ^{-1} x^{2}=c_{1}
$$

Using $y(1)=0$ we find $c_{1}=\pi / 4$. Thus, an implicit solution of the initial-value problem is $\tan ^{-1} 2 y+\tan ^{-1} x^{2}=\pi / 4$. Solving for y and using a trigonometric identity we get

$$
\begin{aligned}
2 y & =\tan \left(\frac{\pi}{4}-\tan ^{-1} x^{2}\right) \\
y & =\frac{1}{2} \tan \left(\frac{\pi}{4}-\tan ^{-1} x^{2}\right) \\
& =\frac{1}{2} \frac{\tan \frac{\pi}{4}-\tan \left(\tan ^{-1} x^{2}\right)}{1+\tan \frac{\pi}{4} \tan \left(\tan ^{-1} x^{2}\right)} \\
& =\frac{1}{2} \frac{1-x^{2}}{1+x^{2}} .
\end{aligned}
$$

2. Separating variables, integrating from 4 to x, and using t as a dummy variable of integration gives

$$
\begin{aligned}
\int_{4}^{x} \frac{1}{y} \frac{d y}{d t} d t & =\int_{4}^{x} e^{-t^{2}} d t \\
\ln y(t)_{4}^{x} & =\int_{4}^{x} e^{-t^{2}} d t \\
\ln y(x)-\ln y(4) & =\int_{4}^{x} e^{-t^{2}} d t
\end{aligned}
$$

Csing the initial condition we have

$$
\ln y(x)=\ln y(4)+\int_{4}^{x} e^{-t^{2}} d t=\ln 1+\int_{4}^{x} e^{-t^{2}} d t=\int_{4}^{x} e^{-t^{2}} d t
$$

Thus,

$$
y(x)=e^{\int_{4}^{x} e^{-t^{2}} d t}
$$

Using this age, determine what percentage of the original amount of C-14 remained in the cloth as of 1988.

Newton's Law of Cooling/Warming
\square
15. A small metal bar, whose initial temperature was $20^{\circ} \mathrm{C}$, is dropped into a large container of boiling water. How long will it take the bar to reach $90^{\circ} \mathrm{C}$ if it is known that its temperature increases 2° in 1 second? How long will it take the bar to reach $98^{\circ} \mathrm{C}$?
16. Two large containers A and B of the same size are filled with different fluids. The fluids in containers A and B are maintained at $0^{\circ} \mathrm{C}$ and $100^{\circ} \mathrm{C}$, respectively. A small metal bar, whose initial temperature is $100^{\circ} \mathrm{C}$, is lowered into container A. After 1 minute the temperature of the bar is $90^{\circ} \mathrm{C}$. After 2 minutes the bar is removed and instantly transferred to the other container. After 1 minute in container B the temperature of the bar rises 10°. How long, measured from the start of the entire process, will it take the bar to reach $99.9^{\circ} \mathrm{C}$?
17. A thermometer reading $70^{\circ} \mathrm{F}$ is placed in an oven preheated to a constant temperature. Through a glass window in the oven door, an observer records that the thermometer reads $110^{\circ} \mathrm{F}$ after $\frac{1}{2}$ minute and $145^{\circ} \mathrm{F}$ / after 1 minute. How hot is the oven?
18. At $t=0$ a sealed test tube containing a chemical is immersed in a liquid bath. The initial temperature of the chemical in the test tube is $80^{\circ} \mathrm{F}$. The liquid bath has a controlled temperature (measured in degrees Fahrenheit) given by $T_{m}(t)=100-40 e^{-0.1 t}, t \geq 0$, where t is measured in minutes.
(a) Assume that $k=-0.1$ in (2). Before solving the IVP, describe in words what you expect the temperature $T(t)$ of the chemical to be like in the short term. In the long term.
(b) Solve the initial-value problem. Use a graphing utility to plot the graph of $T(t)$ on time intervals of various lengths. Do the graphs agree with your predictions in part (a)?
9. A dead body was found within a closed room of a house where the temperature was a constant $70^{\circ} \mathrm{F}$. At the time of discovery the core temperature of the body was determined to be $85^{\circ} \mathrm{F}$. One hour later a second mea-
surement showed that the core temperature of the body was $80^{\circ} \mathrm{F}$. Assume that the time of death corresponds to $t=0$ and that the core temperature at that time was $98.6^{\circ} \mathrm{F}$. Determine how many hours elapsed before the body was found. [Hint: Let $t_{1}>0$ denote the time that the body was discovered.]
20. The rate at which a body cools also depends on its exposed surface area S. If S is a constant, then a modification of (2) is

$$
\frac{d T}{d t}=k S\left(T-T_{m}\right)
$$

where $k<0$ and T_{m} is a constant. Suppose that two cups A and B are filled with coffee at the same time. Initially, the temperature of the coffee is $150^{\circ} \mathrm{F}$. The exposed surface area of the coffee in cup B is twice the surface area of the coffee in cup A. After 30 min the temperature of the coffee in $\operatorname{cup} A$ is $100^{\circ} \mathrm{F}$. If $T_{m}=70^{\circ} \mathrm{F}$, then what is the temperature of the coffee in cup B after 30 min ?

Mixtures

. A tank contains 200 liters of fluid in which 30 grams of salt is dissolved. Brine containing 1 gram of salt per liter is then pumped into the tank at a rate of $4 \mathrm{~L} / \mathrm{min}$; the well-mixed solution is pumped out at the same rate. Find the number $A(t)$ of grams of salt in the tank at time t.
. Solve Problem 21 assuming that pure water is pumped into the tank.
A large tank is filled to capacity with 500 gallons of pure water. Brine containing 2 pounds of salt per gallon is pumped into the tank at a rate of $5 \mathrm{gal} / \mathrm{min}$. The wellmixed solution is pumped out at the same rate. Find the number $A(t)$ of pounds of salt in the tank at time t.
24. In Problem 23, what is the concentration $c(t)$ of the salt in the tank at time t ? At $t=5 \mathrm{~min}$? What is the concentration of the salt in the tank after a long time, that is, as $t \rightarrow \infty$? At what time is the concentration of the salt in the tank equal to one-half this limiting value?
25. Solve Problem 23 under the assumption that the solution is pumped out at a faster rate of $10 \mathrm{gal} / \mathrm{min}$. When is the tank empty?
26. Determine the amount of salt in the tank at time t in Example 5 if the concentration of salt in the inflow is variable and given by $c_{\text {in }}(t)=2+\sin (t / 4) \mathrm{lb} / \mathrm{gal}$. Without actually graphing, conjecture what the solution curve of the IVP should look like. Then use a graphing utility to plot the graph of the solution on the interval [0,300$]$. Repeat for the interval $[0,600]$ and compare your graph with that in Figure 3.1.4(a).
27. A large tank is partially filled with 100 gallons of fluid in which 10 pounds of salt is dissolved. Brine containing

Exercises 3.1 Linear Models

15. We use the fact that the boiling temperature for water is $100^{\circ} \mathrm{C}$. Now assume that $d T / d t=$ $k(T-100)$ so that $T=100+c e^{k t}$. If $T(0)=20^{\circ}$ and $T(1)=22^{\circ}$, then $c=-80$ and $k=$ $\ln (39 / 40) \approx-0.0253$. Then $T(t)=100-80 e^{-0.0253 t}$, and when $T=90, t=82.1$ seconds. \because $T(t)=98^{\circ}$ then $t=145.7$ seconds.
16. The differential equation for the first container is $d T_{1} / d t=k_{1}\left(T_{1}-0\right)=k_{1} T_{1}$, whose solution:$T_{1}(t)=c_{1} e^{k_{1} t}$. Since $T_{1}(0)=100$ (the initial temperature of the metal bar), we have $100=c_{1}$ ar $T_{1}(t)=100 e^{k_{1} l}$. After 1 minute, $T_{1}(1)=100 e^{k_{1}}=90^{\circ} \mathrm{C}$, so $k_{1}=\ln 0.9$ and $T_{1}(t)=100 e^{\ell \ln 0}$ After 2 minutes, $T_{1}(2)=100 e^{2 \ln 0.9}=100(0.9)^{2}=81^{\circ} \mathrm{C}$.

The diffcrential equation for the second container is $d T_{2} / d t=k_{2}\left(T_{2}-100\right)$, whose solution:$T_{2}(t)=100+c_{2} e^{k_{2} t}$. When the metal bar is immersed in the second container, its initial temperatu:is $T_{2}(0)=81$, so

$$
T_{2}(0)=100+c_{2} e^{k_{2}(0)}=100+c_{2}=81
$$

and $c_{2}=-19$. Thus, $T_{2}(t)=100-19 e^{k_{2} t}$. After 1 minute in the second tank, the temperature the metal bar is $91^{\circ} \mathrm{C}$, so

$$
\begin{aligned}
T_{2}(1) & =100-19 e^{k_{2}}=91 \\
e^{k_{2}} & =\frac{9}{19} \\
k_{2} & =\ln \frac{9}{19}
\end{aligned}
$$

and $T_{2}(t)=100-19 e^{t \ln (9 / 19)}$. Setting $T_{2}(t)=99.9$ we have

$$
\begin{aligned}
100-19 e^{t \ln (9 / 19)} & =99.9 \\
e^{t \ln (9 / 19)} & =\frac{0.1}{19} \\
t & =\frac{\ln (0.1 / 19)}{\ln (9 / 19)} \approx 7.02
\end{aligned}
$$

Thus, from the start of the "double dipping" process, the total time until the bar reaches 99. in the second container is approximately 9.02 minutes.
17. Using separation of variables to solve $d T / d t=k\left(T-T_{m}\right)$ we get $T(t)=T_{m}+c c^{k t}$. Using $T(0)={ }^{-}$ we find $c=70-T_{m}$, so $T(t)=T_{m}+\left(70-T_{m}\right) e^{k t}$. Using the given observations, we obtain

$$
\begin{aligned}
T\left(\frac{1}{2}\right) & =T_{m}+\left(70-T_{m}\right) e^{k / 2}=110 \\
T(1) & =T_{m}+\left(70-T_{m}\right) e^{k}=145
\end{aligned}
$$

Then, from the first equation, $e^{k / 2}=\left(110-T_{m}\right) /\left(70-T_{m}\right)$ and

$$
\begin{aligned}
e^{k}=\left(e^{k / 2}\right)^{2}=\left(\frac{110-T_{m}}{70-T_{m}}\right)^{2} & =\frac{145-T_{m}}{70-T_{m}} \\
\frac{\left(110-T_{m}\right)^{2}}{70-T_{m}} & =145-T_{m} \\
12100-220 T_{m}+T_{m}^{2} & =10150-215 T_{m}+T_{m}^{2} \\
T_{m} & =390
\end{aligned}
$$

The temperature in the oven is 390°.
2. (a) The initial temperature of the bath is $T_{m}(0)=60^{\circ}$, so in the short term the temperature of the chemical, which starts at 80°, should decrease or cool. Over time, the temperature of the bath will increase toward 100° since $e^{-0.1 t}$ decreases from 1 toward 0 as t increases from 0 . Thus, in the long term, the temperature of the chemical should increase or warm toward 100°.
(b) Adapting the model for Newton's law of cooling, we have

$$
\frac{d T}{d t}=-0.1\left(T-100+40 e^{-0.1 t}\right), \quad T(0)=80
$$

Writing the differential equation in the form

$$
\frac{d T}{d t}+0.1 T=10-4 e^{-0.1 t}
$$

we see that it is linear with integrating factor $e^{\int 0.1 d t}=e^{0.1 t}$. Thus

$$
\begin{aligned}
\frac{d}{d t}\left[e^{0.1 t} T\right] & =10 e^{0.1 t}-4 \\
e^{0.1 t} T & =100 e^{0.1 t}-4 t+c
\end{aligned}
$$

and

$$
T(t)=100-4 t e^{-0.1 t}+c e^{-0.1 t}
$$

Лow $T(0)=80$ so $100+c=80, c=-20$ and

$$
T(t)=100-4 t e^{-0.1 t}-20 e^{-0.1 t}=100-(4 t+20) e^{-0.1 t}
$$

The thinner curve verifies the prediction of cooling followed by warming toward 100°. The wider curve shows the temperature T_{m} of the liquid bath.

- $\quad \therefore=$:ifying $T_{m}=70$, the differential equation is $d T / d t=k(T-70)$. Assuming $T(0)=98.6$ and \cdots-rating variables we find $T(t)=70+28.9 e^{k t}$. If $t_{1}>0$ is the time of discovery of the body, then

$$
T\left(t_{1}\right)=70+28.6 e^{k t_{1}}=85 \quad \text { and } \quad T\left(t_{1}+1\right)=70+28.6 e^{k\left(t_{1}+1\right)}=80
$$

Exercises 3.1 Linear Models

Therefore $e^{k t_{1}}=15 / 28.6$ and $e^{k\left(t_{1}{ }_{2}^{2}-1\right)}=10 / 28.6$. This implics

$$
c^{k}=\frac{10}{28.6} e^{-k t_{1}}=\frac{10}{28.6} \cdot \frac{28.6}{15}=\frac{2}{3},
$$

so $k=\ln \frac{2}{3} \approx-0.405465108$. Therefore

$$
t_{1}=\frac{1}{k} \ln \frac{1.5}{28.6} \approx 1.5916 \approx 1.6
$$

Death took place about 1.6 hours prior to the discovery of the body.
20. Solving the differential equation $d T / d t=k S\left(T-T_{m}\right)$ subject to $T(0)=T_{0}$ gives

$$
T(t)=T_{m}+\left(T_{0}-T_{m}\right) e^{k S t}
$$

The temperatures of the coffee in cups A and B are, respectively,

$$
T_{A}(t)=70+80 e^{k S t} \quad \text { and } \quad T_{D}(t)=70+80 e^{2 k S t}
$$

Then $T_{A}(30)=70+80 e^{30 k S}=100$, which implies $e^{30 k S}=\frac{3}{8}$. Hence

$$
\begin{aligned}
T_{B}(30) & =70+80 e^{60 k S}=70+80\left(e^{30 k S}\right)^{2} \\
& =70+80\left(\frac{3}{8}\right)^{2}=70+80\left(\frac{9}{64}\right)=81.25^{\circ} \mathrm{F}
\end{aligned}
$$

21. From $d A / d t=4-A / 50$ we obtain $A=200+c e^{-t / 50}$. If $A(0)=30$ then $c=-170 ;$ $A=200-170 e^{-t / 50}$.
22. From $d A / d t=0-A / 50$ we obtain $A=c c^{-t / 50}$. If $A(0)=30$ then $c=30$ and $A=30 e^{-t / 50}$.
23. From $d A / d t=10-A / 100$ wo obtain $A=1000+c e^{-t / 100}$. If $A(0)=0$ then $c=-1000$: $A(t)=1000)-1000 e^{-t / 100}$.
24. From Problem 23 the number of pounds of salt in the tank at time t is $A(t)=1000-1000 e^{-t}$. The concentration at time t is $c(t)=A(t) / 500=2-2 e^{-t / 100}$. Thercfore $c(5)=2-2 e^{-1 / 2}$ $0.0975 \mathrm{lb} / \mathrm{gal}$ and $\lim _{t \rightarrow \infty} c(t)=2$. Solving $c(t)=1=2-2 e^{-t / 100}$ for t we obtain $t=100 \mathrm{ln}$: 69.3 min .
25. From

$$
\frac{d A}{d t}=10-\frac{10 A}{500-(10-5) t}=10-\frac{2 A}{100-t}
$$

we obtain $A=1000-10 t+c(100-t)^{2}$. If $A(0)=0$ then $c=-\frac{1}{10}$. The tank is empty in minutes.
26. With $c_{i n}(t)=2+\sin (t / 4) \mathrm{lb} /$ gal, the initial-value problem is

$$
\frac{d A}{d t}+\frac{1}{100} A=6+3 \sin \frac{t}{4}, \quad A(0)=50
$$

- Se differential equation is Iinear with integrating fact.or $e^{\int d t / 100}=e^{t / 100}$, so

$$
\begin{aligned}
\frac{d}{d t}\left[c^{t / 100} A(t)\right] & =\left(6+3 \sin \frac{t}{4}\right) e^{t / 100} \\
e^{t / 100} A(t) & =600 e^{t / 100}+\frac{150}{313} e^{t / 100} \sin \frac{t}{4}-\frac{3750}{313} e^{t / 100} \cos \frac{t}{4}+c
\end{aligned}
$$

$\because 1$

$$
A(t)=600+\frac{150}{313} \sin \frac{t}{4}-\frac{3750}{313} \cos \frac{t}{4}+c e^{-t / 100}
$$

--ting $t=0$ and $A=50$ we have $600-3750 / 313+c=50$ and $c=-168400 / 313$. Then

$$
A(t)=600+\frac{150}{313} \sin \frac{t}{4}-\frac{3750}{313} \cos \frac{t}{4}-\frac{168400}{313} e^{-t / 100}
$$

- graphs on $[0,300$ and $[0,600]$ below show the effect of the sine function in the input when :apared with the graph in Figure 3.1.4(a) in the text.

= $\overline{\mathrm{m}}$

$$
\frac{d A}{d t}=3-\frac{4 A}{100+(6-4) t}=3-\frac{2 A}{50+t}
$$

- \div. btain $A=50+t+c(50+t)^{-2}$. If $A(0)=10$ then $c=-100,000$ and $A(30)=64.38$ pounds.

2 \equiv Initially the tank contains 300 gallons of solution. Since brine is pumped in at a rate of $3 \mathrm{gal} / \mathrm{min}$ and the mixture is pumped out at a rate of $2 \mathrm{gal} / \mathrm{min}$, the net change is an increase of $1 \mathrm{gal} / \mathrm{min}$. Thus, in 100 minutes the tank will contain its capacity of 400 gallons.
-: The differential equation describing the amount of salt in the tank is $A^{\prime}(t)=6-2 A /(300+t)$ with solution

$$
A(t)=600+2 t-\left(4.95 \times 10^{7}\right)(300+t)^{-2} ; \quad 0 \leq t \leq 100
$$

as noted in the discussion following Example 5 in the text. Thus, the amount of salt in the rank when it overflows is

$$
A(100)=800-\left(4.95 \times 10^{7}\right)(400)^{-2}=490.625 \mathrm{lbs}
$$

When the tank is overflowing the amount of salt in the tank is governed by the differential

Note that you will laugh
The questions on Reduction from1-14/ y_1 is not needed :))))) since you can do them using undetermined method or cauchy-euler.

The book is doing reduction before undetermined and before Cauchy-Euler

Question $15 /$ Yes y1 is needed
Question 16/y_1 is not needed.
Anyway/ Practice using reduction
use $y^{\wedge} \backslash \backslash+q(x) y^{\wedge} \backslash+p(x) y=0 /$ given $y _1$
First find $L=e^{\wedge}\{$ integral $-q(x) d x\}$

$$
y _2=y _1 \text { (Integral (L / y_1^2) dx) }
$$

In Problems 1-16 the indicated function $y_{1}(x)$ is a solution of the given differential equation. Use reduction of order or formula (5), as instructed, to find a second solution $y_{2}(x)$.

1. $y^{\prime \prime}-4 y^{\prime}+4 y=0 ; \quad y_{1}=e^{2 x}$
2. $y^{\prime \prime}+2 y^{\prime}+y=0 ; \quad y_{1}=x e^{-x}$
3. $y^{\prime \prime}+16 y=0 ; \quad y_{1}=\cos 4 x$
4. $y^{\prime \prime}+9 y=0 ; \quad y_{1}=\sin 3 x$
5. $y^{\prime \prime}-y=0 ; \quad y_{1}=\cosh x$
6. $y^{\prime \prime}-25 y=0 ; \quad y_{1}=e^{5 x}$
7. $9 y^{\prime \prime}-12 y^{\prime}+4 y=0 ; \quad y_{1}=e^{2 x / 3}$
8. $6 y^{\prime \prime}+y^{\prime}-y=0 ; \quad y_{1}=e^{x / 3}$
9. $x^{2} y^{\prime \prime}-7 x y^{\prime}+16 y=0 ; \quad y_{1}=x^{4}$
10. $x^{2} y^{\prime \prime}+2 x y^{\prime}-6 y=0 ; \quad y_{1}=x^{2}$
11. $x y^{\prime \prime}+y^{\prime}=0 ; \quad y_{1}=\ln x$
12. $4 x^{2} y^{\prime \prime}+y=0 ; \quad y_{1}=x^{1 / 2} \ln x$
13. $x^{2} y^{\prime \prime}-x y^{\prime}+2 y=0 ; \quad y_{1}=x \sin (\ln x)$
14. $x^{2} y^{\prime \prime}-3 x y^{\prime}+5 y=0 ; \quad y_{1}=x^{2} \cos (\ln x)$
15. $\left(1-2 x-x^{2}\right) y^{\prime \prime}+2(1+x) y^{\prime}-2 y=0 ; \quad y_{1}=x+1$
16. $\left(1-x^{2}\right) y^{\prime \prime}+2 x y^{\prime}=0 ; \quad y_{1}=1$

MTH 205 Differential Equations Fall 2019, 1-6

$$
\text { Note } \frac{5}{(5+3)^{4}}=\frac{5(3-3}{(5+3)^{4}}=\frac{1}{(5+3)^{3}}-\frac{3}{(5+3)^{4}}
$$

$$
\text { (i) } \ell^{-1}\left\{\frac{s}{(s+3)^{4}}\right\} \quad \frac{A}{s+3}+\frac{B}{(s+3)^{2}}+\frac{C}{(s+3)^{3}}+\frac{D}{(s+3)^{4}}=\frac{s}{(s+3)^{4}}
$$

$$
A(S+3)^{3}+B(S+3)^{2}+C(S+3)+D=S
$$

$$
s=-1 \quad s=0
$$

$8 A+4 B+2 C=2$
$\begin{array}{ll}A=0 & C=1 \\ B=0\end{array} \quad l \begin{aligned} & 64 A+16 B+4 C-3=1 \\ & 64 A+16 B+4 C=4\end{aligned} \quad \frac{1}{(S+3)^{3}}-\frac{3}{(S+3)^{4}}$
(ii) $\ell^{-1}\left\{\frac{e^{-2 s}}{2+4 s+13}\right\}=11 e^{-2 s}{h^{(s)}}_{15}=\frac{1}{2} e^{-3 t} t^{2}-\frac{3}{6} e^{-3 t} t^{3}$

$f(t)=\int^{-1} \frac{1}{(s+2)^{2}+9}=\frac{1}{3} e^{-2 t} \sin (3 t)$

$$
=U_{2} \frac{1}{3} e^{-2(t-2)} \sin (3(t-2))
$$

iii) $\ell^{-1}\left\{\frac{8 s}{\left(s^{2}+16\right)^{2}}\right\}$

$$
\left|\sin x=\frac{1}{s^{2}+1}\right| \sin 4 x=\frac{4}{s^{2}+46}
$$

QUESTION 2. (8 points) Given $f(t)$ is periodic on the interval [$0, \infty$]. The first period of $f(t)$ is determined by $f(t)=2$, when $0 \leq t<4$. Use Laplace-Transformation and find $y(t)$, where $y^{\prime \prime}-4 y^{\prime}+3 y=f(t), y(0)=0, y^{\prime}(0)=0$.

$$
y(t)=\frac{2}{3}+\frac{1}{3} e^{3 t}-e^{t}
$$

$$
s^{2} 9-s^{2}-1
$$

$$
\frac{1}{5+1}-\frac{1}{s^{2}-9}=1
$$

$$
\begin{aligned}
& \text { QUESTION 3. (8 points) let } f(t)=\int_{0}^{t} \cos (u) d u \text {, where } 0 \leq t<\infty \text {. Use Laplace-Transformation and find } y(t) \text {, } \\
& \text { where } y^{\prime \prime}-9 y=f(t), y(0)=0, y^{\prime}(0)=0 \text {. }
\end{aligned}
$$

$$
\begin{aligned}
& s^{2} Y(s)-s y\left(0 T-y^{\prime}(0)-9 Y(s)=\frac{1}{s^{2}+1}\right. \\
& Y(s)\left(s^{2}-9\right)=\frac{1}{s^{2}+1} \\
& \begin{array}{l}
\frac{s^{2}+1}{s}=\frac{1}{s^{2}+1} \\
\begin{array}{l}
s^{2}-9-s^{2}-1 \quad Y(s)=\frac{1}{\left(s^{2}+1\right.} \\
\frac{1}{s^{2}+1}-\frac{1}{s^{2}-9}=\frac{1}{\left(s^{2}+1\right)\left(s^{2}-9\right)}
\end{array}=\frac{A}{\left(s^{2}+1\right)(s-3)(s+3)}+\frac{B}{s-3}+\frac{(s+1)}{s^{2}+1}=1 \\
\frac{(s-3)(s+3)}{\left(s^{2}+1\right)}
\end{array} \\
& \frac{1}{-10}\left[\frac{1}{s^{2}+1}-\frac{1}{s^{2}-9}\right] \int^{-1} y(s)=\frac{-1}{10}\left[\frac{1}{s^{2}+1}-\frac{1}{s^{2}-9}\right] \\
& y(t)=\frac{-1}{10} \sin t+\frac{1}{30} \sinh (3 t)
\end{aligned}
$$

$$
\begin{aligned}
& s^{2} Y(s)-s y(0)-y_{0}^{\prime}(0)-4 s Y(s)-4 y(0)+3 Y(s)=\frac{2-2 e^{-4 s}}{s\left(1-e^{-4 s}\right)} \text {, } \\
& Y(s)\left(s^{2}-4 s+3\right)=\frac{2-2 e^{-4 s}}{s\left(1-e^{-4 s}\right)} \\
& Y(s)=\frac{2-2 e^{-4 s}}{S\left(1-e^{-4 s}\right)(s-3)(s-1)}=\frac{2\left(1-e^{-4 s}\right)}{S\left(1 e^{-4 s}\right)(s-3)(3-1)} \\
& Y(s)=\frac{2}{s(s-3)(s-1)}=\frac{A}{s}+\frac{B}{s-3}+\frac{C}{s-1} \\
& A=2 / 3 \quad B=\frac{1}{3} \quad C=-1 \\
& \frac{1}{S-1} \\
& \begin{array}{c}
\int_{0}^{4} e^{-s t}(2) d t \\
f(t)=\mid 2\left[u_{0}-u_{4}\right] \\
=\left\{2 u_{0}-2 u_{4}\right.
\end{array} \\
& \frac{2 e^{8}}{5}-\frac{2 e^{-45}}{5} \\
& =\frac{\frac{2}{5}-\frac{2 e^{-45}}{5}}{1-e^{-45}}
\end{aligned}
$$

QUESTION 4. (8 points) Use Laplace-Transformation and find $y(t)$, where $y^{\prime \prime \prime}+2 y^{\prime}=U_{5}(t), y(0)=0, y^{\prime}(0)=$
$y^{\prime \prime}(0)=0$. $y^{\prime \prime}(0)=0$.

$$
\begin{gather*}
s^{3} y(s)-s^{2} y(0)-s y^{\prime}(0)-y^{\prime \prime}(0)+2 s y(s)-2 y\left(0^{\prime}\right)=\frac{e^{-5 s}}{s} \\
y(s)\left(s^{3}+2 s\right)=\frac{e^{-5 s}}{s} \\
\left.f_{0}^{-1} y(s)=\frac{e^{-5 s}}{s\left(s^{3}+2 s\right)}=\int_{0}^{-1} \frac{1 e^{-5 s}}{s^{2}\left(s^{2}+2\right)}\right) f(s) \\
f_{0}^{-1} \frac{1}{2}\left[\frac{1}{s^{2}}-\frac{1}{s^{2}+2}\right]=\frac{1}{2}\left[t-\frac{1}{\sqrt{2}} \sin \sqrt{2} t\right] \tag{1}\\
y(t)=\frac{u^{-5 s}}{s} u_{5}\left[(t-5)-\frac{1}{\sqrt{2}} \sin \sqrt{2}(t-5)\right]
\end{gather*}
$$

QUESTION 5. (8 points) Use Laplace-Transformation and find $y(t)$, where $y^{\prime \prime \prime}-6 y^{\prime \prime}+5 y^{\prime}=0, y(0)=0, y^{\prime}(0)=$
$0, y^{\prime \prime}(0)=20$.

$$
\begin{array}{rl}
0, y^{\prime \prime}(0)=20 . \\
s^{3} y(s)-s^{2} y(0)-s y_{0}(0)-y^{\prime \prime}(0)-6 s^{2} y(s)-6 s y(0)-6 y_{0}^{\prime}(0)+5 s y(s)-5 y(6) \\
0 & 0
\end{array}
$$

$$
s^{3} Y(s)-20-6 s^{2} Y(s)+5 s Y(s)=0
$$

$$
Y(s)\left(s^{3}-6 s^{2}+5 s\right)=20
$$

$$
Y(s)=\frac{20}{s\left(s^{2}-6 s+5\right)}=\frac{20}{s(s-5)(s-1)}=\frac{A}{s}+\frac{B}{s-5}+\frac{C}{s=1} s
$$

$$
\begin{aligned}
& Y(s)=\frac{4}{s}+\frac{1}{s-5}-\frac{5}{s-1} \\
& y(t)=4+e^{5 t}-5 e^{t}
\end{aligned}
$$

$$
\begin{align*}
& 4 \text { aden } \\
& \text { QUESTION 6. (8 points) Solve for } x(t), y(t) \text {, where } \\
& x(0)=0, x(0)=1 \\
& x^{\prime \prime}(t)+y(t)=0, x(0) \equiv x^{\prime}(0)=1 \\
& x^{\prime}(t)+y^{\prime}(t)=0, y(0)=1 \\
& s^{2} x(s)-s_{L}^{x}(0)-x_{0}^{\prime}(0)+Y(s)=0 \\
& s x(s)-x_{L_{0}}(0)+s y(s)-y(0)=0 \\
& s^{2} X(s)+Y(s)=1 \tag{1}\\
& \frac{1}{s}-\frac{1}{s+1}=\frac{1}{s(s+1)} \\
& S X(s)+S Y(s)=1 \\
& X(s)=\frac{\left|\begin{array}{l}
1 \\
1
\end{array} \times \begin{array}{l}
1 \\
s
\end{array}\right|}{\left|\begin{array}{ll}
s^{2} \\
s & X \\
s
\end{array}\right|}=\frac{s-1}{s^{3}-s}=\frac{s-1}{s\left(s^{2}-1\right)} \\
& x^{-1} X(s)=\left[\frac{1}{s}-\frac{1}{s+1}\right] \\
& X(s)=\frac{s-t}{1-e^{-t}}=\frac{1}{s(s+H(s+1)} \\
& \begin{aligned}
& \left.Y(s)=\frac{\left|\begin{array}{c}
s^{2} \\
s
\end{array} x_{1}^{1}\right|}{\left\lvert\, \begin{array}{l}
s^{2} \\
s
\end{array} x_{s}^{1}\right.} \right\rvert\,=\frac{s^{2}-s}{s^{3}-s}=\frac{s(s-1)}{s\left(s^{2}-1\right)}=\frac{s-1}{(s-1(s+1)}=\frac{1}{s+1} \\
& Y(s)=\frac{1}{s+1} \\
& y(t)=e^{-t}
\end{aligned}
\end{align*}
$$

QUESTION 7. (4 points) Find the general solution of $y(t)$, where $y^{\prime \prime}-6 y^{\prime}+18 y=0$

$$
\begin{array}{cc}
-\frac{6}{2}=3 m^{2}-6 m+18=0 \\
(m-3)^{2}+9=0 \\
(m-3)^{2}=-9
\end{array} \quad / \begin{gathered}
m-3= \pm 3 i \\
m=3-3 i \\
y_{h}=e^{3 t}\left[c_{1} \cos (3 t)+c_{2} \sin (3 t)\right]
\end{gathered}
$$

QUESTION 8. (8 points) Find the general solution of $y(t)$, where $y^{\prime \prime \prime}+9 y^{\prime}=\sin (t)+4$.

$$
\begin{aligned}
& y_{R} m\left(m^{2}+9\right)=0 \\
& m=0 \quad m= \pm 3 i \\
& y_{h}=c_{1}+c_{2} \cos (3 t)+c_{3} \sin (3 t) \\
& y_{p}=a \sin (t)+b \cos (t)+A t \\
& y_{p}^{\prime}=a \cos (t)-b \sin (t)+A \\
& y_{p}^{\prime \prime}=-a \sin (t)-b \cos (t) \\
& y_{p}^{\prime \prime \prime}=-a \cos (t)+b \sin (t) \\
& y_{p}+y_{p} \\
& -a \cos (t)+b \sin (t)+9 a \cos (t)-9 b \sin (t)+9 A=\sin (t)+4 \\
& (b-9 b) \sin (t)+(9 a-a) \cos (t)+9 A=\sin (t)+4 \\
& -8 b=1 \quad g a=0 \\
& b-1
\end{aligned}
$$

$$
\begin{aligned}
& y_{p}=-\frac{1}{8} \cos t+\frac{4}{9} t \\
& y_{g}=c_{1}+c_{2} \cos (3 t)+c_{3} \sin (3 t)-\frac{1}{8} \cos (t)+\frac{4}{9} t
\end{aligned}
$$

QUESTION 9. (8 points) Find the general solution of $y(t)$, where $y^{\prime \prime \prime}+5 y^{\prime \prime}=\underset{\underline{v}}{\boldsymbol{t}}$,

$$
\begin{aligned}
& m^{3}+5 m^{2}=0 \\
& m^{2}(m+5)=0 \\
& m=0 \quad m=-5 \\
& 2 \text { times } \quad y_{h}=c_{1}+c_{2} t+c_{3} e^{-5 t} \\
& 6 a_{3}+5\left(6 a_{3} t+2 a_{2}\right)=t \\
& 6 a_{3}+30 a_{3} t+10 a_{2}=t \\
& 30 a_{3}=1 \quad 6 a_{3}+10 a_{2}=0 \\
& a_{3}=\frac{1}{30} \quad \frac{1}{5}+10 a_{2}=0 \\
& 10 a_{2}=-\frac{1}{5} \\
& a_{2}=-\frac{1}{50}
\end{aligned}
$$

$$
y_{p}=\begin{array}{r}
a_{3} t^{3}+a_{2} t^{2}+ \\
\left.a_{1} t+a_{0}\right)
\end{array}
$$

$$
y_{p}^{\prime}=3 a_{3} t^{2}+2 a_{2} t
$$

$$
y_{p}^{\prime \prime}=6 a_{3} t+2 a_{2}
$$

$$
y_{p}^{\prime \prime \prime}=6 a_{3}
$$

$$
y_{p}=\frac{1}{30} t^{3}-\frac{1}{50} t^{2}
$$

$$
y_{g}=c_{1}+c_{2} t+c_{3} e^{-5 t}+\frac{1}{30} t^{3}-\frac{1}{50} t^{2}
$$

Ayman Badawi, Department of Mathemates*\& Statistics, American University of Shariah, P.O. Box 26666, Shariah, United Arab Emirates. Email: abadawi@aus.edu, urv.ayman-badaui.com

$$
y_{0}=\left(e^{-3 t}+\left(\frac{1}{5} t-\frac{1}{25}\right) e^{2 t}\right.
$$

$$
\begin{aligned}
& \text { QUESTION 10. (8 points) Find the general solution of } y(t) \text {, where } y^{\prime}+3 y=t e^{2 t} \\
& m+3=0 \\
& m=-3 \\
& y_{h}=\overline{c_{1}} e^{-3 t} \\
& {\left[2 a_{1} t+3 a_{1} t\right] e^{2 t}+\left[a_{1}+2 a_{0}+3 a_{0}\right] e^{2 t}=t e^{2 t}} \\
& y_{p}=\left(a_{1} t+a_{0}\right) e^{2 t} \\
& {\left[5 a_{1} \theta e^{2 t}+\left[a_{1}+5 a_{0}\right] e^{2 t}=t e^{2 t}\right.} \\
& 5 a_{1}=1 \\
& a_{1}+5 a_{0}=0 \\
& a_{1}=\frac{1}{5} \\
& \text { Faculty information } \\
& \frac{a_{1} t e^{2 t}}{u v^{\prime}+v u^{\prime}} \\
& 2 a_{1} t e^{2 t}+e^{2 t}\left(a_{1}\right)
\end{aligned}
$$

Exam I, MTH 205, Fall 2014

QUESTION 1. (6 points) Find the largest interval around x so that the LDE: $\frac{\sqrt{\sqrt{x-4}}}{\sqrt{12-2}} y^{(3)}+$ $\frac{x-1}{x-7} y^{\prime}+3 y \stackrel{\text { R }}{=} x^{2}+13, y^{(2)}(5)=y^{\prime}(5)=7$, and $y(5)=-6$ has a unique solution.

$$
\begin{array}{cc}
\frac{\sqrt{x-4}}{\sqrt{12-x}} & 12-x>0 \\
x-7 & 12>x \\
(-\infty, 7) \cup(7, \infty) \\
\mathbb{R} & x<12 \\
&
\end{array}
$$

$$
(-\infty, 12)
$$

$$
(-\infty, 4) \cup(4,12)
$$

$$
I=(4,7)
$$

QUESTION 2. (10 points) Solve for $x(t), y(t)$

$$
\begin{aligned}
& x^{\prime}(t)-y(t)=2 \\
& x(t)+y^{\prime}(t)=2, \text { whee } x(0)=2 y(0)=-1, x^{\prime}(0)=1, y^{\prime}(0)=0
\end{aligned}
$$

$$
\int_{0}^{x} 2 \sin u d u
$$

$$
-2 \cos x+2
$$

$$
s x(s)-x(0)-y(s)=\frac{2}{s}
$$

$$
s x(s)-2-Y(s)=\frac{2}{5}
$$

$$
s x(s)-y(s)=\frac{2+25}{5}
$$

$$
x(s)+s y(5)+1=\frac{2}{5}
$$

$$
X(S)+s y(S)=\frac{2-5}{S}
$$

$$
5 \times(5)-\frac{2+25}{s}=4(5)
$$

$$
x(s)+s^{2} x(s)-2-2 s=\frac{2-s}{5}
$$

$$
x(5)\left(1+5^{2}\right)=\frac{2-5}{5}+2+25
$$

$$
=\frac{2-s+2 s+2 s^{2}}{s}
$$

$$
x(s)=\frac{2 s^{2}+s+2}{s\left(1+s^{2}\right)}
$$

$$
=\frac{2 s}{\left(s^{2}+1\right)}+\frac{1}{\left(s^{2}+1\right)}+\frac{s\left(1+s^{2}\right)}{5\left(s^{2}+1\right)}
$$

$$
(t)=2 \cos t+\sin t-12 * \sin t
$$

$$
=2 \cos t+\sin t-2 \cos t+2
$$

QUESTION 3．（ 30 points，each is 6 points）

（i）Find $\ell^{-1}\left\{\frac{s^{3}+24}{s^{2}}\right\} \quad \ell^{-1}\left\{\frac{1}{s^{2}}+\frac{24}{s 5}\right\}$

$$
=x+\frac{24}{4} x^{4}=\frac{x+x^{4}}{}
$$

（ii）Find $l^{-1}\left\{\frac{e^{-2 x}}{(s+4)^{2+4}}\right\}=\ell^{-1}\left\{e^{-2 s}\left(\frac{1}{(s+4)^{2}+4}\right)^{\prime}=\frac{1}{2} u(x-2) \sin 2(x-2) e^{-4}\right.$
$f(x+2)=\frac{1}{2} \ell^{-1}\left\{\frac{1}{(5+4)^{2}+4}\right\}=\frac{1}{2} \sin 2 x e^{-4 x}$
$f(x)=\frac{1}{2} \sin 2(x-2) e^{-4(x-2)}$
（iii）Find $\left(\left\{u(x-1) f^{(x-1)} \sin (x-1)\right\}=e^{-5} \ell\left\{e^{x} \sin x\right\}=\right.$

$$
=e^{-s} \frac{1}{(s-1)^{2}+1}
$$

（iv）Find $\ell^{-1}\left\{\frac{s+2}{s^{2}+4 s+5}\right\}$

$$
\begin{aligned}
& \left.\mathbb{t}^{-1} \frac{s+2}{\left(s^{2}+4 s+4\right)-4+5}\right) \\
& =e^{-2 x} \cos x
\end{aligned}
$$ $\int^{-\frac{1}{t}(s+2}\left((s+2)^{2}+1\right)$

$$
e^{2 x-2 r} e r
$$

（v）Find $\ell\left\{\int_{0}^{x} e^{2 x-r} \sin (r) d r\right\}=\ell\left\{\int_{0}^{x} e^{2(x-r)\left(\sin r e^{r}\right) d r}\right.$

$$
\begin{aligned}
& =l\left(e^{2 x} *(\sin x) e^{x}\right) 1 \\
& =\left(\frac{1}{s-2}\right)\left(\frac{1}{(s-1)^{2}+1}\right)
\end{aligned}
$$

QUESTION 4. (54 points, each is 9 points) Use any method you want to solve for $y(x)$:
(i) $y^{(2)}-2 y^{\prime}+y=u(x-1) e^{(x-1)}$ [Here you need to find y_{g}]. $y_{h}=c_{1} e^{x}+c_{2} x e^{x}$

$$
\begin{array}{ll}
y_{n} & m^{2}-2 m+1=0
\end{array} \quad m=1
$$

yo
$\underline{y_{n}}$

$$
y_{h}=C_{1}+C_{2} x+C_{3} x^{2}+C_{4} x^{3}+
$$

$$
m^{6}+5 m^{5}+4 m^{4}=0
$$

$$
c_{5} e^{-x}+c_{6} e^{-4 x}
$$

$$
m^{4}\left(m^{2}+5 m+4\right)=0
$$

$$
\begin{aligned}
& m=0 \\
& m=0 \\
& m=0 \\
& m=0 \\
& m=-1 \\
& m=-4
\end{aligned}
$$

$$
V(s)\left[s^{4}(s+1)(s+4)\right]=\frac{30}{s+4}
$$

$$
Y(s)=\frac{30}{(s+4)^{2}(s+1) s^{4}}
$$

$$
\begin{gathered}
=\frac{a}{(s+4)}+\frac{b}{(s+4)^{2}}+\frac{c}{(s+1)}+\frac{d}{5}+\frac{e}{s^{2}}+\frac{9}{s^{3}} \\
+\frac{n}{s^{n}}
\end{gathered}
$$

$$
\begin{aligned}
& y g=c_{1}+c_{2} x+ \\
& c_{3} x^{2}+c_{4} x^{3}+ \\
& c_{5} e^{-x}+c_{6} e^{-4 x} \\
& \frac{-5}{128} \times e^{-4 x}
\end{aligned}
$$

$$
b=-\frac{5}{128}
$$

$$
\begin{aligned}
y p & \left.=e^{-1}-\frac{5}{128} \frac{1}{(s+4)^{2}}\right) \\
& =-\frac{5}{128} \times e^{-4 x}
\end{aligned}
$$

$$
\begin{aligned}
& Y(s)\left[(s-1)^{2}\right]=e^{-s} \ell\left\{e^{x}\right\}=\frac{e^{-s}}{(s-1)} \\
& Y(s)=\frac{e^{-s}}{(s-1)^{3}} \left\lvert\, y p=e^{-1}\left(e^{-s}\left(\frac{1}{(s-1)^{3}}\right)\right)\right. \\
& \left.\left.f(x+1)=\frac{1 e^{-1}}{2!} \right\rvert\, \frac{21}{(s-1)^{3}}\right]^{2}=\frac{1}{2} x^{2} e^{+x} \sqrt[y g]{2}=c_{1} e^{x}+c_{2} x e^{x} \\
& f(x)=\frac{1}{2}(x-1)^{2} e^{x-1} \\
& \text { (ii) } y^{(6)}+5 y^{(5)}+4 y^{(4)}=30 e^{-4 x} \text { [here you need to find } y_{g} \text {]. }
\end{aligned}
$$

$$
\begin{aligned}
& \text { (iii) } \left.y^{(2)}+\int_{0}^{x}\left(y(r) e^{x-r} d r=\int_{0}^{x}(x-r) \theta^{\prime} d r, y(0)=0\right) y^{\prime}(0)=1\right) \\
& s^{2} Y(s)-s y(5)-y^{\prime}(\sigma)^{1}+Y(s)\left(\frac{1}{s-1}\right)=\left(\frac{1}{s^{2}}\right)\left(\frac{1}{s-1}\right) \\
& Y(s)\left(\frac{1}{s-1}+s^{2}\right)-1=\frac{1}{s^{2}(s-1)} \\
& Y(s)\left(\frac{1+s^{2}(s-1)}{(s-1)}\right)=\frac{1+s^{2}(s-1)}{s^{2}(s-1)} \\
& Y(s)= \\
& \left.s^{2}\left(1+s^{2}(y-1)\right)=\frac{1}{s^{2}}\right) \\
& \left.y(x)=l-1) \frac{1}{s^{2}}\right)=
\end{aligned}
$$

(iv) $y^{(2)}+2 y^{\prime}+2 y=x e^{-x}, y(0)=0$ and $y^{\prime}(0)=1$. [Hint: note that by completing the square method we have $s^{2}+b s+c=(s+b / 2)^{2}+c-b^{2} / 4$ and $\left.\frac{e}{f}+d=\frac{c+f d}{f}\right]$

$$
\begin{gathered}
s^{2} y(s)-s y(0)-y^{\prime}(0)+2 s y(s)-2 y(0)+2 Y(s)=\frac{1}{(s+1)^{2}} \\
Y(s)\left[s^{2}+2 s+2\right]=\frac{1+(s+1)^{2}}{(s+1)^{2}} \\
Y(s)\left[s^{2}+2 s+1-1+2\right]=\frac{1+(s+1)^{2}}{(s+1)^{2}} \\
Y(s)\left[(s+1)^{2}+1\right]=\frac{1+1)^{2}}{(s+1)^{2}}=l^{-1}=\frac{1}{(s+1)^{2}}=e^{-x} \\
y(s)=1
\end{gathered}
$$

(v) $y^{(3)}-4 y^{(2)}+5 y^{\prime}=10$ [here you need to find y_{g}]

In $\quad m^{3}-4 m^{2}+5 m=0$

YD $Y(s)\left[s\left(s^{2}-4 s+5\right)\right]=\frac{10}{5}$
$Y(1)=\frac{a}{s}+\frac{b}{s^{2}}+\frac{c}{\left(s^{2}-4(5+5)\right.}$

$$
b=2
$$

$y(x)=2 x$
 $+2 x$
(vi) Let $k(x)=4 x e^{3 x}$. Consider the LDE: $y^{(2)}+a y^{\prime}+b y=k(x)$. Find a, b so that $y(x)=k(x)=4 x e^{3 x}$ is the unique solution to the given LDE. [Hint: If you want to use Laplace, then since $y(x)$ is given, you should be able to find $y(0)$ and $y^{\prime}(0)$, anyway it is clear that $y(0)=0, y^{\prime}(0)=4 \mathrm{~J}$.

Faculty information

Ayman Badawi, Department of Mathematics \& Statistics, American University of Shariah, P.O. Box 26666, Sharjah, United Arab Emirates.
E-mail: abadawi@aus.edu, www.ayman-badawi.com

Exam ONE, MTH 205, Summer 2010
Ayman Badawi

QUESTION 1. (20 points) Let

$$
f(x)=\left\{\begin{array}{ccc}
1 & \text { if } & 0 \leq x<5 \\
-1 & \text { if } \\
0 & \text { if } & 7 \leq x<x \\
0 & \text { cellent! }
\end{array} \quad E x\right.
$$

a) Write $f(x)$ in terms of unit step functions.

$$
\begin{aligned}
f(x) & =1[u(x-0)-u(x-5)]-1[u(x-5)-u(x-7)]+0 \\
& =1-u(x-5)-u(x-5)+u(x-1) \\
& =1-2 u(x-5)+u(x-7)
\end{aligned}
$$

b) Solve the D.E: $y^{(2)}-2 y^{\prime}-3 y=f(x), \quad(0)=y^{\prime}(0)-0$

$$
\begin{aligned}
& \text { (0) } l\left\{y^{(2)}\right\}-2 l\left\{y^{\prime}\right\}-3 l\{y\}=l\{1\}-2 l\{u(x-5)\}+l\{u \\
& s^{2} y(s)-2 s y(s)-3 y(s)=\frac{1}{s}-\frac{2 e^{-55}}{5}+\frac{e^{-75}}{5} \\
& y(s)\left(s^{2}-2 s-3\right)=\frac{1}{s}-\frac{2 e^{-5 s}}{5}+\frac{e^{-7 s}}{5} \\
& y(s)=\frac{1}{s(s-3)(s+1)}-\frac{2 e^{r-5 s}}{s(s-3)(s+1)}+\frac{e^{-7 s}}{s(s-3)(s+1)}
\end{aligned}
$$

$$
\begin{aligned}
& =-\frac{1}{3}+\frac{1}{12} e^{3 x}+\frac{1}{4} e^{-x}-2[u(x-5)(\\
& \left.\left.-\frac{1}{3}+\frac{1}{12} e^{3(x-5)}+\frac{1}{4} e^{-(x-5)}\right]_{1}\right]=
\end{aligned}
$$

$$
\begin{aligned}
& -\frac{1}{3}+\frac{1}{12} e^{3 x}+\frac{1 e^{-x}}{4}-2 u(x-5)\left(-\frac{1}{3}+\frac{1}{12} e^{3(x-5)}+u(x-7)\left(-\frac{1}{3}+\frac{1}{12} e^{3(x-7)}+\frac{1}{4} e^{-(x-7)}\right)\right. \\
& \left.+\frac{1}{4} e^{-(x-5)}\right)
\end{aligned}
$$

QUESTION 2. (20 points) Given $f(x)$ is periodic with period $T=4$ and defined on $(0, \infty)$. Also given that the first period of $f(x)$ is determined by

$$
\left\{\begin{array}{lll}
1 & \text { if } \quad 0 \leq x<2 \\
0 & \text { if } & 2 \leq x<4
\end{array}\right.
$$

a) Find $\ell\{f(x)\}$. [hint: you must simplify your answer, hence note that $\left.1-e^{-4 s}=\left(1-e^{-2 s}\right)\left(1+e^{-2 s}\right)\right]$.

$$
\begin{aligned}
\ell\{f(x)\} & =\frac{1}{\left(1-e^{-2 s}\right)\left(1+e^{-2 s}\right)}\left(\int_{0}^{2} e^{-s x} d x+0\right. \\
& =\frac{1}{\left(1-e^{-25}\right)\left(1+e^{-25}\right)}\left(\left.\frac{e^{-5 x}}{-5}\right|_{0} ^{2}\right) \\
& =\frac{1}{\left(1-e^{-5 s}\right)\left(1+e^{-25}\right)}\left(\frac{\left.11-e^{-2 s}\right)^{5}}{s}\right)=\frac{1}{s\left(1+e^{-2 s}\right)}
\end{aligned}
$$

b) Find $y(x)$ such that $\int_{0}^{x} f(r) y(x-r) d r-\int_{0}^{x} \sin (r) d r=\int_{0}^{x} r e^{r} d r$

$$
\begin{aligned}
& \left.\left.1\left\{\int_{0}^{x} f(r) y(x-r) d r\right\}-L \int_{0}^{x} \sin (r) d r\right\}=d \int_{0}^{x} r e^{r} d r\right\} \\
& \operatorname{L}\{f(x) * y(x)\}-1\{1 * \sin (x)\}=1\left\{1 \times x e^{x}\right\} \\
& \frac{1}{s\left(1+e^{-25}\right)} y(s)-\frac{1}{s\left(s^{2}+1\right)}=\frac{1}{s}\left(\frac{1}{(s-1)^{2}}\right) \\
& \begin{array}{l}
y(s)=\left(\frac{1}{5(s-1)^{2}}+\frac{1}{4\left(s^{2}+1\right)}\right)\left(1+e^{-2 s}\right) \\
0_{0}^{0} y(s)=\frac{1}{(s-1)^{2}}+\frac{e^{-2 \leq}}{(s-1)^{2}}+\frac{1}{s^{2}+1}+\frac{e^{-2 s}}{\left(s^{2}+1\right)}
\end{array} \\
& y(y)=L^{-1}\left\{\frac{1}{(s-1)^{2}}\right\}+1\left\{\frac{e^{-2 s}}{(s-1)^{2}}\right\}+L^{-1}\left\{\frac{1}{s^{2}+1}\right\}^{1}+l\left(\frac{e^{-2 s}}{\left(s^{2}+1\right)}\right. \\
& =x e^{x}+(x-2) u(x-2) e^{(x-2)}+\sin x+u(x-2) \sin (x-x
\end{aligned}
$$

QUESTION 3. (18 points)

$$
\begin{aligned}
& \text { (i) fid } \ell\left\{3^{2 x}+\cos (4 x)-e^{x+5}\right\} \\
& =l\left\{3^{2 x}\right\}+\ell\{\cos (4 x)\}-l\left\{e^{x} \cdot e^{5}\right\} \\
& =l\left\{\boldsymbol{e}^{2 \ln 3) x}\right\}+\ell\{\cos (4 x)\}-l\left\{\left\{e^{x}\right\}\right. \\
& =\frac{1}{5-2 \ln 3}+\frac{5}{s^{2}+16}-\frac{e^{5}}{5-1}
\end{aligned}
$$

$$
\text { (ii) Find } \ell\left\{x e^{\frac{B x}{3 x} \sin (x)}\right\}=\left(-\frac{1}{1}\right)^{\frac{1}{2}} \quad F^{(x)}(s)
$$

$$
F(s)=\frac{1}{(s-3)^{2}+1}
$$

$$
=-\left(\frac{-2(s-3)}{\left((s-3)^{2}+1\right)^{2}}\right)
$$

$$
=\frac{2(s-3)}{\left((s-3)^{2}+1\right)^{2}}
$$

$$
\begin{aligned}
F^{\prime}(s) & =\frac{-(2(s-3))}{\left((s-3)^{2}+1\right.}
\end{aligned}
$$

(iii) Find $\ell\left\{\int_{0}^{x} e^{(x+3 r)} r^{3} d r\right\}$

$$
\begin{aligned}
\ell\left\{\int_{0}^{x} e^{(x+3 r)} r^{3} d r\right\} & =\ell\left\{\int_{0}^{x} e^{(x+3 r)} e^{(x-r)} \cdot e^{4 r} r^{3} d r\right\} \\
& =\ell\left\{e^{4} e^{4} e^{x} x^{3}\right\} \\
& =\left(\frac{1}{5-1}\right)\left(\frac{6}{(5-4)^{4}}\right) \\
& =\frac{6}{(5-1)^{4}(x-4)^{4}}
\end{aligned}
$$

$$
{ }^{\text {(i) find }} \ell^{-1}\left\{\frac{1}{s(s-4)^{2}}\right\}=\ell^{-1}\left\{\frac{1}{5} \cdot \frac{1}{(5-4)^{2}}\right\}
$$

$$
=\frac{x e^{4 x}}{4}-\frac{e^{4 x}}{16}+\frac{1}{16}
$$

(ii) find $\ell^{-1}\left\{\frac{s e^{-2 s}}{(s-5)^{2}}\right\}=U(x-2) f(x-2)$

$$
\begin{aligned}
& l^{-1}\left(\frac{(5-5)}{(5-5)^{2}}\right)+5 l^{-1}\left\{\frac{1}{(5-5)^{2}}\right\}=u(x-2) f(x-2) \\
& =e^{(i)}+5 x+5 e^{5 x} x
\end{aligned}
$$

(iii) find $\ell^{-1}\left\{\frac{s+4}{(s-1)^{2}+1}\right\}$

$$
\begin{aligned}
& l^{-1}\left[\frac{(s-1)}{(s-1)^{2}+1}\right]+5 l^{-1}\left\{\frac{1}{(s-1)^{2}+1}\right] \\
& =e^{x} \cos (x)+5 e^{x} \sin (x)
\end{aligned}
$$

QUESTION 5. (10 points) Find the largest interval around $x=4$ such that

$$
(\sqrt{8-x}) y^{(2)}+\frac{3}{x+5} y^{\prime}+y=\frac{5}{x-3}, y(4)=0, y^{\prime}(4)=-1
$$

has a unique solution.

$$
\begin{aligned}
a_{2}(x) & =\sqrt{8-x} \neq 0 \text { continuous at }(-\infty, 8)) \\
a_{1}(x) & =\frac{3}{x+5} \text { is continuous it }(-\infty,-5) \cup(-5, \infty) \\
a_{0}(x) & =1 \\
K(x) & =\frac{5}{x-3} \text { " " " }(-\infty, \infty) \\
& \Rightarrow I \text { is }(3,8) \cup(3), \infty)
\end{aligned}
$$

QUESTION 6. (14 points) Solve the D.E: $y^{(2)}-6 y^{\prime}+9 y=x^{3} e^{3 x}, y(0)=$

$$
\begin{aligned}
& y^{\prime}(0)=0 . \\
& l\left\{y^{(2)}\right\}-6 l\left\{y^{\prime}\right\}+4 l\{y\}=l\left\{x^{3} e^{3 x}\right\} \\
& s^{y} y(s)-s y(e)-y^{\prime}(0)-6(s y(s)-y(0))+4 y(s)=\frac{6}{(s-3)} \\
& \left(s^{2}-6 s+4\right)(y(s))=\frac{6}{(s-3)^{4}} \\
& (s-3)(s-3) y(s)=\frac{6}{(s-3)^{4}} \\
& y(s)=\frac{6}{(s-3)^{6}} \\
& y(x)=\frac{6}{5!} l^{-1}\left\{\frac{5!}{(s-3)^{6}}\right\}=\frac{6}{5!} e^{3 x} x^{5}
\end{aligned}
$$

Faculty information
Ayman Badawi, Department of Mathematics \& Statistics, American University of Shariah, P.O. Box 26666, Sharjah, United Arab
Emirates.
Email: abadawi@aus du, www ayman-badawi.com

Questions with Solutions, Review Exam II
roan= $\frac{60 \text { (Excellent) Amman Bastard }}{60}$ (consider Math Major (double or minorajor)
QUESTION 1. (6 points) (1) Given $y^{\prime}=y^{2}\left(4-y^{2}\right)$. Find the critical points (values). Sketch all possible solution curves in the region. Classify each critical point $y=0 \quad \sqrt{4}=y^{2} \quad y= \pm 2$

(2) If the point $(1,1.5)$ lies on the curve, then sketch the solution curve.
semi stable

QUESTION 2. (6 points) Solve the diff. equation $y^{\prime}=\frac{e^{2 x-y}}{y}$

$$
\begin{aligned}
& \frac{d y}{d x}=\frac{e^{2 x-y}}{y} e^{2 x} \cdot e^{-y} \\
& \frac{d y}{d x}=\frac{e^{2 x}}{y e^{y}} \\
& \int_{=}^{y e^{y} d y=\int e^{2 x} d x} \\
& y e^{y}-e^{y}=\frac{e^{2 x}}{2}+C
\end{aligned}
$$

$$
\begin{aligned}
& \int y e^{y}=y e^{y}-e^{y} \\
& y \\
& 1
\end{aligned} \int_{1} e^{y}=e^{y}
$$

QUESTION 3. (6 points) Solve the diff. equation $y^{\prime}=\frac{-2 x y}{1-x^{2}}$, where $x \geq 4$

$$
\begin{aligned}
y^{\prime} & =\frac{-2 x y}{1-x^{2}} \\
y^{\prime} \frac{d y}{d x} & =\frac{-2 x y}{1-x^{2}} \\
\frac{d y}{d x} & =\frac{-2 x}{1-x^{2}} \cdot y \\
\int \frac{1}{y} d y & =\int \frac{-2 x}{1-x^{2}} d x \\
\ln |y| & =\ln \left|1-x^{2}\right|+C
\end{aligned}
$$

QUESTION 4. (6 points) Solve the diff. equation $y^{\prime}=\frac{y \cos (x y)-e^{2 y}}{2 x e^{2 y}-x \cos (x y)+2 y}$ [Hint: assume that it is exact, no need to check $F_{x y}=F_{y x}$]

$$
y^{\prime}=\frac{1-f_{x}}{2 x e^{2 y}-x \cos (x y)+2 y}
$$

$\left[2 x e^{2 y}-x \cos (x y)+2 y\right]$ Fy
$\int F_{x} d x=\iint \cos (y) d y+[-y \cos (x y)+e=] d x=0$
$\int F_{x} d x=\int-y \cos (x y)+e^{2 y} d x=\frac{-y \sin }{y}(x y)+e^{2 y} x+c(y)$

$$
\begin{aligned}
& F_{y}=-x \cos (x y)+2 x e^{2 y}+C^{\prime}(y)=2 x e^{2 y}-x \cos (x y)+2 y \\
& \int C^{\prime}(y)=2 y d y \quad C(y)=y^{2}+c \\
& -\sin (x y)+x e^{2 y}+y^{2}+c=0
\end{aligned}
$$ placed in a room that has temperature 70 F . Three minutes later its temperature is 200 F . Find the temperature of the cake at any time t. How long will it take for the cake to reach temperature 74 F ?

$$
\begin{aligned}
& T(0)=300 \quad T(3)=200 \\
& T_{m}=70^{\circ} \\
& \frac{d T}{d t}=T^{\prime}=\alpha\left(T-T_{m}\right) \\
& T^{\prime}=\alpha(T-70) \\
& T=\frac{\int e^{-\alpha t} \cdot-70 \alpha d t}{e^{-\alpha t}}=\frac{\frac{\gamma 0 \alpha}{-\alpha} e^{-\alpha t}+c}{e^{-\alpha t}}=70+c e^{\alpha t} \\
& T=70+c e^{\alpha t} \\
& 300=70+c e^{\circ} \\
& C=230 \\
& T=70+230 e^{\alpha t} \\
& 200=70+230 e^{3 \alpha} \\
& \begin{aligned}
& \alpha= \frac{\ln \left(\frac{13}{23}\right)}{3^{3 \alpha}}=\frac{200-70}{230} \alpha=-0.190 \\
& \text { QUESTION 6. (6 points) Given (7x+2) y } y^{\prime \prime}-7 y^{\prime}+(-9-7 x) y \\
& \frac{(7 x+2)}{7 x+2} y^{\prime \prime} \frac{-7 y^{\prime}}{7 x+2}+\frac{(-9-7 x)}{7 x+2} y=0
\end{aligned} \\
& y^{\prime \prime}-\frac{7}{7 x+2} y^{\prime}+\frac{(-9-7 x)}{7 x+2} y=0 \\
& \begin{array}{l}
T=70+230 e^{-0.190 t} \\
74=70+230 e^{-0.190 t}
\end{array} \\
& e^{-0.190 t}=\frac{74-70}{230} \\
& t=\frac{\ln \left(\frac{2^{230}}{115}\right)}{-0.190}=21.3 \mathrm{~min} \\
& \text { QUESTION 6. (6 points) Given }(7 x+2) y^{\prime \prime}-7 y^{\prime}+(-9-7 x) y=0 \text {. Given } y_{1}=e^{-x} \text { is a solution. Find } y_{2} \text {, then find } \\
& \begin{aligned}
y_{2} & =y_{1} \int \frac{e^{\int-Q_{x} d x}}{y_{1}^{2}} d x \\
y_{2} & =e^{-x}\left[\frac{1}{2}(7 x+2) e^{2 x}-\frac{7}{4} e^{2 x} \int \frac{7 x+2}{e^{-2 x}} d x\right.
\end{aligned} \\
& \begin{aligned}
y_{2} & =y_{1} \int \frac{e^{\int-Q_{x} d x}}{y_{1}^{2}} d x \\
y_{2} & =e^{-x}\left[\frac{1}{2}(7 x+2) e^{2 x}-\frac{7}{4} e^{2 x}\right] \frac{7 x+2}{e^{-2 x}} d x
\end{aligned} \\
& y_{2}=\frac{1}{2}(7 x+2) e^{x}-\frac{7}{4} e^{x} \\
& y_{g}=C_{1} e^{-x}+C_{2}\left[\frac{1}{2}(7 x+2) e^{x}-\frac{7}{4} e^{x}\right] \\
& y_{1}=e^{-x} \\
& e^{\int \frac{7}{7 x+2} d x}=e^{\ln (7 x+2)} \\
& =7 x+2 \\
& \int(7 x+2) e^{2 x}
\end{aligned}
$$

$$
\begin{aligned}
& \frac{1}{2}(7 x+2) e^{2 x}-\frac{7}{4} e^{2 x}
\end{aligned}
$$

$$
x^{2} y^{\prime \prime}-3 x y^{\prime}+3 y=2 x^{4} e^{x^{\prime}} \quad y=x^{m} y^{\prime}=m x^{m-1} \quad y^{\prime \prime}=m(m-1) x^{m-2}
$$

$$
\left.\left(x^{2 /}(m(m-1)) x^{m-2}\right)\right)-\left(3 x\left(m x^{m+1}\right)\right)+3\left(x^{m}\right)=0
$$

$$
x^{m}\left[m^{2}-m-3 m+3\right]=0
$$

$$
m^{2}-4 m+3=0
$$

$$
m=3 \quad m=1
$$

$$
y_{p}=v_{1} y_{1}+v_{2} y_{2}
$$

$$
y_{h}=c_{1} \underset{y_{1}}{y_{1}^{3}}+c_{2} \underset{\sim}{\underset{\downarrow}{x}}
$$

$$
v_{1}^{\prime} y_{1}+v_{2}^{\prime} y_{2}=0
$$

$$
v_{1}^{\prime} y_{1}^{\prime}+v_{2}^{\prime} y_{2}^{\prime}=\frac{2 x^{4} e^{x}}{x^{2}}
$$

$$
\begin{aligned}
& y_{p}=x^{3} e^{x}+\left(-x^{2} e^{x}+2 x e^{x}-2 e^{x}\right) x \\
& y_{p}=x^{3} e^{x}-x^{3} e^{x}+2 x^{2} e^{x}-2 x e^{x} \\
& y_{p}=2 x e^{x}(x-1)
\end{aligned}
$$

$$
v_{1}^{\prime}\left(3 x^{2}\right)+v_{2}^{\prime}(1)=2 x^{2} e^{x}
$$

$$
W=\left|\begin{array}{cc}
x^{3} \\
V_{1}\left(3 x^{2}\right)+V_{2}(1)=2 x^{2} e^{x} \\
3 x_{1} \\
0
\end{array}\right|=x^{3}-3 x^{3}=-2 x^{3} \quad y=C_{1} x^{3}+C_{2} x+2 x e^{x}(x-1
$$

$$
v_{1}^{\prime}=\frac{\left|\begin{array}{cc}
0 & x^{x} e^{x^{x}} 1
\end{array}\right|}{-2 x^{3}}=\frac{2 x^{3} e^{x}}{-2 x^{3}}=e^{x}
$$

$$
\begin{aligned}
& V_{2}^{\prime}=\frac{\left|\begin{array}{c}
x^{3}-2 x^{3} \\
3 x^{2} x_{2 x^{2}}^{0} \mid
\end{array}\right|}{v_{1}=e^{x}} \\
& V_{2}=\int-x^{2} e^{x}, 2 x^{3} \\
& -x^{2} \int_{0}^{5} e^{x}=-x^{2} e^{x} \\
& -7 x^{5} V_{2}=-x^{2} e^{x}+2 x e^{x}-2 e^{x}
\end{aligned}
$$

$$
\begin{aligned}
& -x+e e^{x} \\
& -2 x \sqrt{e} e^{x} \\
& -2 \sqrt{e} \\
& 0 \text { e } \\
& \text { (2) }(\sqrt{2 x+6}
\end{aligned}
$$

(2) $(\sqrt{2 x+6}) y^{\prime}+\frac{1}{x-4} y=\frac{1}{x-6}$, where $y(1)=7$. Find the largest interval for the values of x so that the solution is unique.

$$
\begin{aligned}
& 2 x+6=0 \\
& x=\frac{-6}{2 x+6} y^{\prime}+\frac{1}{x-4} y=\frac{1}{x-6} \\
& x \neq-3 \\
& x=-3
\end{aligned} \quad x \neq 4,
$$

interval

QUESTION 8. (6 points) Solve the diff. equation $\frac{d y}{d x}=\frac{1}{-2 x+y^{2}+1}$

QUESTION 9. (8 points) Imagine a company sells fake-honey. A tank contains 200 liters of fluid in which 30 grams of honey is dissolved (i.e, $A(0)=30$). Brine containing 3 grams of honey per liter is then pumped into the tank at rate $4 \mathrm{~L} / \mathrm{min}$. The well-mixed solution is pumped out at $6 \mathrm{~L} / \mathrm{min}$. Find the number $A(t)$ of grams of honey in the tank at time t. When is the tank empty?

$$
\begin{aligned}
& A^{\prime}=\operatorname{In}-\text { out } \\
& A^{\prime}=(3)(4)-\frac{\left(\frac{C(t)}{J}(6)\right.}{\frac{A(t)}{200+(4-6) t}} \\
& A^{\prime}=12-\frac{6 A(t) / 2}{200 \cdot 2 t / 2} \\
& \left.A^{\prime}+\frac{3 A(t)}{100-t)}=12 \quad I=e^{\int \frac{3}{100-t} d t^{-1}}\right] \\
& A=\frac{\int(100-t)^{-3} \cdot 12 d t}{(100-t)^{-3}} \quad=(100-t)^{-3}
\end{aligned}
$$

$$
\begin{aligned}
& \int 12(100-t)^{-3} d t \\
& 12 \int(100-t)^{-3} d t \\
&= \frac{12}{2} *=1(100-t)^{-2} \\
&= 6(100-t)^{-2}+c
\end{aligned}
$$

Ayman Badawi, Department of Mathematics \& Statistics, American University of Sharjah, P.O. Box 26666, Sharjah, United Arab Emirates. E-mail: abadawi@aus.edu, www.ayman-badawi.com

$$
\begin{gathered}
200+(4-6) t=0 \\
-2 t=-200 \\
t=+\frac{200}{2}
\end{gathered}
$$

$$
t=100 \mathrm{~min}
$$

the tank is

$$
A=G(100-t)-\frac{57}{10^{5}}(100-t)^{3}
$$

emisty

$$
\begin{aligned}
& \frac{d y}{d x}=\frac{1}{-2 x+y^{2}+1} \\
& \frac{d x}{d y}=-2 x+y^{2}+1 \\
& x^{\prime}=-2 x+y^{2}+1 \\
& x^{\prime}+2 x=y^{2}+1 \quad I=e^{\int 2 d y}=e^{2 y} \\
& x=\frac{\int e^{2 y} \cdot\left(y^{2}+1\right) d y}{e^{2 y}} \\
& x=\frac{\int y^{2} e^{2 y}+e^{2 y}}{e^{2 y}}=\frac{\frac{1}{2} y^{2} e^{2 y} \frac{1}{2} y e^{2 y}-\frac{3}{4} e^{2 y}+c}{e^{2 y}} \\
& x=\frac{1}{2} y^{2}-\frac{1}{2} y+\frac{3}{4}+c e^{-2 y} \\
& y^{2} e^{2 y}-1 e^{2 y} \\
& \begin{array}{l}
\int \frac{y^{2} e^{2 y}}{I}+\frac{e^{2 y}}{\tau} \\
y^{2} \int_{e^{2 y}} \frac{e^{2 y}}{2}
\end{array} \\
& \begin{array}{l}
2 y \sqrt{\frac{1}{2} e^{2 y}} \\
\frac{1}{4 y} e^{2 y} \\
\frac{1}{8} e^{2 y}
\end{array} \\
& \frac{1}{2} y^{2} e^{2 y}-\frac{1}{2} y e^{2 y}+\frac{1}{4} e^{2} \\
& +\frac{1}{2} e^{2 y} \\
& =\frac{1}{2} y^{2} e^{2 y}-\frac{1}{2} y e^{2 y} \\
& +\frac{3}{4} e^{2} y+C
\end{aligned}
$$

QUESTION 1. (i) (3 points) Find the values of the constants a, k, c which makes the differential equation $\left(12 x^{2} y-a y e^{c x}\right) d x+\left(k x^{3}-e^{3 x}\right) d y$ exact (DO NOT SOLVE IT)

$$
\begin{array}{ll}
F_{x y}=F_{y x} & 12 x^{2}-a e^{c x}=3 k x^{2}-3 e^{3 u} \\
F_{x y}=12 x^{2}-a e^{c x} & 12=3 k \quad+a e^{c x}=+3 e^{3 x} \\
F_{y x}=3 k x^{2}-3 e^{3 x} & k=4
\end{array}
$$

(ii) (6 points) Stare really good at the following diff. equation $\frac{d y}{d x}=\frac{y^{3}}{x-x y^{3}}$, change it to Bernoulli and solve it.

$$
\begin{aligned}
& \frac{d x}{d y}=\frac{x^{3}-x y^{2}}{y^{3}} \\
& x^{\prime}=\frac{1}{y^{3}} x^{3}-\frac{1}{y} x \\
& x^{\prime}+\frac{1}{y} x=\frac{1}{y^{3}} x^{3} \\
& v=x^{y-3}=x^{-2} \\
& v^{\prime}+(-2) x \frac{1}{y} v=(-2) \frac{1}{y^{3}} \\
& v^{\prime}-\frac{-2}{y} v=-\frac{2}{y^{3}} \\
& I=e \int-\frac{2}{y} d y=e^{-2 \ln y} \\
& =\frac{1}{y^{2}}=e \frac{1}{y^{2}} x-\frac{2}{y^{3}} d y \\
& V=\frac{1}{y^{2}}
\end{aligned}
$$

$$
v=\frac{\int \frac{-2}{y^{5}} d y}{\frac{1}{y^{2}}}
$$

QUESTION 3. (10 points) Imagine a company is making fake-sweet-drink(only water and sugar). The Tank has a capacity of 200 Liters. Initially, it contains 250 Liters of brine (water and sugar) that contains 25 grams of sugar (i.e., assume $A(0)=25$). A solution containing 4 grams of sugar per liter is pumped into the tank at rate 4 liter per min. The solution is pumped out at rate 3 liter per min. Find $A(t) /$ amount of sugar in the tank.

$$
\frac{d A}{d t}=I_{n}-o u t
$$

$$
A^{\prime}=(4)(4)-c(4) \times 3
$$

$$
A(t)=\frac{4(250+t)^{4}-1.52 \times 10^{10}}{(250+t)^{3}}
$$

$c(t)=\frac{A}{250+(4-3) t}$
$A^{\prime}=16-\frac{3 A}{250+t}$
$A^{\prime}+\frac{B}{250+t} A=16$
$I=e^{\int \frac{3}{250 t t} d t}$
$I=e^{+3 \ln / 250+t \mid}$
$I=(250+t)^{3}$
$A=\frac{\int(250+t)^{3} \times 16}{(250+t)^{3}}$
$A=\frac{4(250 t+)^{4}+C}{250+t)^{3}}$
$A(0)=\frac{4(250)^{4}+C}{(250)^{3}}=25$

$c=-1.52 \times 10^{10}$
(ii) Find the amount of sugar in the tank after $10 \mathrm{~min} /$
$A(10)=,4(250+10)^{4}-1.52 \times 10^{10}$

(iii) When an overflow will occur?

$$
250+(4-3) t=700
$$

$t=450$ ming.

$$
\begin{aligned}
& \text { QUESTION 8. (6 points) Solve for } y(t):(\cos (t)-t) y^{\prime \prime}+(1+\sin (t)) y^{\prime}=0 \\
& y_{1}=y^{\prime} \\
& v^{\prime}=y^{\prime \prime} \\
& (\cos (t)-t) v^{\prime}+(1+\sin (t)) v=0 \\
& v^{\prime}+\frac{(1+\sin (t))_{v}}{(\cos (t)-t)}=0 \\
& V=\frac{0+C}{1 /-\operatorname{Cos} t)} \rightarrow C[t-\operatorname{Cos}(t)] \\
& I=e^{\int \frac{1+\sin u)}{\cos (t)-t}} \\
& u=-(\operatorname{Cos}(t)-t) \\
& \delta_{u}=+\sin (u)+1 d t^{\prime} \\
& I=e^{\int \frac{1}{-u} d u} \\
& I=e^{-\ln |\underline{u}|}=\frac{1}{-\cos (t)+t} \\
& y=\int(t-c \cos (t) d t \\
& y=\frac{1}{2} c t^{2}-c \sin t+c_{1} \\
& y=c t^{2}-c \sin t+c
\end{aligned}
$$

QUESTION 9. (10 points)
(i) Solve for $y(t), t^{2} y^{\prime \prime}-2 t y^{\prime}+2 y=0$

$$
\begin{aligned}
& y=t^{m} \\
& y^{\prime}=m t^{m-1} \\
& y^{\prime \prime}=\left(m^{2}-m\right) t^{m-2} \\
& t^{m}\left(m^{2}-m-2 m+2\right)=0 \\
& m^{2}-3 m+2=0 \\
& m=2 \text { or } m=1
\end{aligned}
$$

$$
y=c_{1} t^{2}+c_{2} t
$$

(ii) Use (1) and solve for $y(t): t^{2} y^{\prime \prime}-2 t y^{\prime}+2 y=2 t^{3} e^{t}$

$$
\begin{gathered}
y=y_{n}+y_{p} \\
y_{n}=c_{1} t_{y_{1}}^{t^{2}}+c_{2} t \\
y_{p}=v_{1} y_{1}+v_{2} y_{2} \\
v_{1}^{\prime} y_{1}+v_{2}^{\prime} y_{2}=0 \\
v_{1}^{\prime} y_{1}^{\prime}+v_{2}^{\prime} y_{2}^{\prime}=\frac{2 t^{3} e^{t}}{t^{2}} \\
v_{1}^{\prime} t^{2}+v_{2}^{\prime} t=0 \\
v_{1}^{\prime} 2 t+v_{2}^{\prime}=2 t e t \\
\omega_{1}=\left|\begin{array}{l}
2 \\
2
\end{array} \quad 1 \quad\right|=t^{2}-2 t^{2} \\
=2
\end{gathered}
$$

$$
V_{1}^{\prime}=\frac{\left|\begin{array}{cc}
0 & t \\
2+e t & 1
\end{array}\right|}{-t^{2}}=\frac{-2 t^{2} e^{t}}{-t^{2}}
$$

$$
v_{1}^{\prime}=2 e^{t}
$$

$$
v_{1} \int 2 e^{t} d t=2 e^{t}
$$

$$
v_{2}^{\prime}=\frac{\left|\begin{array}{cc}
t^{2} & 0 \\
2 t & 2 t e^{+}
\end{array}\right|}{-t^{2}}=\frac{2 t^{32} e t}{-t^{2}}
$$

$$
V_{2}^{\prime}=-2 t e^{t}
$$

$$
\begin{aligned}
& v_{2} \int^{()^{\prime}} \int_{2+2 t}^{2 t} e^{t} d t \\
& -2 e^{t} \\
& 0 e^{r}
\end{aligned}
$$

$$
\begin{gathered}
y_{p}=\left(2 e^{t}\right)\left(t^{2}\right)+\left(-2 t e^{t}+2 e^{t}\right)(t) \\
y_{p}=2 t^{2} e^{t}-2 t^{t} e^{t}+2 t e t
\end{gathered}
$$

$$
\begin{aligned}
& y_{p}=2 t^{2} e^{t}-2 t^{t} e^{t}+2 t e t \\
& y_{p}=2+e^{t}
\end{aligned}
$$

$$
y_{p} y^{y P}=2+e^{-t}
$$

$$
\Longrightarrow y=c_{1} t^{2}+c_{2} t+2+e^{t} .
$$

(iii) (4 points) Solve the diff. equation $\frac{d y}{d x}=(\sqrt{y}+y) e^{x}\left(x^{2}+2 x\right)$

$$
\begin{aligned}
& \int \frac{d y}{\sqrt{y}+y}=\int e^{x\left(x^{2}+2 u\right) d x} \quad 2 \ln |1+\sqrt{y}|=x^{2} e^{x}+C \\
& \int \frac{1}{(\sqrt{y})(1+\sqrt{y})} d y=x^{2} e^{x}+C \\
& u=1+\sqrt{y} \\
& d u=\frac{1}{2 \sqrt{y}} d y \\
& 2 \int \frac{1}{u} d u \\
& 2 \ln |1+\sqrt{y}|
\end{aligned}
$$

Faculty information

Ayman Badawi, Department of Mathematics \& Statistics, American University of Sharjah, P.O. Box 26666, Sharjah. United Arab Emirates.
E-mail: abadawi@aus.edu, www.ayman-badawi.com

Questions on Spring

3. A mass weighing 24 pounds, attached to the end of a spring, stretches it 4 inches. Initially, the mass is released from rest from a point 3 inches above the equilibrium position. Find the equation of motion.
4. Determine the equation of motion if the mass in Problem 3 is initially released from the equilibrium position with a downward velocity of $2 \mathrm{ft} / \mathrm{s}$.
5. A mass weighing 20 pounds stretches a spring 6 inches. The mass is initially released from rest from a point 6 inches below the equilibrium position.
(a) Find the position of the mass at the times $t=\pi / 12$, $\pi / 8, \pi / 6, \pi / 4$, and $9 \pi / 32 \mathrm{~s}$.
(b) What is the velocity of the mass when $t=3 \pi / 16 \mathrm{~s}$? In which direction is the mass heading at this instant?
(c) At what times does the mass pass through the equilibrium position?

5 Modeling with Higher-Order Differential Equations

3. From $\frac{3}{4} x^{\prime \prime}+72 x=0, x(0)=-1 / 4$, and $x^{\prime}(0)=0$ we obtain $x=-\frac{1}{4} \cos 4 \sqrt{6} t$.
\therefore From $\frac{3}{4} x^{\prime \prime}+72 x=0, x(0)=0$, and $x^{\prime}(0)=2$ we obtain $x=\frac{\sqrt{6}}{12} \sin 4 \sqrt{6} t$.
ㅍ. From $\frac{5}{8} x^{\prime \prime}+40 x=0, x(0)=1 / 2$, and $x^{\prime}(0)=0$ we obtain $x=\frac{1}{2} \cos 8 t$.
(a) $x(\pi / 12)=-1 / 4, x(\pi / 8)=-1 / 2, x(\pi / 6)=-1 / 4, x(\pi / 4)=1 / 2, x(9 \pi / 32)=\sqrt{2} / 4$.
(b) $x^{\prime}=-4 \sin 8 t$ so that $x^{\prime}(3 \pi / 16)=4 \mathrm{ft} / \mathrm{s}$ directed downward.
(c) If $x=\frac{1}{2} \cos 8 t=0$ then $t=(2 n+1) \pi / 16$ for $n=0,1,2, \ldots$.
5. From $50 x^{\prime \prime}+200 x=0 . x(0)=0$, and $x^{\prime}(0)=-10$ we obtain $x=-5 \sin 2 t$ and $x^{\prime}=-10 \cos 2 t$.

Circuit Questions

5.1.4 SERIES CIRCUIT ANALOGUE

45. Find the charge on the capacitor in an $L R C$ series circuit at $t=0.01 \mathrm{~s}$ when $L=0.05 \mathrm{~h}, R=2 \Omega, C=0.01 \mathrm{f}$, $E(t)=0 \mathrm{~V}, q(0)=5 \mathrm{C}$, and $i(0)=0 \mathrm{~A}$. Determine the first time at which the charge on the capacitor is equal to zero.
46. Find the charge on the capacitor in an $L R C$ series circuit when $L=\frac{1}{4} \mathrm{~h}, R=20 \Omega, C=\frac{1}{300} \mathrm{f}, E(t)=0 \mathrm{~V}$, $q(0)=4 \mathrm{C}$, and $i(0)=0 \mathrm{~A}$. Is the charge on the capacitor ever equal to zero?

In Problems 47 and 48 find the charge on the capacitor and the current in the given $L R C$ series circuit. Find the maximum charge on the capacitor.
47. $L=\frac{5}{3} \mathrm{~h}, R=10 \Omega, C=\frac{1}{30} \mathrm{f}, E(t)=300 \mathrm{~V}, q(0)=0 \mathrm{C}$, $i(0)=0 \mathrm{~A}$
48. $L=1 \mathrm{~h}, \quad R=100 \Omega, \quad C=0.0004 \mathrm{f}, \quad E(t)=30 \mathrm{~V}$, $q(0)=0 \mathrm{C}, i(0)=2 \mathrm{~A}$

Answers to Questions on Circuit

$\therefore 5$. Solving $\frac{1}{20} q^{\prime \prime}+2 q^{\prime}+100 q=0$ we obtain $q(t)=\epsilon^{-20 t}\left(c_{1} \cos 40 t+c_{2} \sin 40 t\right)$. The initial conditions $q(0)=5$ and $q^{\prime}(0)=0$ imply $c_{1}=5$ and $c_{2}=5 / 2$. Thus

$$
q(t)=e^{-20 t}\left(5 \cos 40 t+\frac{5}{2} \sin 40 t\right)=\sqrt{25+25 / 4} e^{-20 t} \sin (40 t+1.1071)
$$

and $q(0.01) \approx 4.5676$ coulombs. The charge is zero for the first time when $40 t+1.1071=\pi$ or $t \approx 0.0509$ second.
-5. Solving $\frac{1}{4} q^{\prime \prime}+20 q^{\prime}+300 q=0$ we obtain $q(t)=c_{1} e^{-20 t}+c_{2} e^{-60 t}$. The initial conditions $q(0)=4$ and $q^{\prime}(0)=0$ imply $c_{1}=6$ and $c_{2}=-2$. Thus

$$
q(t)=6 e^{-20 t}-2 e^{-60 t}
$$

Setting $q=0$ we find $e^{40 t}=1 / 3$ which implics $t<0$. Therefore the charge is not 0 for $t \geq 0$.
\therefore. Solving $\frac{5}{3} q^{\prime \prime}+10 q^{\prime}+30 q=300$ we obtain $q(t)=e^{-3 t}\left(c_{1} \cos 3 t+c_{2} \sin 3 t\right)+10$. The initial conditions $q(0)=q^{\prime}(0)=0$ imply $c_{1}=c_{2}=-10$. Thus

$$
q(t)=10-10 e^{-3 t}(\cos 3 t+\sin 3 t) \quad \text { and } \quad i(t)=60 e^{-3 t} \sin 3 t
$$

Solving $i(t)=0$ we see that the maximum charge occurs when $t=\pi / 3$ and $q(\pi / 3) \approx 10.432$.
5. Solving $q^{\prime \prime}+100 q^{\prime}+2500 q=30$ we obtain $q(t)=c_{1} e^{-50 t}+c_{2} t e^{-50 t}+0.012$. The initial conditions $(0)=0$ and $q^{\prime}(0)=2$ imply $c_{1}=-0.012$ and $c_{2}=1.4$. Thus, using $i(t)=q^{\prime}(t)$ we get

$$
q(t)=-0.012 e^{-50 t}+1.4 t e^{-50 t}+0.012 \quad \text { and } \quad i(t)=2 e^{-50 t}-70 t e^{-50 t}
$$

Solving $i(t)=0$ we see that the maximum charge occurs when $t=1 / 35$ second and $q(1 / 35) \approx$. 01871 coulomb.

74 - CHAPTER 2 FIRST-ORDER DIFFERENTIAL EQUATIONS

Questions on Substitution, $\mathrm{y}=\mathrm{ux}$ or $\mathrm{u}=\mathrm{ax}+\mathrm{by}$

Each DE in Problems 1-14 is homogeneous.
In Problems $1-10$ solve the given differential equation by using an appropriate substitution.

2. $(x+y) d x+x d y=0$
3. $x d x+(y-2 x) d y=0$
4. $y d x=2(x+y) d y$
5. $\left(y^{2}+y x\right) d x-x^{2} d y=0$
6. $\left(y^{2}+y x\right) d x+x^{2} d y=0$
7. $\frac{d y}{d x}=\frac{y-x}{y+x}$
8. $\frac{d y}{d x}=\frac{x+3 y}{3 x+y}$
9. $-y d x+(x+\sqrt{x y}) d y=0$

Each DE in Problems 23-30 is of the form given in (5).
In Problems 23-28 solve the given differential equation by using an appropriate substitution.
23. $\frac{d y}{d x}=(x+y+1)^{2}$
24. $\frac{d y}{d x}=\frac{1-x-y}{x+y}$
25. $\frac{d y}{d x}=\tan ^{2}(x+y)$
26. $\frac{d y}{d x}=\sin (x+y)$
27. $\frac{d y}{d x}=2+\sqrt{y-2 x+3}$
28. $\frac{d y}{d x}=1+e^{y-x+5}$

In Problems 29 and 30 solve the given initial-value problem.
29. $\frac{d y}{d x}=\cos (x+y), \quad y(0)=\pi / 4$
30. $\frac{d y}{d x}=\frac{3 x+2 y}{3 x+2 y+2}, \quad y(-1)=-1$

Exercises 2.5 Solutions by Substitutions

2. Letting $y=u x$ we have

$$
\begin{aligned}
(x+u x) d x+x(u d x+x d u) & =0 \\
(1+2 u) d x+x d u & =0 \\
\frac{d x}{x}+\frac{d u}{1+2 u} & =0 \\
\ln |x|+\frac{1}{2} \ln |1+2 u| & =c \\
x^{2}\left(1+2 \frac{y}{x}\right) & =c_{1} \\
x^{2}+2 x y & =c_{1} .
\end{aligned}
$$

3. Letting $x=v y$ we have

$$
\begin{aligned}
v y(v d y+y d v)+(y-2 v y) d y & =0 \\
v y^{2} d v+y\left(v^{2}-2 v+1\right) d y & =0 \\
\frac{v d v}{(v-1)^{2}}+\frac{d y}{y} & =0 \\
\ln |v-1|-\frac{1}{v-1}+\ln |y| & =c \\
\ln \left|\frac{x}{y}-1\right|-\frac{1}{x / y-1}+\ln y & =c \\
(x-y) \ln |x-y|-y & =c(x-y)
\end{aligned}
$$

4. Letting $x=v y$ we have

$$
\begin{aligned}
y(v d y+y d v)-2(v y+y) d y & =0 \\
y d v-(v+2) d y & =0 \\
\frac{d v}{v+2}-\frac{d y}{y} & =0 \\
\ln |v+2|-\ln |y| & =c \\
\ln \left|\frac{x}{y}+2\right|-\ln |y| & =c \\
x+2 y & =c_{1} y^{2}
\end{aligned}
$$

Exercises 2.5 Solutions by Substitutions
5. Letting $y=u x$ wo have

$$
\begin{aligned}
\left(u^{2} x^{2}+u x^{2}\right) d x-x^{2}(u d x+x d u) & =0 \\
u^{2} d x-x d u & =0 \\
\frac{d x}{x}-\frac{d u}{u^{2}} & =0 \\
\ln |x|+\frac{1}{u} & =c \\
\ln |x|+\frac{x}{y} & =c \\
y \ln |x|+x & =c y
\end{aligned}
$$

6. Letting $y=u x$ and using partial fractions, we have

$$
\begin{aligned}
\left(u^{2} x^{2}+u x^{2}\right) d x+x^{2}(u d x+x d u) & =0 \\
x^{2}\left(u^{2}+2 u\right) d x+x^{3} d u & =0 \\
\frac{d x}{x}+\frac{d u}{u(u+2)} & =0 \\
\ln |x|+\frac{1}{2} \ln |u|-\frac{1}{2} \ln |u+2| & =c \\
\frac{x^{2} u}{u+2} & =c_{1} \\
x^{2} \frac{y}{x} & =c_{1}\left(\frac{y}{x}+2\right) \\
x^{2} y & =c_{1}(y+2 x)
\end{aligned}
$$

7. Letting $y=u x$ wc have

$$
\begin{aligned}
(u x-x) d x-(u x+x)(u d x+x d u) & =0 \\
\left(u^{2}+1\right) d x+x(u+1) d u & =0 \\
\frac{d x}{x}+\frac{u+1}{u^{2}+1} d u & =0 \\
\ln |x|+\frac{1}{2} \ln \left(u^{2}+1\right)+\tan ^{-1} u & =c \\
\ln x^{2}\left(\frac{y^{2}}{x^{2}}+1\right)+2 \tan ^{-1} \frac{y}{x} & =c_{1} \\
\ln \left(x^{2}+y^{2}\right)+2 \tan ^{-1} \frac{y}{x} & =c_{1}
\end{aligned}
$$

5. Letting $y=u x$ we have

$$
\begin{aligned}
(x+3 u x) d x-(3 x+u x)(u d x+x d u) & =0 \\
\left(u^{2}-1\right) d x+x(u+3) d u & =0 \\
\frac{d x}{x}+\frac{u+3}{(u-1)(u+1)} d u & =0 \\
\ln |x|+2 \ln |u-1|-\ln |u+1| & =c \\
\frac{x(u-1)^{2}}{u+1} & =c_{1} \\
x\left(\frac{y}{x}-1\right)^{2} & =c_{1}\left(\frac{y}{x}+1\right) \\
(y-x)^{2} & =c_{1}(y \div x) .
\end{aligned}
$$

j. Letting $y=u x$ we have

$$
\begin{aligned}
-u x d x+(x+\sqrt{u} x)(u d x+x d u) & =0 \\
\left(x^{2}+x^{2} \sqrt{u}\right) d u+x u^{3 / 2} d x & =0 \\
\left(u^{-3 / 2}+\frac{1}{u}\right) d u+\frac{d x}{x} & =0 \\
-2 u^{-1 / 2}+\ln |u|+\ln |x| & =c \\
\ln |y / x|+\ln |x| & =2 \sqrt{x / y}+c
\end{aligned}
$$

23. Let $u=x+y+1$ so that $d u / d x=1+d y / d x$. Then $\frac{d u}{d x}-1=u^{2}$ or $\frac{1}{1+u^{2}} d u=d x$. Thu:$\tan ^{-1} u=x+c$ or $u=\tan (x+c)$, and $x+y+1=\tan (x+c)$ or $y=\tan (x+c)-x-1$.
24. Let $u=x+y$ so that $d u / d x=1+d y / d x$. Then $\frac{d u}{d x}-1=\frac{1-u}{u}$ or $u d u=d x$. Thus $\frac{1}{2} u^{2}=x+$. or $u^{2}=2 x+c_{1}$, and $(x+y)^{2}=2 x+c_{1}$.
25. Let $u=x+y$ so that $d u / d x=1+d y / d x$. Then $\frac{d u}{d x}-1=\tan ^{2} u$ or $\cos ^{2} u d u=d x$. Thu: $\frac{1}{2} u+\frac{1}{4} \sin 2 u=x+c$ or $2 u+\sin 2 u=4 x+c_{1}$, and $2(x+y)+\sin 2(x+y)=4 x+c_{1}$ or $2 y+\sin 2(x+y)=$ $2 x+c_{1}$.
26. Let $u=x+y$ so that $d u / d x=1+d y / d x$. Then $\frac{d u}{d x}-1=\sin u$ or $\frac{1}{1+\sin u} d u=d x$. Multiplyins by $(1-\sin u) /(1-\sin u)$ we have $\frac{1-\sin u}{\cos ^{2} u} d u=d x$ or $\left(\sec ^{2} u-\sec u \tan u\right) d u=d x$. Thu: $\tan u-\sec u=x+c$ or $\tan (x+y)-\sec (x+y)=x+c$.
27. Let $u=y-2 x+3$ so that $d u / d x=d y / d x-2$. Then $\frac{d u}{d x}+2=2+\sqrt{u}$ or $\frac{1}{\sqrt{u}} d u=d x$. The: $2 \sqrt{u}=x+c$ and $2 \sqrt{y-2 x+3}=x+c$.
28. Let $u=y-x+5$ so that $d u / d x=d y / d x-1$. Then $\frac{d u}{d x}+1=1+e^{u}$ or $e^{-u} d u=d x$. The:: $-e^{-u}=x+c$ and $-e^{y-x+5}=x+c$.
29. Let $u=x+y$ so that $d u / d x=1+d y / d x$. Then $\frac{d u}{d x}-1=\cos u$ and $\frac{1}{1+\cos u} d u=d x$. Now

$$
\frac{1}{1+\cos u}=\frac{1-\cos u}{1-\cos ^{2} u}=\frac{1-\cos u}{\sin ^{2} u}=\csc ^{2} u-\csc u \cot u
$$

so we have $\int\left(\csc ^{2} u-\csc u \cot u\right) d u=\int d x$ and $-\cot u+\csc u=x+c$. Thus $-\cot (x+y)+\csc (x+y)=$ $x+c$. Setting $x=0$ and $y=\pi / 4$ we obtain $c=\sqrt{2}-1$. The solution is

$$
\csc (x+y)-\cot (x+y)=x+\sqrt{2}-1
$$

30. Let $u=3 x+2 y$ so that $d u / d x=3+2 d y / d x$. Then $\frac{d u}{d x}=3+\frac{2 u}{u+2}=\frac{5 u+6}{u+2}$ and $\frac{u+2}{5 u+6} d u=d$, Now by long division

$$
\frac{u+2}{5 u+6}=\frac{1}{5}+\frac{4}{25 u+30}
$$

Department of Mathematics and Statistics

American University of Sharjah
Final Exam - Fall 2019
MTH 205-Differential Equations
Date: Sunday, December 15, 2019 Time: 2pm to 4pm

Student Name	Student ID Number
Aya Torek	78806

Instructor Name	Class Time
Ayman Badawi	M, W :11-12:15

1. Do not open this exam until you are told to begin.
2. No questions are allowed during the examination.
3. This exam has 8 pages + this cover exam page + Laplace Formula Sheet.
4. Do not separate the pages of the exam.
5. Scientific calculators are allowed.
6. Turn off all cell phones and remove all headphones.
7. Take off your cap.
8. No communication of any kind is allowed during the examination
9. If you are found wearing a smart watch or holding a mobile phone at any point during the exam then it will be considered an academic violation and will be reported to the dean's office.

Student signature:

Final Exam , MTH 205, Fall 2019

Ayman Badawi

QUESTION 1. (i) (3 points) Find the values of the constants a, k,,c which makes the differential equation
$\left(12 x^{2} y-a y e^{c x}\right) d x+\left(k x^{3}-e^{3 x}\right) d y$ exact (DO NOT SOLVE IT)

$$
F_{x y}=F_{y x}
$$

$$
12 x^{2}-a e^{c x}=3 k x^{2}-3 e^{3 x}
$$

$$
F_{x y}=12 x^{2}-a e^{c x}
$$

$$
12=3 k \quad+a e^{c x}=43 e^{3 x}
$$

$$
F_{y} x=3 k x^{2}-3 e^{3 x}
$$

$$
\begin{array}{r}
k=4 \\
C=3=3
\end{array}
$$

(ii) (6 points) Stare really good at the following diff. equation $\frac{d y}{d x}=\frac{y^{3}}{x^{3}-x y^{2}}$, change it to Bernoulli and solve it.

$$
V=\frac{\int \frac{-2}{y^{5}} d y}{\frac{1}{y^{2}}}
$$

$$
v=\frac{\frac{1}{2} y^{-4}+c}{\frac{1}{y^{2}}}
$$

$$
V=\frac{1}{2} y^{-2}+y^{2} c
$$

$$
x=\left(\frac{1}{2} y^{-2}+y^{2} c\right)^{-\frac{1}{2}}
$$

$$
\begin{aligned}
& \frac{d x}{d y}=\frac{x^{3}-x y^{2}}{y^{3}} \\
& x^{\prime}=\frac{1}{y^{3}} x^{3}-\frac{1}{y} x \\
& x^{\prime}+\frac{1}{y} x=\frac{1}{y^{3}} x^{3} \\
& V=x^{b-3}=x^{-2} \\
& v^{\prime}+(-2) \times \frac{1}{y} v=(-2) \frac{1}{y^{3}} \\
& v^{\prime}-\frac{2}{y} v=-\frac{2}{y^{3}} \\
& I=e^{\int-\frac{2}{y} d y}=e \\
& =\frac{1}{y^{2}} \\
& V=\frac{\int \frac{1}{y^{2}} x-\frac{2}{y^{3}}}{\frac{1}{y^{2}}} d y
\end{aligned}
$$

QUESTION 2. (8 points) Use Laplace to solve the differential equation :

$$
y^{\prime}(t)=e^{3 t}+\int_{0}^{t} 4 y(u) d u, y(0)=0
$$

$\int 4 y(n) d u$
$4 * y(t)-$
$y^{\prime}(t)=e^{3 t}+4 * y(t)$
$\mathcal{L}\left(y^{\prime}(t)\right)=\mathcal{L}\left(e^{3 t}\right)+\mathcal{L}(4 * y(t))$
$s Y(s)-y(0)=\frac{1}{s-3}+\frac{4 Y(s)}{s}$
$5 Y(s)-\frac{4}{5} y(s)=\frac{1}{s-3}$
$y(s)\left[s-\frac{4}{5}\right]=\frac{1}{s-3}$
$y(s)=\frac{1}{(s-3)} \times \frac{s}{\left(s^{2}-4\right)}$
$Y(s)=\frac{s}{(s-3)(s-2)(s+2)}$
$\frac{s}{(s-3)(s-2)(s+2)}=\frac{A}{s-3}+\frac{B}{s-2}+\frac{C}{s+2}$
$s=3 \quad s=2 \quad s=-2$
$A=\frac{3}{5} \quad B=\frac{-1}{2} \quad C=-\frac{1}{10}$
$y(t)=\mathcal{L}^{-1}(y(s))=\mathcal{L}^{-1}\left\{\frac{3 / 5}{s-3}+\frac{1 / 2}{s-2}-\frac{Y_{0}}{s+2}\right\}$
$y(t)=\frac{3}{5} e^{3 t}-\frac{1}{2} e^{2 t}-\frac{1}{10} e^{-2 t}$

QUESTION 3. (10 points) Imagine a company is making fake-sweet-drink(only water and sugar). The Tank has a capacity of 700 Liters. Initially, it contains 250 Liters of brine (water and sugar) that contains 25 kg of sugar (i.e., assume $A(0)=25$). A solution containing $4 \mathrm{~kg} / 4$ of sugar is pumped into the tank and solution is pumped out at 3 kg .
(i) Find $A(t)$, the amount of sugar in the tank at time t.
$\frac{d A}{d t}=I_{n}-$ out
$A^{\prime}=(4)(4)-\operatorname{cas} * 3$

$$
A(t)=\frac{4(250+t)^{4}-1.52 \times 10^{10}}{(250+t)^{3}}
$$

$c(t)=\frac{A}{250+(4-3) t}$
$A^{\prime}=16-\frac{3 A}{250+t}$
$A^{\prime}+\frac{B}{2504 t} A=16$
$I=e^{\int \frac{3}{250 t t} d t}$
$+3 \ln \mid 250++1$
$I=e^{+}$
$I=(250+t)^{3}$
$A=\frac{\int(250+t)^{3} \times 16}{(250+t)^{3}}$

$c=-1.52 \times 10^{10}$.
(ii) Find the amount of sugar in the tank after 10 min .

(iii) When an overflow will occur?
$250+(4-3) t=700$
$t=450 \mathrm{mins}$.

QUESTION 4. (4 points) Consider the diff. equation $y^{\prime}-2 x y=0, y(0)=1$. Now use power series to solve it (as explained in class), ie., do the following:
(i) Find the recurrence formula. Calculate the coefficients of the first 5 terms (i.e., $a_{0}, a_{1}, a_{2}, a_{3}, a_{4}$)

$$
\begin{aligned}
& y=\sum_{n=0} a_{n} t^{n} t=x \\
& y=a_{0}+a_{1} t+a_{2} t^{2}+a_{3} t^{3}+a_{4} t^{4} \ldots a_{n-1} t^{n-1}+a_{n} t^{n}+a_{n} t^{n+1} \\
& y^{\prime}=a_{1}+2 a_{2} t+3 a_{3} t^{2}+4 a_{4} t^{3} \ldots n a_{n} t^{n-1}+(n+1) a_{n+1} t^{n}
\end{aligned}
$$

$\left.c a_{1}+2 a_{2} t+3 a_{3} t^{2}+4 a_{4} t^{3} \cdots a_{n} t^{n-1}+(n+1) a_{n+1} t^{n+}\right)-2 t\left[a_{0}+a_{1} t+a_{2} t^{2}+a_{3} t^{3}+a_{4} t^{n} \cdot a_{n} t^{n}+a_{n+1} 1 t^{n}\right.$ $a_{1}+\left(2 a_{2}-2 a_{0}\right) t+\left(3 a_{3}-2 a_{1}\right) t^{2}+\left(4 a_{4}-2 a_{2}\right) t^{3} \cdots\left(a_{n}+1(n+1)-2 a_{n}-1\right) t^{n}=0$ $a_{1}=0 \quad a_{0}=1 \quad 2 a_{2} 4_{1} 2 a_{0} \quad 0 \quad a_{2}=1 \quad \rightarrow 3 \quad a_{4}=\frac{2 a_{2}}{4}=\frac{2 \times 1}{4}=\frac{1}{2}$

$$
a_{n+1}=\left(\frac{2 a_{n-1}}{n+1} n \geq 1\right.
$$

$$
n=1, a_{2}=\frac{2 a_{0}}{2}=\frac{2}{2}=1
$$

$$
\rightarrow y=1+t^{2}+\frac{1}{2} t^{4}
$$

$n=2 \Rightarrow a_{3}=\frac{2 a_{1}}{3}=\frac{0}{3}=0$
$\left(a_{0}=1, a_{1}=0, a_{2}=1, a_{3}=0, a_{4} e \frac{1}{2}\right)$.
(ii) The power series in (1) converges to a well-known function, what is this function?(i.e., solve the diff. equation

QUESTION 5. (7 points) Imagine that a $10-\mathrm{kg}$ mass is attached to a spring, stretching it 0.7 m from its natural length. The mass is started in motion from the equilibrium position (ie., $M(0)=0$, note $M(t)$ is the motion of the spring, where small m is the mass) with an initial velocity of $1 \mathrm{~m} / \mathrm{sec}$ in the upward direction (ie., $M^{\prime}(0)=-1$). Find the motion, $M(t)$, if the force due to air resistance is $-90 \mathrm{~N} .\left(g(\right.$ gravity $\left.)=9.8 \mathrm{~m} / \mathrm{sec}^{2}\right)$

$$
\begin{aligned}
& \text { mass }=10 \mathrm{~kg} \\
& L=0.7
\end{aligned}
$$

$$
F=10 \times 9,8=98 \mathrm{~N}
$$

$$
K=\frac{F}{L}=\frac{98}{0.7}=140
$$

Fair $=-90$

$$
M^{\prime \prime}+\frac{90}{10} M^{\prime}+\frac{440}{140} M=0
$$

$$
M^{\prime \prime}+9 M^{\prime}+14 M=0 \quad M^{\prime}=7 c_{1} e^{-7+} \pm 2 c_{2} e^{2+}
$$

$$
M^{\prime \prime}+9 M^{\prime}+14 M=0
$$

without using power series)

$$
I=e^{\int-2 x}=e^{-2 x^{2}}
$$

$$
y=\frac{\int e^{-x^{2}} \times 0 d x}{e^{-x^{2}}}=\frac{0+c}{e^{-x^{2}}}
$$

$$
y=\pi^{e^{x^{2}}}
$$

$$
y(0)=1 \rightarrow e^{x^{2}}
$$

$$
M^{\prime}(0)=7 C_{1} \pm 2 C_{2}=-1
$$

QUESTION 6. (10 points) Use Laplace and solve the following system of Linear Diff. Equations:

$$
\begin{gathered}
x^{\prime}(t)-y(t)=0, x(0)=2 \\
y^{\prime}(t)-x(t)=-t, y(0)=1
\end{gathered}
$$

$$
\begin{aligned}
& s X(s)-x(0)-Y(s)=0 \\
& s X(s)-Y(s)=2
\end{aligned}
$$

$$
s Y(s)-y(0)-X(s)=-\frac{1}{s^{2}}
$$

$$
-X(s)+s y(s)=-\frac{1}{s^{2}}+1 \rightarrow \frac{s^{2}-1}{s^{2}}-(3)
$$

$$
\begin{aligned}
& x(s)=\frac{\left|\begin{array}{cc}
2 & -1 \\
\frac{s^{2}-1}{s^{2}} & s
\end{array}\right|}{\left|\begin{array}{cc}
s & -1 \\
-1 & s
\end{array}\right|}=\frac{2 s+\frac{s^{2}-1}{s^{2}}}{s^{2}-1} \\
& x(s)=\frac{2 s^{3}+s^{2}-1}{s^{2}\left(s^{2}-1\right)}=\frac{2 s^{2}}{s^{2}\left(s^{2}-1\right)}+\frac{s^{2}-1}{s^{2}\left(s^{2}-1\right)} \\
& x(s)=\frac{2 s}{s^{2}-1}+\frac{1}{s^{2}} \\
& x(t)=\mathcal{L}^{-1}\left\{\frac{2 s}{s^{2}-1}+\frac{1}{s^{2}}\right\} \\
& x(s)=2 \cosh (t)+t
\end{aligned}
$$

$$
\begin{aligned}
& Y(s)=\frac{\left|\begin{array}{cc}
s & 2 \\
-1 & \frac{s^{2}-1}{s^{2}}
\end{array}\right|}{\left|\begin{array}{cc}
-1 \\
-1 & s
\end{array}\right|}=\frac{s\left(s^{2}-1\right)}{s^{2}}+2 \\
& s^{2}-1
\end{aligned}=\frac{s\left(s^{2}-1\right)+2 s^{2}}{s^{2}\left(s^{2}-1\right)} .
$$

QUESTION 7. (6 points)
(i) $\ell\left\{\int_{0}^{t} e^{(t-u)} \cos (t-u) \sin (u) d u\right\}$
$e^{t} \cos (t) \% \sin (t)$
$\mathcal{L}\left\{e^{t} \cos (t) * \sin (t)\right\}$
$=\frac{s-1}{(s-1)^{2}+1} \cdot \frac{1}{s^{2}+1}$

(ii) Find $\ell^{-1}\left\{\frac{s\left(e^{-2 s}\right)}{(s+1)^{2}+4}\right\}$
$u(t-2) \mathcal{L}^{-1}\left\{\frac{s}{(s+1)^{2}+4}\right\}$
$\mathcal{L}^{-1}\left\{\frac{s+1-1}{(s+1)^{2}+4}\right\}=\frac{s+1}{(s+1)^{2}+4}-\frac{1}{(s+1)^{2}+4}$
$=e^{-t} \operatorname{Cos}(2 t)=\frac{1}{2} e^{-t} \sin (2 t)$
$u(t-2)\left[e^{-(t-2)}\left(\cos (2 t-4)-\frac{1}{2} \sin (2 t-4)\right)\right]$

$$
\begin{array}{ll}
\text { QUESTION 8. (6 points) Solve for } y(t):(\cos (t)-t) y^{\prime \prime}+(1+\sin (t)) y^{\prime}=0 \\
y_{1}=y^{\prime} & v=\frac{\int \frac{1}{t-\cos (t)} \times 0}{} d t \\
v^{\prime}=y^{\prime \prime} & \frac{1}{t-\cos (t)} \\
(\cos (t)-t) v^{\prime}+(1+\sin (t)) v=0 & V=\frac{0+c}{1 /-\cos (t)} \rightarrow c[t-\cos (t)]
\end{array}
$$

$$
I=e^{\int \frac{1+\sin (u)}{\cos (t)-t}}
$$

$u=-(\operatorname{Cos}(t)-t)$
$\partial_{u}=+\sin (u)+1 d t^{\prime}$
$I=e^{\int \frac{1}{\sim u} d u}$
$I=e^{-\ln |\underline{u}|}=\frac{1}{-\cos (t)+t}$

$$
\begin{aligned}
& y=\int c t-c \cos (t) d t \\
& y=\frac{1}{2} c t^{2}-c \sin t+c_{1} \\
& y=c t^{2}-c \sin t+c
\end{aligned}
$$

QUESTION 9. (10 points)
(i) Solve for $y(t), t^{2} y^{\prime \prime}-2 t y^{\prime}+2 y=0$

$$
\begin{gathered}
y=t^{m} \\
y^{\prime}=m t^{m-1} \\
y^{n}=\left(m^{2}-m\right) t^{m-2} \\
t^{m}\left(m^{2}-m-2 m+2\right)=0 \\
m^{2}-3 m+2=0 \\
m=2 \text { or } m=1 \\
y=c_{1} t^{2}+c_{2} t
\end{gathered}
$$

(ii) Use (1) and solve for $y(t): t^{2} y^{\prime \prime}-2 t y^{\prime}+2 y=2 t^{3} e^{t}$

$$
\begin{gathered}
y=y_{n}+y_{p} \\
y_{h}=c_{1} t_{y_{1}}^{t^{2}+c_{2} t} y_{2}^{t} \\
y_{p}=v_{1} y_{1}+v_{2} y_{2} \\
v_{1}^{\prime} y_{1}+v_{2}^{\prime} y_{2}=0 \\
v_{1}^{\prime} y_{1}^{\prime}+v_{2}^{\prime} y_{2}^{\prime}=\frac{2 t^{3} e^{t}}{t^{2}} \\
v_{1}^{\prime} t^{2}+v_{2}^{\prime} t=0 \\
v_{1}^{\prime} 2 t+v_{2}^{\prime}=2 t e t^{2} \\
\omega_{1}=\left\lvert\, \begin{array}{ll}
2 & t \\
2 t & 1
\end{array}=t^{2}-2 t^{2}\right.
\end{gathered}
$$

$$
y_{p}=2+e^{b}
$$

$$
\Rightarrow y=c_{1} t^{2}+c_{2} t+2+e^{t}
$$

$$
\begin{aligned}
& V_{1}^{\prime}=\frac{\left|\begin{array}{cc}
0 & t \\
2+e t & 1
\end{array}\right|}{-t^{2}}=\frac{-2 t^{2} e^{t}}{-t^{2}} \\
& v_{1}^{\prime}=2 e^{t} \\
& v_{1} \int 2 e^{t} d t=2 e^{t} \\
& V_{2}^{\prime}=\frac{\left|\begin{array}{cc}
t^{2} & 0 \\
2 t & 2 t e^{t}
\end{array}\right|}{-t^{2}}=\frac{2 t^{3-2} e^{t}}{-t^{2}} \\
& V_{2}^{\prime}=-2 t e^{t} \\
& \begin{array}{l}
v_{2} \int_{2}^{()^{\prime}} \int_{-2 t e^{t}}^{-2 t} d t=-2 t e^{t}+2 e^{t} \\
0 e^{t}
\end{array} \\
& y_{p}=\left(2 e^{t}\right)\left(t^{2}\right)+\left(-2 t e^{t}+2 e^{t}\right)(t) \\
& y_{p}=2 t^{2} e^{t}-2 t^{2} e^{t}+2 t e t
\end{aligned}
$$

SHORT ANSWERS, JUST STARE well and Think

QUESTION 10. (i) (3 points) Draw the solution curve for $y(x)$ that contains the point $(0,1.5)$ and find $\lim _{x \rightarrow \infty} y(x)$, where $y^{\prime}=-y^{2}+2 y$.
$-y^{2}+2 y=0$
$y=2$ or $y=0$

$(0,1,5)$ lies in $(0,2)$.

$$
\begin{gathered}
\text { as } x \text { goes } \infty \\
\rightarrow y(x) \text { will approach } \\
2 \\
\lim _{x \rightarrow \infty}=2
\end{gathered}
$$

(ii) (3 points) Given y_{1} and y_{2} are two distinct solutions for the diff. equation $e^{x^{2}} y^{\prime \prime}+\cos (x) y=\frac{\ln (x)}{1+x^{3}}$. Then one can quickly form a third solution $y_{3}=\pi^{2} y_{1}+a y_{2}$ and a forth solution $y_{4}=b y_{1}+\left(e^{2}+1\right) y_{2}$. Find the values of the

$$
e^{x^{2}} y^{\prime \prime}+\operatorname{Cos}(x) y=\frac{\ln (x)}{1+x^{3}}
$$

$b=\pi^{2}$
$a=\left(e^{2}+1\right)$

(iii) (4 points) Solve the diff. equation $\frac{d y}{d x}=(\sqrt{y}+y) e^{x}\left(x^{2}+2 x\right)$

$$
\begin{aligned}
& \left.\int \frac{d y}{\sqrt{y}+y}=\int e^{x\left(x^{2}+2 x\right) d x} \quad \quad 2|n| 1+\sqrt{y} \right\rvert\,=x^{2} e^{x}+C \\
& \int \frac{1}{(\sqrt{y})(1+\sqrt{y})} d y==x^{2} e^{x}+C
\end{aligned}
$$

$u=1+\sqrt{y}$
$d u=\frac{1}{2 \sqrt{y}} d y$
$2 \int \frac{1}{u} d u$
$2 \ln ||+\sqrt{y}|$

Faculty information

Ayman Badawi, Department of Mathematics \& Statistics, American University of Sharjah, P.O. Box 26666, Shariah, United Arab Emirates. E-mail: abadawi@aus.edu, wหw.ayman-badawi.com

QUESTION 1. (i) Find the general solution to the Diff. Equation $\underbrace{(2 x+1) y^{\prime}-y=y^{3}(2 x+1) e^{\left(-2 x^{2}-2 x+7\right)}}_{\text {bernouti }}$

$$
\begin{aligned}
& =y^{1-n} \\
& =y^{-2}\left(\frac{y^{\prime}-\frac{1}{(2 x+1)} y}{n=3} w^{\prime}-\frac{(1-3)}{(2 x+1)} w=(1-3) e^{-2 x^{2}-2 x+7}\right.
\end{aligned}
$$

$$
\begin{aligned}
& \Rightarrow \omega^{\prime}+\frac{\frac{2}{2 x+1} \omega}{Q(x)}=\frac{-2 e^{-2 x^{2}-2 x+7}}{k(x)} \\
& \Rightarrow \omega=\frac{\int k(x) e^{\int Q(x) d x}}{e^{\int Q(x) d x}}=\frac{\int-2 e^{-2 x^{2}-2 x+7} e^{2(x+1} c}{e^{\int \frac{2}{2 x+1} d x}}
\end{aligned}
$$

$$
\begin{array}{r}
\int-2(2 x+1) e^{\frac{-2 x^{2}-2 x+7}{e}} d x \quad \text { et } \\
2 x+1 \\
-2 x^{2}-2 x+7 \\
-2 x^{2}-2 x+7
\end{array} \quad \begin{array}{r}
d u=(-4 x-2 \\
\\
=-2(2 x+1))
\end{array}
$$

$$
=\frac{e+c}{2 x+1}
$$

$$
\begin{aligned}
& \Rightarrow w=y^{-2}=\frac{e^{-2 x^{2}-2 x+7}+C}{2 x+1} \\
& \Rightarrow y=\sqrt{\left(\frac{2 x+1}{e^{-2 x^{2}-2 x+7}+C}\right)^{7}}
\end{aligned}
$$

(ii) Find the general solution to the Diff. Equation $\frac{\left.x^{2} y^{\prime 2}\right)+x y^{\prime}+y=\ln (x)}{\text { Cavell }} \rightarrow y^{\prime \prime}+\frac{y^{\prime}}{x}+\frac{y}{x^{2}}=\frac{\ln x}{x^{2}}$
\Rightarrow For $y_{n} \neq$ let $y=x^{n}, y^{\prime}=n x^{n-1}, y^{\prime \prime}=n(n-1) x^{n-2}$
\Rightarrow so $[n(n-1)+n+1] x^{n}=0$
\Rightarrow So $n(n-1)+n+1=0$

$$
-u \cos u+\sin u
$$

$$
\begin{aligned}
& \Rightarrow n^{2}-n+n+1=0 \\
& \Rightarrow n^{2}+1=0 \\
& \Rightarrow n= \pm i
\end{aligned}
$$

\Rightarrow So $y_{h}=c_{1} \cos (\ln x)+c_{2} \sin (\ln x)$
Flip panel
\Rightarrow for $y_{p} \Rightarrow$ let $y_{1}=\cos (\ln x), y_{2}=\sin (\ln x), K(x)=\frac{\ln x}{x^{2}}$

$$
\begin{aligned}
& \text { For } \quad y_{p} \Rightarrow \text { let } \\
& \Rightarrow \quad \omega\left(y_{1}, y_{2}\right)=\left|\begin{array}{cc}
\cos (\ln x) & \sin (\ln x) \\
\frac{-\sin (\ln x)}{x} & \frac{\cos (\ln x)}{x}
\end{array}\right|=\frac{1}{x}
\end{aligned}
$$

$$
\begin{aligned}
& \Rightarrow y_{p}=y_{2} \int \frac{y_{1} k(x)}{\omega\left(y_{1}, y_{2}\right)} d x-y_{1} \int \frac{y_{2} k(x)}{\omega\left(y_{1}, y_{2}\right)} d x \\
& =\sin (\ln x) \cdot \int \frac{\cos (\ln x) \ln x / 2 d x-\cos (\ln x)}{Y x} \int \frac{\sin (\ln x) \ln x / y^{2} d x}{1 / x} \\
& =\sin (\ln x) \cdot \int \frac{\ln x \cos (\ln x)}{x} d x-\cos (\ln x) \int \frac{\operatorname{cin} x \sin (\ln x)}{x} d x \\
& \text { flip }=\sin (\ln x) \cdot(\ln (x) \sin (\ln x)+\cos (\ln x))-\cos (\ln x) \cdot(-\ln (x) \cos (\ln x) \\
& +\sin (\ln x))
\end{aligned}
$$

$$
\begin{aligned}
& =\ln x)\left(\sin ^{2}(\ln x)+\cos ^{2}(\ln x)\right)+\cos (\ln x) \sin (\ln x)-\cos (\ln x) \sin (\ln x \\
& =\ln (x) \\
& \Rightarrow y_{p}=\ln x \\
& \Rightarrow y=y_{h}+y_{p}=\ln x+c_{1} \cos (\ln x)+c_{2} \sin (\ln x)
\end{aligned}
$$

(iii) Find the solution to the Diff. equation $y^{\prime}-\frac{1}{2} y=(1+x \ln (x)) e^{x}, y(1)=4$

$$
\begin{aligned}
& \Rightarrow y^{\prime}-\underbrace{-\frac{1}{x}}_{G(x)} y=\underbrace{(1+x \ln x) e^{x}}_{K(x)} \\
& \Rightarrow y=\frac{\int^{\int} k(x) e^{\int(a(x) d x}}{\iint a(x) d x}=\frac{\int(1+x \ln x) e^{x} \cdot e^{-\int \frac{1}{x} d x} d x}{e^{-\int \frac{1}{x} d x}}
\end{aligned}
$$

$$
\begin{gathered}
\Rightarrow \int\left(f(x)+f^{\prime}(x)\right) e^{x} d x \\
=f(x) e^{x}+c
\end{gathered}
$$

$$
=\frac{\int \frac{(1+x \ln x) e^{x}}{x} d x}{1 / x}
$$

$$
\begin{aligned}
& =\frac{\int\left(\frac{1}{x}+\ln x\right) e^{x} d x}{1 / x} \\
& =\frac{(\ln x) e^{x}+c}{1 / x}
\end{aligned}
$$

$$
y=(x \ln x) e^{x}+c x
$$

$$
\begin{aligned}
& \Rightarrow 4=y(1)=\left(1 . \ln \mid 1 e^{1}+c\right. \\
& \Rightarrow c=4 \\
& \Rightarrow y=(x \ln x) e^{x}+4 x
\end{aligned}
$$

$$
\begin{aligned}
y_{p} & =y_{2} \int \frac{y_{1} k(x)}{w\left(y_{1} y_{2}\right)} d x-y_{1} \int \frac{y_{2} k(x)}{\left.w\left(y_{1}\right)_{2}\right)} d x \\
& =e^{x} \cdot \int \frac{(x+1) \cdot\left(x e^{x}\right)}{\left(x e^{x}\right)} d x-(x+1) \int \frac{e^{x} \cdot\left(x e^{x}\right)}{\left(x e^{x}\right)} d x \\
& =e^{x} \cdot \int(x+1) d x-(x+1) \int e^{x} d x \\
& =e^{x} \cdot\left(\frac{x^{2}}{2}+x\right)-(x+1) e^{x}=e^{x} \cdot\left(\frac{x^{2}}{2}-1\right) \\
y & =y+y=1 c_{1}(x+1)+c_{2} e^{x}+e^{x}\left(\frac{x^{2}}{2}-1\right) \\
& u
\end{aligned}
$$

(iv) Find the general solution to the Diff. Equation $x y^{(2)}-(x+1) y^{\prime}+y=x^{2} e^{x}$, given $y=-e^{x}$ is a solution to the homogeneous part.

$$
G \quad y^{\prime \prime}-\underbrace{(1+1 / x)}_{G(x)} y^{\prime}+\frac{y}{x}=x e^{x}
$$

\Rightarrow for y_{h}, let $y_{1}=-e^{x}$

$$
\begin{aligned}
\Rightarrow \text { so } y_{2} & =y_{1} \int \frac{e^{-\int(a(x) d x}}{y_{1}^{2}} d x \\
& =-e^{x} \cdot \int \frac{e^{\int(1+1 / 2) d x}}{e^{2 x}} d x \\
& =-e^{x} \cdot \int \frac{e^{x+\ln x}}{e^{2 x}} d x \\
& =e^{x} \cdot \int \frac{x e^{x}}{e^{2 x}} d x \\
& =-e^{x} \cdot \int x e^{-x} d x \\
& =-e^{x} \cdot\left(-(x+1) e^{-x}\right)=(x+1) \\
\Rightarrow & \text { so } y_{h}=c_{1}(x+1)+c_{2} e^{x}
\end{aligned}
$$

\Rightarrow for y_{p}, let $y_{1}=(x+1), y_{2}=e^{x}, k(x)$

$$
=x e^{x}
$$

$$
\begin{aligned}
& \Rightarrow \omega\left(y_{1}, y_{2}\right)=\left|\begin{array}{cc}
x+1 & e^{x} \\
1 & e^{x}
\end{array}\right|=x e^{x}+e^{x}-e^{x} \\
&=x e^{x}
\end{aligned}
$$

$$
i
$$

(v) A 39.2 教的 attached to a spring having a spring constant $4 \mathrm{~N} / \mathrm{m}$. At $t=0$, the object is released from a point 1.5

a) Find the equation of the motion, $x(t)$.
$\Rightarrow x^{\prime \prime}+\frac{a}{m} x^{\prime}+\frac{K}{m} x=\frac{F(t)}{m} \Rightarrow m=\frac{39.2}{9.8}=4 k g$
$\Rightarrow x^{\prime \prime}+x=\frac{11}{4}$

$$
\begin{aligned}
& \Rightarrow \quad a=0 \\
& \Rightarrow \quad k=4 \\
& \Rightarrow \quad \times(0)=1.5 \mathrm{~m}
\end{aligned}
$$

$$
\Rightarrow \quad x^{\prime \prime}+x=\frac{7}{2}
$$

\Rightarrow for X_{h}, let $X=e^{m \frac{1}{t}}$ so $m^{2}+1=0, m= \pm i$

$$
\Rightarrow \quad X_{n}=c_{1} \cos t+c_{2} \sin t
$$

$$
\begin{aligned}
& \Rightarrow X_{p}=c_{1} \text {, et } X=A \text { so } A=\frac{7}{2}=x_{p} \\
& \Rightarrow \text { for } X_{p} \text {, }
\end{aligned}
$$

jat, PO. Box 26666, Shariah, United Arab Emirates.

${ }_{4}$ Worked out Solutions for all Assessment Tools
4.1 Solution for Quiz I

Quiz One, MTH 205, Fall 2020

Ayman Badawi

QUESTION 1. (i) $\ell^{-1}\left\{\frac{3}{2 s+5}\right\}=\frac{3}{2} \ell^{-1}\left\{\frac{1}{s+5 / 2}\right\}$

$$
=\frac{3}{2} e^{-5 / 2 t}=\frac{3}{2} e^{-\frac{5 t}{2}}
$$

$$
\begin{aligned}
& \quad \ell\left\{y^{(2)}\right\}-5 \ell\left\{y^{\prime}\right\}+6 \ell\{y\}=l\{1\} \\
& \rightarrow \\
& s^{2} y(s)-s(0)-0-5 s Y(s)-0+6 Y(s)=\frac{1}{s}
\end{aligned}
$$

$$
y(s)\left[s^{2}-5 s+6\right]=\frac{1}{s}
$$

$$
a=\frac{1}{6} \quad b=\frac{1}{3} \quad c=-\frac{1}{2}
$$

$$
y(t)=\frac{1}{6} l^{-1}\left\{\frac{1}{s}\right\}+\frac{1}{3} l^{-1}\left\{\frac{1}{s-3}\right\}-\frac{1}{2} l^{-1}\left\{\frac{1}{s-2}\right\}
$$

$$
y(t)=\frac{1}{6}+\frac{1}{3} e^{3 t}-\frac{1}{2} e^{2 t}
$$

Faculfy information

Ayman Badawi, Department of Mathematics \& Statistics, American University of Sharjah, P.O. Box 26666, Sharjah, United Arab Emirates.
E-mail: abadari@aus.edu, wwh.ayman-badavi.com

$$
\begin{aligned}
& \text { (ii) } \ell^{-1}\left\{\frac{3}{s^{2}+4}+\frac{7}{s^{9}}\right\}=\ell^{-1}\left\{\frac{3}{s^{2}+4}\right\}+\ell^{-1}\left\{\frac{7}{s^{9}}\right\} \\
& \begin{array}{l}
\rightarrow l^{-1}\left\{\frac{3}{s^{2}+4}\right\}=l^{-1}\left\{\frac{3}{s^{2}+2^{2}}\right\}=\frac{3}{2} \sin (2 t) \\
\rightarrow l^{-1}\left\{\frac{7}{s^{9}}\right\}=n=8=\frac{1}{5760}\left\{x\left\{\frac{8!}{s^{9}}\right\}=\frac{t^{8}}{5760}\right\}=\frac{3}{2} \sin (2 t)+\frac{t^{8}}{5760} \\
\ell\left\{(t+2)^{2}\right\}
\end{array} \\
& \begin{array}{l}
\text { (iii) } \ell\left\{(t+2)^{2}\right\} \\
\qquad\{(t+2)(t+2)\}=\left\{t^{2}+4 t+4\right\}=\frac{2!}{s^{3}}+\frac{4}{s^{2}}+\frac{4}{s}=\frac{2}{s^{3}}+\frac{4}{s^{2}}+\frac{4}{s} \\
\text { QUESTION 2. find } y(t) \text {, where } y^{(2)}-5 y^{\prime}+6 y=1, y(0)=y^{\prime}(0)=0
\end{array}
\end{aligned}
$$

4.2 Solution for Quiz II

al)i) $L^{-1}\left\{e^{-4 / s} \cdot \frac{1}{s^{2}+3^{2}}\right\}$
ii) $\mathcal{L}^{-1}\left\{\frac{1}{(s-1)^{2}+2^{2}}+6 e^{-3 s} \frac{1}{5^{4}}\right\}=\frac{1}{2} e^{3 t} s$
iii)

$$
\begin{aligned}
L\{U_{s}(t) \underbrace{t-5}_{f(t)} \cosh (t-5)\}
\end{aligned}=e^{-5 s} \cdot L\left\{U_{3}(t) \cdot(t-3)^{3} e^{t-5-5} \cosh (t+5-5)\right\}=e^{-5 s} \cdot L\left\{e^{t} \cosh ^{-1(t)\}}\right\}
$$

$$
\begin{aligned}
& \text { Q2) } y^{\prime}-2 y=U_{3} e^{t-3}, y(0)=0 \\
& L\left\{y^{\prime}\right\}-2 L\{y\}=L\left\{U_{3} e^{t-3}\right\} \\
& S Y(s)-2 Y(s)-0=e^{-3 s} \cdot L\left\{e^{t}\right\}=e^{-3 s} \cdot \frac{1}{s-1} \\
& Y(s)[s-2]=\frac{e^{-3 s}}{s-1} \\
& Y(s)=\frac{e^{-3 s}}{(s-1)(s-2)}=e^{-3 s}\left(\frac{1}{(s-1)(s-2)}\right) \\
& Y(s)=e^{-3 s}\left(\frac{1}{s-2}-\frac{1}{s-1}\right) \\
& L^{-1}\{Y(s)\}=L^{-1}\left\{e^{-3 s}\left(\frac{1}{s-2}-\frac{1}{s-1}\right)\right\}=\frac{15}{} \\
& y(t)=L^{-1}\left\{e^{-3 s} \cdot \frac{1}{s-2}\right\}-L^{-1}\left\{e^{-3 s} \cdot \frac{1}{s-1}\right\} \\
& y(t)=U_{3}(t) \cdot e^{2(t-3)}-U_{3}(t) e^{t-3}
\end{aligned}
$$

Poutad Fractions:

$$
\begin{aligned}
& \frac{1}{(s-1)(s-2)} \equiv \frac{A}{s-1}+\frac{B}{s-2} \\
& 1=A(s-2)+B(s-1) \\
& s=1 \rightarrow \quad 1=-A \quad A=-1 \\
& s=2 \rightarrow \quad 1=B \quad B=1 \\
& \therefore \frac{1}{(s-1)(s-2)}=\frac{1}{s-2}-\frac{1}{s-1}
\end{aligned}
$$

Q1)
$f(t)=\left\{\begin{array}{lll}1 & \text { if } 0 \leq t<3 \\ 0 & \text { if } & 3 \leq t<\infty\end{array}\right.$
i)
ii)

$$
\begin{aligned}
& f(t)=1[\underbrace{U_{0}(t)}_{=1}-U_{3}(t)]+\underbrace{0 \cdot\left[U_{3}(t)-U_{\infty}(t)\right]}_{=0} \\
& f(t)=1-U_{3}(t)
\end{aligned}
$$

$$
\begin{aligned}
& y^{\prime}-4 y=f(t) \quad \text { Definition }(f(t) \text { imp } \\
& L\left\{y^{\prime}\right\}-4 L\{y\}=L \mathcal{L}\left\{1-U_{3}(t)\right\} \\
& s Y(s)-y(0)-4 Y(s)=\frac{1}{s}-\frac{e^{-3 s}}{s} \\
& =0 \\
& y(s)[s-4]=\frac{1}{s}-\frac{e^{-3 s}}{s}
\end{aligned}
$$

$$
\text { Definitionof } f(t) \text { imples } f(0)=\neq y(0)=0
$$

Partial Practions:

$$
y(s)=\frac{1}{s(s-4)}-\frac{e^{-3 s}}{s(s-4)}
$$

$$
\begin{aligned}
& \frac{1}{s(s-4)} \equiv \frac{A}{s}+\frac{B}{s-4} \\
& 1=A(s-4)+B S \\
& s=0 \rightarrow 1=-4 A, A=-1 / 4 \\
& s=4 \rightarrow \quad 1=4 B \quad B=1 / 4 . \\
& \therefore \frac{1}{s(s-4)}=\frac{1}{4(s-4)}-\frac{1}{4 s}
\end{aligned}
$$

$$
\begin{aligned}
& y(s)=\frac{1}{4(s-4)}-\frac{1}{4 s}-e^{-3 s}\left[\frac{1}{4(s-4)}-\frac{1}{4 s}\right] \\
& y(t)=L^{-1}\left\{\frac{1}{4(s-4)}-\frac{1}{4 s}\right\}-\left(U _ { 3 } (t) \cdot \mathcal { L } ^ { - 1 } \left\{\frac{1}{4(s-4)}-\frac{1}{4}\right.\right. \\
& y(t)=\frac{1}{4} e^{4 t}-\frac{1}{4}-U_{3}(t) \cdot\left[\frac{1}{4} e^{4(t-3)}-\frac{1}{4}\right]
\end{aligned}
$$

$$
\begin{aligned}
& \text { Q2) } y^{\prime \prime}-6 y^{\prime}-5 y=0, y(0)=0, y^{\prime}(0)=2 \text {. } \\
& s^{2} y(s)-\underbrace{s y(0)}_{=0}-\underbrace{y^{\prime}(0)}_{=2}-6 s y(s)+\underbrace{6 y(0)}_{=0}-5 Y(s)=0 \\
& y(s)\left[s^{2}-6 s-5\right]=2 \text {. } \\
& Y(s)=\frac{2}{s^{2}-6 s-5}=\frac{2}{(s-3)^{2}-14}=\frac{2}{4}\left(\frac{6}{6}\right. \\
& y(s)=\frac{2}{\sqrt{14}} \cdot \frac{\sqrt{14}}{(s-3)^{2}-14} \\
& y(t)=\frac{2}{\sqrt{14}} e^{3 t} \cdot \sinh (\sqrt{14} t) \\
& \text { loll }
\end{aligned}
$$

(1) i) $f(t)=\left\{\begin{array}{lll}1 & \text { if } & 0 \leq t<3 \\ 0 & \text { if } & t \geq 3\end{array}\right\}$.

$$
f(t)=1\left(U_{0}(t)-U_{3}(t)\right)+0<y_{3}(t)
$$

$$
f(t)=U_{0}(t)-U_{3}(t)
$$

$2 / 2$

$$
\left.\begin{array}{c}
\text { ii) } y^{\prime}-4 y=f(t) \\
\ell\left\{y^{\prime}-4 y=1 U_{0}(t)-U_{3}(t)\right\} \\
s Y(s)-4 Y(s)=\frac{e^{-0}}{s}-\frac{e^{-3 s}}{s} \\
Y(s)[s-4]=\frac{1-e^{-3 s}}{s} \\
Y(s)=\frac{1-e^{-3 s}}{s(s-4)}=\frac{9}{s}+\frac{b}{s-4} \\
A=-\frac{1}{4}, B=\frac{1}{4} \rightarrow \frac{1}{s(s-4)}=\frac{-\frac{1}{4}}{s}+\frac{\frac{1}{4}}{s-4} \\
y(t) l^{-1}\left\{\frac{-\frac{1}{4}}{s}+\frac{1}{4}\right\}-l^{-1}\left\{e^{-3 s} *\left(-\frac{1}{4 s}+\frac{1}{4}\right)\right\} \\
s-4
\end{array}\right\}
$$

(2)

$$
\begin{gathered}
y^{\prime \prime}-6 y^{\prime}-5 y=0 \quad y(0)=0 \quad y^{\prime}(0)=2 \\
s^{2} y(s)-0-2-6 s y(s)-5 y(s)=0 \\
y(s)\left[s^{2}-6 s-5\right]=2 \\
y(s)=\frac{2}{(25-3)^{2}+4+4}=\frac{2}{\left(s^{2}-6 j\right.} \\
\left(s^{2}-6 s-5\right) \\
=\frac{2}{(s-3)^{2}-14} \\
y(1)=l^{-1}\left\{\frac{2}{(s-3)^{2}-14}\right\} \\
y(t)=\frac{2 e^{3 t}}{\sqrt{14}} \sinh (\sqrt{14} t)
\end{gathered}
$$

$$
5 / 5
$$

1)

i)

$$
\begin{aligned}
f(t) & =1\left[u_{0}(t)-u_{3}(t)\right]+0 \\
& =1-u_{3}(t)
\end{aligned}
$$

ii)

$$
y^{\prime}-4 y=f(t)
$$

$$
y^{\prime}-4 y=1-u_{3}(t)
$$

$$
L\left\{y^{\prime}-4 y\right\}=L\left\{1-u_{3}(t)\right\}
$$

$$
s y(s)-y(0)-4 Y(s)=\frac{1}{s}-\frac{e^{-3 s}}{s}
$$

$$
y(0)=0
$$

$$
Y(s)[s-4]=\frac{1}{s}-\frac{e^{-3 s}}{s}
$$

$$
Y(s)=\frac{1}{s(s-4)}-\frac{e^{-3 s}}{s(s-4)}
$$

$$
\begin{aligned}
\frac{1}{S(S-4)} & =\frac{A}{S}+\frac{B}{S-4} \quad A=-\frac{1}{4} \quad B=\frac{1}{4} \\
& =-\frac{1}{4} \frac{1}{s}+\frac{1}{4} \frac{1}{S-4}
\end{aligned}
$$

$$
y(t)=L^{-1}\{y(s)\}=L^{-1}\left\{\frac{1}{s(s-4)}\right\}-L^{-1}\left\{e^{-3 s} \cdot \frac{1}{s(s-4)}\right\}
$$

- $L^{-1}\left\{\frac{1}{S(S-4)}\right\}=L^{-1}\left\{-\frac{1}{4} \frac{1}{5}+\frac{1}{4} \frac{1}{S-4}\right\}=-\frac{1}{4}+\frac{1}{4} e^{4 t}$
- $L^{-1}\left\{e^{-3 s} \cdot \frac{1}{s(s-4)}\right\}=f(t-3) u_{3}(t)$

$$
\begin{aligned}
& f(t)=-\frac{1}{4}+\frac{1}{4} e^{4 t} \\
& f(t-3)=-\frac{1}{4}+\frac{1}{4} e^{4(t-3)}
\end{aligned}
$$

$$
\begin{aligned}
& L^{-1}\left\{\frac{1}{s(s-4)}\right\}-L^{-1}\left\{e^{-3 s} \cdot \frac{1}{s(s-4)}\right\} \\
= & -\frac{1}{4}+\frac{1}{4} e^{4 t}-\left[u_{3}(t)\left[-\frac{1}{4}+\frac{1}{4} e^{4(t-3)}\right]\right] \\
= & -\frac{1}{4}+\frac{1}{4} e^{4 t}+u_{3}(t)\left[\frac{1}{4}-\frac{1}{4} e^{4(t-3)}\right]
\end{aligned}
$$

2)

$$
\begin{gathered}
\text { 2) } y^{\prime \prime}-6 y^{\prime}-5 y=0 \quad y(0)=0, \quad y^{\prime}(0)=2 \\
s^{2} y(s)-s y(0)-y^{\prime}(0)-6[s y(s)-y(0)]-5 y(s)=0 \\
s^{2} y(s)-2-6 s y(s)-5 y(s)=0 \\
y(s)\left[s^{2}-6 s-5\right]=\alpha \\
y(s)=\frac{2}{s^{2}-6 s-5}=\frac{2}{(s-3)^{2}-14}
\end{gathered}
$$

$$
\begin{aligned}
y(t)=L^{-1}\{y(s)\} & =L^{-1}\left\{\frac{2}{(s-3)^{2}-14}\right\} \\
& =\frac{\alpha^{-1}}{\sqrt{14}}\left\{\frac{\sqrt{14}}{(s-3)^{2}-14}\right\} \\
& =\frac{2}{\sqrt{14}} e^{3 t} \sinh (\sqrt{14} t)
\end{aligned}
$$

Tazan Abr Always
79252
Q_{1} Let $f(t)=\left\{\begin{array}{lll}1 & \text { if } 0 \leqslant t<3 \\ 0 & \text { if } & t \geqslant 3\end{array}\right.$
write $f(t)$ in terms of unit-step functions:
i) $U_{0}(t)-U_{3}(t)+\left(X_{3}(t)\right)$

$$
\checkmark 2 / 2
$$

ii) Find $y(t)$, where $\left.y^{\prime}-4 y=f(t)\right\} \geqslant y(0)=0$

$$
\begin{aligned}
& s y(s)-y(0)-4 y(s)=L\left\{U_{0}(r)-U_{3}(L)\right\} \\
& s y(s)-4 y(s)=\frac{e^{0}}{s}-\frac{e^{-3 s}}{s} \\
& \begin{array}{l}
y(s)=\frac{1-e^{-3 s}}{s} \times \frac{1}{s-4} \\
\mathcal{L}^{-1}\{y(s)\}=2^{-1}\left\{\frac{1-e^{-3 s}}{s(s-4)}\right\}=d^{-1}\left\{\frac{1}{s(s-4)}-\frac{e^{-3 s}}{s(s-4)}\right\} \mathrm{l} / 2
\end{array} \\
& \begin{array}{l}
\frac{1}{S(S-4)}=\frac{A}{5}+\frac{B}{s-4} \frac{1}{S(s-4)}=\frac{-\frac{1}{4}}{5}+\frac{\frac{1}{4}}{s-4} .
\end{array} \\
& A=-\frac{1}{4}, B=\frac{1}{4} \rightarrow \frac{1}{5(5-4)} \frac{1}{5} \\
& y(t)=\mathcal{L}^{-1}\left[\frac{-\frac{1}{4}}{5}+\frac{\frac{1}{4}}{5-4}\right\}-1^{-1}\left\{e^{-35} \times\left(-\frac{1}{45}+\frac{\frac{1}{4}}{5-4}\right)\right\} \\
& y(t)=-\frac{1}{4}+\frac{1}{4} e^{4 t}-\left(U_{3}(t)\left(-\frac{1}{4}+\frac{1}{4} e^{4(t-3)}\right)\right) \\
& y(t)=-\frac{1}{4}+\frac{1}{4} e^{4 t}-U_{3}(t)\left(-\frac{1}{4}+\frac{1}{4} e^{4(t-3)}\right)
\end{aligned}
$$

Find $y(t)$

$$
\begin{aligned}
& \text { Find } y(t) \\
& y^{(2)}-6 y^{\prime}-5 y=0, y(0)=y 0, y^{\prime}(0)=2 \\
& s^{2} y(s)-s y^{\prime}(0)-y^{\prime}(0)-6[s y(s)-y(0)]-5 y(s)=0 \\
& s^{2} y(s)-2-6 s y(s)-5 y(s)=0
\end{aligned}
$$

$y(s)=\frac{2}{\left(s^{2}-6 s-5\right)} \rightarrow$ Complete the square $\sqrt{2} / 2$

$$
\begin{aligned}
& y(s)=\frac{2}{\left(s^{2}-6 s+9\right)-5-9}=\frac{2}{(s-3)^{2}-14} \\
& \alpha^{-1}\{y(s)\}=2^{-1}\left\{\frac{2}{(s-3)^{2}-14}\right\} \\
& y(t)=\frac{2 e^{3 t}}{\sqrt{14}} \sinh (\sqrt{14} t)
\end{aligned}
$$

$f(t)= \begin{cases}\text { Quiz-Shree } \\ 1,0 \leq t<3 \\ 0, & t \geqslant 3\end{cases}$
$f(t)=1\left\{U_{0}(t)-U_{3}(t)\right\}+0\left\{U_{3}(t)-U_{\infty}(t)\right\}$
$f(t)=\left\{v_{0}(t)-v_{3}(t)\right\}$
ii)

$$
y^{\prime}-4 y=f(t) \quad, y(0)=0
$$

$\ell\left\{y^{\prime}\right\}-4 l\{y\}=\ell\left\{v_{0}(t)-U_{3}(t)\right\}$
$[s Y(s)-y(0)]-4 Y(s)=\frac{e^{-0 s}-\frac{e^{-3 s}}{s}}{s}$
$S Y(5)-4 Y(5)=\frac{1}{5}-\frac{e^{-3 s}}{5}$

$$
Y(s)[s-4]=\frac{1-e^{-3 s}}{5((s+4)}
$$

$$
Y(s)=\frac{1-e^{-3 s}}{5(5-4)}
$$

$$
\begin{aligned}
\frac{1}{s(s-4)}= & \frac{A}{5}+\frac{B}{s-4} \\
A= & -1 / 4, B=1 / 4 \\
& \ell^{-1}\{Y(s)\}=
\end{aligned}
$$

$$
y(t)=\ell^{-1}\left\{\frac{-1}{4 s}+\frac{1}{4(s-4)}\right\}-\left\{\frac{-1}{4}+e^{4(t-3\rangle}\right\}_{3}(t)
$$

$$
=\frac{-1}{4}+e^{4 t}-U_{3}(t)\left\{-\frac{1}{4}+\frac{e^{4(t-3)}}{4},\right\}
$$

4.4 Solution for Quiz IV

(1)

$$
\begin{aligned}
& y^{\prime \prime \prime}-6 y^{\prime \prime}+9 y^{\prime}=e^{-2 t} \\
& m^{3}-6 m^{2}+9 m=0 \\
& m\left(m^{2}-6 m+9\right)=0 \\
& m=0 \quad m=3 \quad m=3 \\
& y_{n}=c_{1}+c_{2} e^{3 t}+c_{3}+e^{3 t}
\end{aligned}
$$

$$
\begin{aligned}
y_{p} & =A e^{-2 t} \\
y^{\prime} & =-2 A e^{-2 t} \\
y^{\prime \prime} & =4 A e^{-2 t} \\
y^{\prime \prime \prime} & =-8 A e^{-2 t} \\
& =-8 A e^{-2 t} 6\left(4 A e^{-2 t}\right)+9\left(-2 A e^{-2 t}\right)
\end{aligned}
$$

$$
\begin{aligned}
& y^{(3)}-3 y^{(2)}+6.25 y^{\prime}=25 \\
& Y_{p}=A t \\
& m^{3}-3 m^{2}+6.25 m=0 \\
& y^{\prime}=A \\
& y^{\prime \prime}=0 \\
& m\left(m^{2}-3 m+6.25\right)=0 \\
& m=0 \quad m=\frac{3}{2} \pm 2 i \\
& y^{\prime \prime \prime}=0 \\
& 4_{n}=c_{1}+e^{3 / 2 t}\left[c_{2} \cos (2 t)+c_{3} \sin (2 t)\right] /
\end{aligned}
$$

$$
\begin{aligned}
& \text { Q1) } t y^{(2)}-4 y^{\prime}=t^{4} \\
& V_{p}=U_{1} Y_{1}+U_{2} V_{2} \\
& n(n-1)-4 n=0 \\
& n^{2}-n-4 n=0 \\
& n^{2}-5 n=0 \\
& \left\{\begin{array}{l}
u_{1}^{\prime}(1)+u_{2}^{\prime}\left(t^{3}\right)=0 \\
u_{1}^{\prime}(0)+u_{2}^{\prime}\left(5 t^{4}\right)=t^{3}
\end{array}\right. \\
& \begin{array}{c}
n(n-5)=0 \\
n=0 \\
n
\end{array} \\
& D=\left|\begin{array}{ll}
1 & t^{5} \\
0 & 5 t^{4}
\end{array}\right|=5 t^{4} \\
& \begin{array}{ll}
y_{1} \\
=t^{0}=1 \quad & y_{2} \\
= & t^{5}
\end{array} \\
& u_{1}^{\prime}=\left|\begin{array}{cc}
0 & t^{5} \\
t^{3} & 5 t^{4}
\end{array}\right|=\frac{-t^{2}}{5 t^{4}}=-\frac{1}{5} t^{4} \\
& U_{2}^{\prime}=\frac{\left.\left.\right|_{1} ^{1} \begin{array}{ll}
0 & t^{3}
\end{array} \right\rvert\,}{5+4}=\frac{t^{3}}{5 t^{4}}=\frac{1}{5 t} \\
& u_{1}=\int-\frac{1}{5} t^{4}=\frac{-1}{25} t^{5} \\
& u_{2}=\int \frac{1}{5 t}=\frac{1}{5} \ln |t| \\
& V_{g}=c_{1}+c_{2} t^{5}+\frac{-1}{25} t^{5}+\frac{1}{5} t^{5} \ln |t|
\end{aligned}
$$

Q2) $\left(t y^{\prime}+y=t \sin \left(t^{2}\right)\right) \div t$

$$
\begin{aligned}
& y^{\prime}+\frac{1}{t} y=\sin \left(t^{2}\right) \\
& I=e^{\int \frac{1}{t} d t}=e^{\ln t}=t \\
& y=\int \frac{t \sin \left(t^{2}\right) d t}{t} \leftarrow \begin{array}{l}
u=t^{2} \\
\frac{d u}{2}=\frac{2 t a t}{2}
\end{array}=\frac{1}{2} \sin u d u \\
& y=-\frac{1}{2} \cos ^{2}+c t^{-1}
\end{aligned}
$$

Razor Abr Always
79252

NTH 205.
Quiz 5

Question 1 :
$t y^{(2)}-4 y^{\prime}=t^{4} . \quad$ Find $y g \rightarrow$ nd order L.D.E with

$$
y_{g}=y_{w}+y_{p}
$$

Assume $y=t^{n}, y^{\prime}=n t^{n-1}, y^{\prime \prime}=n^{2}-n t^{n-2}$
LS All of the terms have a degree of $n-1 \rightarrow$ I can use Cauchy Euler.

$$
\begin{aligned}
& \text { Cauchy tolar. } \\
& y_{n}=\left(-y^{(2)}-4 y^{\prime}=0 .\right. \\
& C \operatorname{har}(2 \cdot D \cdot E)=n^{2}-n-4 n=0 . \quad y_{p}=\frac{-t^{5}}{25}+\frac{1}{5} d n(t) t^{5} .
\end{aligned}
$$

$$
\begin{gathered}
y_{n}=\left(-y^{(2)}-4 y^{\prime}=0\right. \\
c \operatorname{hor}(2 \cdot D \cdot E)=n^{2}-n-4 n=0 \\
n^{2}-5 n=0 \cdot \overrightarrow{ } n(n-5)=0 \\
n=0, \quad n=5 . \\
y_{1}=t^{0}=1, y_{2}=t^{5} \\
y_{w}=c_{1}+c_{2} t^{5} .
\end{gathered}
$$

$$
y_{g}=c_{1}+c_{2} t^{5}+t^{5}\left[-\frac{1}{25}+\frac{1}{5} \ln (t)\right]
$$

$$
\begin{aligned}
& y_{w}=c_{1}+c_{2} t^{5} \\
& 4 y_{p}=a_{1}(t) y_{1}+a_{2}(t) y_{2}=a_{1}(t) \cdot 1+a_{2}(t) t^{5} \\
&
\end{aligned}
$$

$$
\begin{aligned}
& \text { subject } t_{0}^{\prime}: \\
& u_{1}^{\prime}+u_{2}^{\prime} t^{5}=0 \\
& 0+u_{2}^{\prime} 5 t^{4}=\frac{t^{4}}{t}=t^{3} \\
& w=\left|\begin{array}{cc}
1 & t^{5} \\
0 & 5 t^{4}
\end{array}\right|=5 t^{4} \\
& u_{1}^{\prime}=\left|\begin{array}{cc}
0 & t^{5} \\
t^{3} & 5 t^{4}
\end{array}\right|=\frac{0-t^{8}}{5 t^{4}}=\frac{-t^{4}}{5}
\end{aligned}
$$

$$
u_{2}^{\prime}=\left|\begin{array}{cc}
1 & 0 \\
0 & t^{3}
\end{array}\right|-\frac{t^{3}}{5 t^{4}}
$$

$$
\begin{aligned}
& u_{2}{ }^{\prime}=\frac{1}{5 t} \\
& \Rightarrow u_{1}=\int-\frac{t^{4}}{5} d t \\
& u_{1}=\frac{-t^{5}}{25} \\
& \Rightarrow u_{2}=\int \frac{1}{5(-1 t} d t \\
& u_{2}=\frac{1}{5} \operatorname{Ln}(t)
\end{aligned}
$$

-Question 2:
Solve for $y_{g}: t y^{\prime}+y=t \sin \left(t^{2}\right) \rightarrow$ st order $2 D E$.

$$
\begin{aligned}
& y^{\prime}+\frac{1}{t} y=\sin \left(t^{2}\right) \\
& 2 \text { IF: } e^{S Q(t) d t}=e^{\int \frac{1}{t} d t}=e^{2 u(t)}=t . \\
& {\left[y^{\prime}+\frac{1}{t} y=\sin \left(t^{2}\right)\right] \times t \text {. }} \\
& f(t y)^{2}=\int t \sin \left(t^{2}\right) \quad \begin{array}{c}
\text { take integral al } \\
\text { both side. }
\end{array} \\
& t-y=-\frac{1}{2} \cos \left(t^{2}\right)+c \\
& y=-\frac{1}{2 t} \cos \left(t^{2}\right)+\frac{c}{t} .
\end{aligned}
$$

DIFFERENTIAL EQUATIONS
QI) $t y^{\prime \prime}-4 y^{\prime}=t^{4}$ find $y g$.

$$
\text { Let } y=t^{n} \Rightarrow y^{\prime}=n t^{n-1} y^{\prime \prime}=n(n-1) t^{n-2}
$$

$$
\begin{aligned}
\Rightarrow & n(n-1) t \cdot t^{n-2}-4 n t^{n-1}=0 \\
& n(n-1) t^{n-1}-4 n t^{n-1}=0 \\
\Rightarrow & n^{2}-n-4 n=0 \\
& n^{2}-5 n=0 \quad n=0,5 \quad \therefore y_{n}=c_{1}+c_{2} t^{5} \\
& n(n-5)=0
\end{aligned}
$$

Variation! $y_{p} \rightarrow \quad u_{1}^{\prime}(t) \cdot u_{2}^{\prime}(t) \cdot t^{5}=0$

$$
\begin{aligned}
& u_{1}^{\prime}(t) \cdot(0)+u_{2}^{\prime}(t) \cdot 5 t^{4}=\frac{t^{4}}{t} \Rightarrow \quad U_{2}^{\prime}(t)-0, u_{2}(t)=0 \\
& \left|\begin{array}{ll}
1 & t^{5} \\
0 & 5 t^{4}
\end{array}\right|=5 t^{4} \text {, } \\
& u_{1}^{\prime}(t)=\frac{\left|\begin{array}{cc}
0 & t^{5} \\
t^{3} & 5 t^{4}
\end{array}\right|=\frac{t^{8}}{5 t^{4}}=\frac{1}{5} t^{4} \quad u_{1}^{4}}{5}+\frac{1}{9}(t)=\frac{1}{25} t^{5} \\
& U_{2}^{\prime}(t)=\frac{\left|\begin{array}{cc}
1 & 0 \\
0 & t^{3}
\end{array}\right|}{5 t^{4}}=\frac{t^{3}}{5 t^{4}}=\frac{1}{5} \frac{1}{t} . \quad U_{2}(t)=\frac{1}{5} \ln (t) . \\
& \therefore y_{p}=\frac{1}{25} t^{5}+\frac{1}{5} t^{5} \ln (t) . \\
& y_{g}=c_{1}+c_{2} t^{5}+\frac{1}{5} t^{5} \ln (t) .
\end{aligned}
$$

$$
\begin{aligned}
& \text { Q2) } t y^{\prime}+y=t \sin \left(t^{2}\right) \\
& y^{\prime}+\frac{1}{t} y=\text { 尚 } \sin \left(t^{2}\right) \\
& \text { I'F }=e^{\int \frac{1}{t} d t}=e^{\ln (t)}=t>0 \text { Assumption. } \\
& t y=\int t \sin \left(t^{2}\right) d t . \\
& I=\int t \sin \left(t^{2}\right) d t \quad l e t u=t^{2} \\
& \quad d u=2 t d t . \\
& t d t=\frac{1}{2} d u \\
& I=\frac{1}{2} \int \sin (u) d u=\frac{-1}{2} \cos (u)+c=\frac{-1}{2} \cos \left(t^{2}\right)+c \\
& t y=\frac{-1}{2} \cos \left(t^{2}\right)+c \\
& y=\frac{-1}{2} t^{-1} \cos \left(t^{2}\right)+c t^{-1} .
\end{aligned}
$$

4.6 Solution for Quiz VI

Farah Ossama - 82666
Quiz
(1)

$$
\begin{aligned}
& \frac{d y}{d x}=\frac{-e^{x} y+4 x-3 y^{2}+2 x y}{e^{x}-x^{2}+6 y x+\sin (y)-7} \\
& f_{x}=e^{x} y-4 x+3 y^{2}-2 x y \\
& f_{y}=e^{x}-x^{2}+6 y x+\sin (y)-7 \\
& \left.f_{x y}=e^{x}+6 y-2 x\right\} \text { EXACT } f_{x y}=f_{y} x \\
& f_{y} x=e^{x}-2 x+6 y \\
& \int f_{x} d x=\int e^{x} y-4 x+3 y^{2}-2 x y \cdot d x \\
& \quad=e^{x} y-2 x^{2}+3 y^{2} x-x^{2} y+C(y)
\end{aligned}
$$

$$
\begin{aligned}
& \int f_{y} \cdot d y=\int e^{x}-x^{2}+6 y x+\sin (y)-7 d y \\
&=e^{x} y-x^{2} y+3 x y^{2}-\cos (y)-7 y+c(x) \\
& L \rightarrow e^{x} y-x^{2} y+3 x y^{2}-2 x^{2}-\cos (y)-7 y \text { ana }
\end{aligned}
$$

$$
e^{x} y-x^{2} y+3 x y^{2}-2 x^{2}-\cos (y)-7 y+c=0
$$

QR) $\frac{d y}{d x}=y^{3}-6 y^{2}-7 y$
Critical points
$\rightarrow \quad y^{3}-6 y^{2}-7 y=0$

$$
y\left(y^{2}-6 y-7\right)=0
$$

$y=0 \quad y=-1 \quad y=7 \quad \rightarrow$ critical points

Find the sign

(a) $y=7 \rightarrow$ unstable point/ non stable
(a) $y=0 \rightarrow$ stable point
(a) $y=-1 \rightarrow$ unstable point/nonstable

Q3) Tank capacity $=1200 \mathrm{~L}$
rate in $\rightarrow 2$ grams per L
GL/ min
$A(0)=80$
300 L of brine
rate out $\rightarrow 3 \mathrm{~L} / \mathrm{min}$

Volume of fluid $=300+(6-3) t$

$$
300+3 t
$$

$c(t)$ concentration @ time t

$$
c(t)=\frac{A(t)}{\text { volume }}
$$

$$
=\frac{A}{300+3 t}
$$

$$
\begin{aligned}
\frac{d A}{d t} & =\text { rate in }- \text { rate out } \\
& 2 \times 6-C(t) \times 3 \\
& =12-\frac{A}{300+3 t} \times 3
\end{aligned}
$$

$$
\frac{d A}{d t}=12-\frac{3 A}{300+3 t}
$$

$$
\frac{d A}{d t}+\frac{3 A}{300+3 t}=12 \rightarrow \text { list order eq }
$$

$$
I=e^{\int Q(t) d^{t}}=e^{\int \frac{3}{300+3 t} \cdot d t}=e^{\ln |300+3 t|}
$$

$$
=300+3 t
$$

$$
A=\frac{\int(300+3 t) 12 \cdot d t}{300+3 t}=\frac{3600 t+18 t^{2}+c}{300+3 t}
$$

i) $c(t)=\frac{\mathrm{A}}{300+3 t}$
ii) $A(t)=\frac{3600 t}{300+3 t^{2}+c}$
$A(0) \Rightarrow \frac{3600(0)+18(0)^{2}+C}{300+3(0)}=80$

$$
\frac{c}{300}=80
$$

$$
c=24000
$$

$$
A(t)=\frac{3600 t+18 t^{2}+24000}{300+3 t}
$$

4.7 Solution for EXAM I

$$
\begin{aligned}
& \text { 1) } l\left[y^{\prime \prime}-6 y^{\prime}+5 y=U_{2}(t)\left[e^{\left(t_{1}\right)}\right)\right] y(0)=0, y^{\prime}(0)=0 \\
& s^{2} Y(s)-6 s y(s)+5 Y(s)= \\
& e^{-2 s} \cdot l[g(t+2)]=\frac{1}{s-1} \cdot e^{-2 s} \\
& f(s)\left[5^{2}-6 s+5\right)=\frac{R^{-25}}{s-1} \cdot \frac{1}{s^{2}-63+5} \\
& e^{\prime} \int(1 / s)=e^{-2 s} \quad(x-5)(R-1) \\
& e^{\lambda}\left\{y(s)=\frac{\frac{\lambda e^{-2 s}}{(s-1)^{2}(s-5)}}{d}\right]= \\
& \ell^{\prime \prime}\left[\frac{1}{(s-1)^{2}(s-5)}\right] \\
& b=\frac{1}{1-5}=-\frac{1}{4} \quad \frac{a}{s-1}+\frac{b}{(s-1)^{2}}+\frac{c}{5-5} \\
& a(s-1)(s-5)+b(s-5)+c(s-1)^{2} \\
& c=\frac{1}{16} \quad(a s-a)(s-5) \quad c\left(s^{2}-2 s+1\right) \\
& a=-\frac{1}{16} \quad \begin{array}{r}
a s^{2}-5 a s^{2}-a s+5 a+b s-5 b+c s^{2}-2 v+c \\
a+c=0 \Rightarrow-6=-a \\
\\
-5 a-a-2 c=0 \Rightarrow-6 a-2 c=0
\end{array} \\
& \rightarrow 5-1, \quad 5 a-5 b+c=1 \Rightarrow \\
& \Rightarrow\left[\frac{-1 / 16}{s-1}+\frac{-1 / 4}{(s-1)^{2}}+\frac{1 / 16}{s-5}\right]^{l-1} \\
& -1 / 16 e^{t}-1 / 4 t e^{t}+1 / 16 e^{5 t} \\
& y(t)=\left\{-1 / 1 e^{(t-2)}-1 / 4 e^{(t-2)}+\frac{1}{16} e^{5(t-2)}\right\} \quad U_{2}(t)
\end{aligned}
$$

2)

$$
\begin{gathered}
y^{\prime \prime}-4 y^{\prime}+13 y=3 r_{0}(t) 2, \quad y(0)=0, y^{\prime}(0)=0 \\
s^{2} Y(s)-4 s y(s)+13 Y(s)=3 \\
Y(s)\left[s^{2}-(s+13)=3\right. \\
Y(s)=\left[\frac{3}{s^{2}-4 s+10}\right. \\
\left(s^{2}-2\right)^{2}+9 \\
Y(t)=e^{2 t} \sin (3 t)
\end{gathered}
$$

3) $\left\{y^{\prime}-4 y=U_{2}(t)-4 \int_{0,1}^{t} y(r) d r\right]^{l}, y(t)=0$

$$
s y(s)-4 y(s)=\frac{e^{-2 s}}{s}-4\left(\frac{1}{s} \cdot y(s)\right)
$$

$$
Y(s)\left[s-4+\frac{4}{5}\right]=\frac{e^{-25}}{5}
$$

$$
y(s)\left[\frac{s^{2}-4 s+4}{s}\right]=\frac{e^{-2 s}}{l^{-1}} \cdot \frac{8}{s^{2}-4 s+4}
$$

$$
\left.y(s)=\left[\frac{e^{-2 s}}{\left.s^{2}-4\right)+4}\right)^{l^{-1}}=\frac{e^{-2 s}}{(x-2)^{2}}\right]^{l^{-1}}
$$

$l^{1}\left[\left(\frac{1}{(s-2)^{n}}\right]^{e}=t e^{2 t}\right.$

$$
y(t)=\left[(t-2) e^{2(t-2)}\right] U_{2} t
$$

$$
\begin{aligned}
& \text { 4) } y^{\prime \prime}-2 y^{\prime}+y=2 e^{t} \longrightarrow y_{p}=\frac{A t^{2} t^{t}}{} \\
& m^{2}-2 m+1=0 \\
& y^{\prime}=2 A t e^{t}+e^{t} \cdot \frac{A t^{2}}{v} \\
& x=1 \\
& y^{\prime \prime}=2 A e^{t}+e^{t} \cdot 2 A t+e^{t} \cdot A t^{2}+2 A t e^{t} \\
& m=1 \\
& \psi_{n}=c_{1} e^{t}+c_{2} t e^{t} \\
& 2 A e^{t}+2 A t e^{t}+A t^{2} e^{t}+2 A t e^{t}-2\left(2 A t e^{t}+A t^{2} e^{t}\right) \\
& +A t^{2} e^{t} \\
& =2 e^{t} \\
& 2 A e^{t}+2 A t e^{t}+A t^{2} e^{t}+2 A t e^{t}-4 A t e^{t}-2 A t^{2} e^{t}+A t^{2} e^{t}=2 e^{t} \\
& \frac{2}{x} A=\frac{2 c}{x} \quad A=1 \\
& \varphi_{g}=c_{1} e^{t}+c_{2} t e^{t}+t^{2} e^{t}
\end{aligned}
$$

$$
\begin{aligned}
& \text { 5) } \begin{array}{ll}
\left(t^{2}-9\right) y^{\prime \prime}+\sqrt{t+1} & y^{\prime}+t^{2} y=5 t+1, \\
t^{2} & y(2)=4 \\
y^{\prime}(2)=-3
\end{array} \\
& t^{2}-q \neq 0 \quad \sqrt{t+1} \\
& \begin{array}{ll}
\sqrt{t^{2}}+\frac{1-9}{9} \\
t \neq 3 \\
t \neq-3
\end{array} \quad \begin{array}{l}
t+\overrightarrow{1} \geqslant 0 \\
t \geqslant-1
\end{array} \\
& \approx \underset{-1}{-3}+\sqrt{H} \\
& I=[-1,3)
\end{aligned}
$$

$$
\begin{aligned}
& \text { 6) } y^{(3)}-4 y^{(2)}+13 y^{\prime}=e^{t}+8 t \rightarrow \\
& m^{3}-4 m^{2}+13 m=0
\end{aligned}
$$

$$
\begin{aligned}
& m\left(m^{2}-4 m+13\right)=0 \\
& m=0 \\
& m=2 \pm 3 i \\
& Y_{h}=c_{1}+e^{2 t}\left(c_{2} \cos (3 t)+c_{3} \sin (3 t)\right) \\
& \nu_{p}=A e^{++(B t+C) t} \\
& y_{p}=4 e^{r}+2 B E+C \\
& 4 p^{\prime \prime}=A e^{t}+2 B \\
& 4 p^{\prime \prime \prime}=A e^{t} \\
& \text { 解 } \\
& A e^{t}-4\left(A e^{t}+2 B\right)+B\left(A e^{t}+2 B t+C\right)=e^{t}+8 t \\
& A e^{t}-4 A C^{t}-8 B+13 A C^{t}+26 B E+B C=e^{t}+8 t \\
& \begin{array}{ll}
10 A=1 & \frac{26 B}{20}=\frac{8}{26} \\
A=1 / 10 & B=\frac{8}{26}
\end{array} \\
& -8 B+13 C=0 \\
& C=\frac{32}{169} \\
& \psi_{g}=c_{1}+e^{2 t}\left(c_{2} \cos (3 t)+c_{5} \sin (3 t)\right)+\frac{1}{10} e^{t}+\frac{4}{13} t^{2}+\frac{32}{169} t
\end{aligned}
$$

$\begin{array}{ll}7 l \mid x^{\prime}(t)-y(t)=0 & , x(0)=3 \\ l L x(t)-y^{\prime}(t)=3 & , y(0)=1\end{array}$

$$
\begin{aligned}
& s X(s)-3-Y(s)=0 \\
& X(s)+s Y(s)-1=\frac{3}{5} \\
& \left\{\begin{array}{l}
s X(s)-Y(s)=3 \\
X(s)+s Y(s)=1+\frac{3}{s} \rightarrow \frac{s+3}{s} \\
X(s)=\frac{\left|\begin{array}{cc}
3 & -1 \\
\frac{5+3}{s} & s
\end{array}\right|}{\left|\begin{array}{cc}
s & -1 \\
1 & s
\end{array}\right|}=\frac{\frac{3 s^{2}}{s}+\frac{s+3}{s}}{s^{2}+1} \\
=
\end{array}\right. \\
& =\frac{3 s^{2}+s+3}{s\left(s^{2}+1\right)}
\end{aligned}
$$

$$
\frac{3 s^{2}+s+3}{s\left(s^{2}+1\right)}=\frac{a}{s}+\frac{b s+c}{s^{2}+1}
$$

$$
3 s^{2}+s+3=a\left(s^{2}+1\right)+(b s+c) s
$$

$$
3 s^{2}+s+3=a s^{2}+a+b s^{2}+c s
$$

$$
\begin{aligned}
\text { (i) } & \left\{\frac{1}{(s+3)^{2}}\right\} \\
= & \left.\int \frac{s-3}{(s+3)^{2}} \frac{-3}{(s+3)^{2}}\right]^{p-1} \\
& \left.\int \frac{1}{(s+3)}-\frac{3}{(s+3)^{2}}\right]^{l-1} \Rightarrow e^{-3 t}-3 t e^{-3 t 2}
\end{aligned}
$$

(ii)

$$
\begin{gathered}
l\left[\int_{0}^{t} e^{7 t-5 r} \cos (2(t) d r]\right. \\
\int_{0}^{t} e^{7(t-r)} \cos (2 r) e^{2 r} d r \\
\left.l \int e^{7 t} * \cos (2 t) e^{2 t}\right] \\
\Rightarrow \frac{1}{s-7} \cdot \frac{(\rho-2)}{(s-2)^{2}+4}
\end{gathered}
$$

(iii)

$$
\begin{aligned}
& e^{-1}\left\{\frac{s e^{-2 s}}{(s+3)^{2}+9}\right\} \\
& \left.e^{-1}\left\{\frac{s}{(s+3)^{2}+a}\right\}=\int \frac{e^{1}}{\left(\frac{s+3)}{s+3)^{2}+9} \frac{-3}{(s+3)^{2}+9}\right.}\right\} \\
& =e^{-3 t} \cos 3 t-e^{-3 t} \sin 3 t \\
& \Rightarrow\left[e^{-3(t-2)} \cos 3(t-2)-e^{-3(t-v} \sin 3(t-2)\right] U_{2} t
\end{aligned}
$$

4.s Solution for EXAM II

(1)
i) $t^{\alpha} y^{(\alpha)}+3 t y^{\prime}+4 y=0$

Cauchy $\Rightarrow y=t^{n} \quad y^{\prime}=n t^{n-1} \quad y^{(\alpha)}=\left(n^{\alpha}-n\right) t^{n-\alpha}$ All have same degree n, we can use cauchy

$$
\begin{aligned}
& n^{2}-n+3 n+4=0 \\
& n^{2}+2 n+4=0 \\
& \quad n=-1 \pm \sqrt{3} i \\
& y_{n}=t^{-1}\left(c_{1} \cos (\sqrt{3} \ln t)+c_{2} \sin (\sqrt{3} \ln t)\right)
\end{aligned}
$$

ii) $y^{(\alpha)}-\left(\frac{1}{t}-1\right) y^{\prime}=\frac{e^{-t}}{t}$
$y_{n}: \quad y^{(\alpha)}-\left(\frac{1}{t}-1\right) y^{\prime}=0$
Reduction of order $\Rightarrow y_{1}=1$

$$
\begin{aligned}
& y_{2}=y_{1} \int \frac{e^{-\int Q(t) d t}}{y_{1}^{2}} d t \\
& Q(t)=\left(-\frac{1}{t}+1\right) \\
& \Rightarrow e^{-\int Q(t) d t}=e^{\int \frac{1}{t}-1 d t}=e^{\ln t-t}=t e^{-t} \\
& y_{2}=\int t e^{-t} d t
\end{aligned}
$$

$$
y_{2}=-t e^{-t}-e^{-t}
$$

$$
y_{n}=c_{1}+c_{2}\left(-t e^{-t}-e^{-t}\right)
$$

$$
\begin{aligned}
& \text { Another Solution } \\
& w=y^{\wedge} \backslash \text {, hence } w^{\wedge} \backslash=y^{\wedge} \backslash \mid / \text { so } w^{\wedge} \backslash-(1 / t-1) w=e^{\wedge}\{-t\} / t \\
& y_{p}=u_{1} y_{1}+u_{2} y_{2} \\
& \text { subject } \\
& u_{1}^{\prime} y_{1}+u_{2}^{\prime} y_{2}=0 \\
& u_{1}^{\prime} y_{1}^{\prime}+u_{\alpha}^{\prime} y_{2}^{\prime}=\frac{e^{-t}}{t} \\
& u_{1}^{\prime}(1)+u_{2}^{\prime}\left(-t e^{-t}-e^{-t}\right)=0 \\
& u_{1}^{\prime}(0)+u_{\alpha}^{\prime}\left(t e^{-t}\right)=\frac{e^{-t}}{t} \\
& w=\left|\begin{array}{cc}
1 & -t e^{-t}-e^{-t} \\
0 & t e^{-t}
\end{array}\right|=t e^{-t} \\
& u_{1}^{\prime}=\frac{\left|\begin{array}{cc}
0 & -t e^{-t}-e^{-t} \\
\frac{e^{-t}}{t} & t e^{-t}
\end{array}\right|}{t e^{-t}}=\frac{-\left(\frac{e^{-t}}{t}\right)\left(-t e^{-t}-e^{-t}\right)}{t e^{-t}} \\
& =\frac{t e^{-t}+e^{-t}}{t^{\alpha}}=\frac{e^{-t}}{t}+\frac{e^{-t}}{t^{2}}=\left(\frac{1}{t}+\frac{1}{t^{2}}\right) e^{-t} \\
& u_{2}^{\prime}=\frac{\left|\begin{array}{ll}
1 & 0 \\
0 & \frac{e^{-t}}{t}
\end{array}\right|}{w}=\frac{\frac{e^{-t}}{t}}{t e^{-t}}=\frac{e^{-t}}{t^{2} e^{-t}}=\frac{1}{t^{\alpha}} \\
& u_{2}=\int u_{\alpha}{ }^{\prime}=\int \frac{1}{t^{2}}=-\frac{1}{t} \\
& u_{1}=\int u_{1}^{\prime}=\int\left(\frac{1}{t}+\frac{1}{t^{2}}\right) d t e^{-t} d t=-\frac{1}{t} e^{-t} \\
& y_{p}=\left(-\frac{1}{t} e^{-t}\right)+\left(-\frac{1}{t}\right)\left(-t e^{-t}-e^{-t}\right) \\
& y_{g}=c_{1}+c_{2}\left(-t e^{-t}-e^{-t}\right)+\frac{-1}{t} e^{-t}+\left(-\frac{1}{t}\right)\left(-t e^{-t}-e^{-t}\right)
\end{aligned}
$$

iii)

$$
\begin{aligned}
& t^{\alpha} y^{(\alpha)}-7 t y^{\prime}+16 y=0 \\
& y=t^{n} \\
& y^{\prime}=n t^{n-1} \\
& y^{(\alpha)}=\left(n^{\alpha}-n\right) t^{n-\alpha}
\end{aligned}
$$

cauchy \Rightarrow all have same degree

$$
\begin{aligned}
& \left(n^{2}-n\right)-7 n+16=0 \\
& n^{2}-8 n+16=0 \\
& (n-4)(n-4) \\
& n=4 \quad n=4 \\
& y_{1}=t^{4} \quad y_{2}=t^{4} \ln t \\
& y_{n}=c_{1} t^{4}+c_{2} t^{4} \ln (t)
\end{aligned}
$$

iv)

$$
t y^{\prime}+4 y=4 t^{2} e^{t} y^{\frac{3}{4}}
$$

Non-linear \Rightarrow Bernoulli

$$
\begin{aligned}
& n=\frac{3}{4} \quad 1-n=\frac{1}{4} \quad v=y^{1-n}=y^{1 / 4} \\
& y^{\prime}+\frac{4}{t} y=4 t e^{t} y^{\frac{3}{4}} \\
& \Downarrow \\
& v^{\prime}+\left(\frac{4}{t}\right)\left(\frac{1}{4}\right) v=4 t e^{t}\left(\frac{1}{4}\right) \\
& v^{\prime}+\frac{1}{t} v=t e^{t} \\
& I=e^{\int \frac{1}{t} d t}=e^{l n t}=t \\
& V=\frac{\int I f(t)}{I}
\end{aligned}
$$

$$
V=\frac{\int t\left(t e^{t}\right) d t}{t}=\frac{\int t^{\alpha} e^{t} d t}{t}
$$

poryoma
$t^{\alpha}+$easy be integrate
e^{t}
e^{t}

$$
V=\frac{t^{\alpha} e^{t}-\alpha t e^{t}+2 e^{t}+c}{t}
$$

$$
v=t e^{t}-\alpha e^{t}+\frac{\alpha e^{t}}{t}+\frac{c}{t}
$$

$$
\begin{aligned}
& y=v^{\frac{1}{1-n}}=v^{4} \\
& y=\left(t e^{t}-\alpha e^{t}+\frac{\alpha}{t} e^{t}+\frac{c}{t}\right)^{4}
\end{aligned}
$$

v) $\frac{d y}{d x}=\frac{2 x y^{3}}{\sqrt{1+x^{2}}}$
seperable

$$
\begin{aligned}
& \int \frac{d y}{y^{3}}=\int \frac{2 x d x}{\sqrt{1+x^{2}}} \\
& \int y^{-3}=\int \frac{2 x}{\sqrt{1+x^{2}}} d x \\
& -\frac{1}{2 y^{\alpha}}=2 \sqrt{1+x^{2}}+C
\end{aligned}
$$

$v i)$

$$
\begin{aligned}
& \frac{d \omega}{d n}=\frac{1}{n+4 \omega^{3} e^{\omega}} \\
& \frac{a h}{a \omega}=h+4 \omega^{3} e^{\omega} \\
& h^{1}-h=4 \omega^{3} e^{\omega} \\
& \text { linear, first order } \\
& \text { index; w } \\
& \text { dep: } h \\
& I=e^{\int-1 d \omega}=e^{-\omega} \\
& h=\frac{\int I f(\omega)}{I}=\frac{\int e^{-\omega} \cdot 4 \omega^{3} e^{\omega} d \omega}{e^{-\omega}} \\
& =\frac{\int 4 \omega^{3} d \omega}{e^{-\omega}}=\frac{\omega^{4}+C}{e^{-\omega}} \\
& h=\omega^{4} e^{\omega}+c e^{\omega}
\end{aligned}
$$

vii)

$$
\begin{aligned}
y^{(2)}-\frac{4}{t} y^{\prime}+\frac{4}{t^{2}} y & =\frac{1}{t^{\alpha}} \\
y^{(2)}-4 t^{-1} y^{\prime}+4 t^{-2} y & =\frac{1}{t^{2}} \\
y_{n}: \quad y^{(2)}-4 t^{-1} y^{\prime}+4 t^{-2} y & =0
\end{aligned}
$$

$$
\begin{aligned}
& \left.\begin{array}{l}
y=t^{n} \\
y^{\prime}=n t^{n-1} \\
y^{\prime \prime}=\left(n^{2}-n\right) t^{n-\alpha}
\end{array}\right\} \begin{array}{r}
\text { cauchy since they nav } \\
\text { same degree } n-\alpha
\end{array} \\
& n^{2}-n-4 n+4=0 \\
& n^{2}-5 n+4=0 \\
& (n-1)(n-4) \\
& n=1 \quad n=4 \\
& y_{1}=t \quad y_{2}=t^{4} \quad y_{n}=c_{1} t+c_{2} t^{4}
\end{aligned}
$$

$y_{p}:$

$$
y_{p}=u_{1} y_{1}+u_{2} y_{2}
$$

subject

$$
u_{1}^{\prime} y_{1}+u_{2}^{\prime} y_{2}=0
$$

$$
u_{1}^{\prime}(t)+u_{\alpha}^{\prime}\left(t^{4}\right)=0
$$

$$
u_{1}^{\prime} y_{1}^{\prime}+u_{2}^{\prime} y_{2}^{\prime}=\frac{1}{t^{\alpha}}
$$

$$
u_{1}^{\prime}(1)+u_{2}^{\prime}\left(4 t^{3}\right)=\frac{1}{t^{2}}
$$

$$
w=\left|\begin{array}{ll}
t & t^{4} \\
1 & 4 t^{3}
\end{array}\right|=4 t^{4}-t^{4}=3 t^{4}
$$

$$
u_{1}^{\prime}=\frac{\left|\begin{array}{cc}
0 & t^{4} \\
\frac{1}{t^{2}} & 4 t^{3}
\end{array}\right|}{w}=\frac{0-t^{2}}{3 t^{4}}=-\frac{1}{3 t^{2}}
$$

$$
u_{2}^{\prime}=\frac{\left|\begin{array}{cc}
t & 0 \\
1 & 1 / t^{2}
\end{array}\right|}{w}=\frac{\frac{1}{t}}{3 t^{4}}=\frac{1}{3 t^{5}}
$$

$$
\begin{aligned}
& u_{1}=\int u_{1}^{\prime}=\int-\frac{1}{3 t^{2}}=\frac{1}{3 t} \\
& u_{2}=\int u_{2}^{\prime}=\int \frac{1}{3 t^{5}}=-\frac{1}{12 t^{4}} \\
& \begin{aligned}
y_{p} & =\left(\frac{1}{3 t}\right)(t)+\left(-\frac{1}{12 t^{4}}\right)\left(t^{4}\right) \\
& =\frac{1}{3}-\frac{1}{12}=\frac{1}{4} \\
y_{g} & =y_{n}+y_{p} \\
& =c_{1} t+c_{2} t^{4}+\frac{1}{4}
\end{aligned}
\end{aligned}
$$

$$
\begin{aligned}
& \text { vii) } \\
& f_{x}=2 x+y^{2} x+e^{y}+2 \\
& f y=x^{2} y+x e^{y}+4 y^{3}+7 \\
& f_{x y}=2 x y+e^{y} \\
& f_{y x}=2 y x+e^{y} \quad f_{x y}=f y x \Rightarrow D E \text { is exact } \\
& \int f y d y=\underbrace{k(x, y)+h(x)}_{f(x, y)} \\
& \int\left(x^{2} y+x e^{y}+4 y^{3}+7\right) d y=\frac{x^{2} y^{2}}{2}+x e^{y}+y^{4}+7 y+h(x)
\end{aligned}
$$

To find $h(x)$:

$$
\begin{aligned}
& f_{x}(\text { given })=f_{x}(x, y) \\
& 2 x+y^{2} x+e^{y}+\alpha=y^{2} x+e^{y}+h^{\prime}(x) \\
& h^{\prime}(x)=2 x+\alpha
\end{aligned}
$$

$$
h(x)=\int h^{\prime}(x)=\int 2 x+2=x^{2}+2 x
$$

$$
f(x, y)=c
$$

$$
\frac{x^{2} y^{2}}{2}+x e^{y}+y^{4}+7 y+x^{2}+2 x=C
$$

$$
\begin{aligned}
& \text { (2) } \\
& T=180^{\circ} \mathrm{C} \quad t=0 \\
& T_{m}=23^{\circ} \mathrm{C} \\
& T=120^{\circ} \mathrm{C} \quad t=\alpha \\
& \frac{d T}{d t}=K\left(T-T_{m}\right) \\
& \frac{d T}{d t}-k T=-k T_{m} \\
& \frac{d T}{d t}-k T=-23 K \\
& I=e^{\int-K d t}=e^{-K t} \\
& T=\frac{\int I \cdot f(t)}{I} d t=\frac{\int e^{-k t}(-23 k)}{e^{-k t}} d t=\frac{23 \int e^{-k t} \cdot-k}{e^{-k t}} d t \\
& =\frac{23 e^{-k t}+C}{e^{-k t}} \\
& T=23+c e^{k t} \\
& \frac{t=0}{180}=23+c \quad c=157 \\
& t=2 \\
& 120=23+157 e^{2 k} \quad k=-0.24 \\
& T=23+157 e^{-0.24 t} \\
& 33=23+157 e^{-0.24 t} \\
& -0.24 t=-2.75 \\
& t=11.5 \text { minutes }
\end{aligned}
$$

(3)

$$
\begin{aligned}
& \text { Volume }=\text { initial }+(\text { in -out }) t \\
&=1200+(4-8) t \\
&=1200-4 t \\
& c(t)= \frac{A(t)}{1200-4 t} \\
& \frac{d A}{d t}=(4)(2)-8\left(\frac{A(t)}{1200-4 t}\right)
\end{aligned}
$$

$$
\frac{d A}{d t}+\frac{8 A}{1200-4 t}=8 \quad \rightarrow \text { first order linear diff eon. }
$$

$$
I=e^{\int Q(t) d t}=e^{\int \frac{8}{1200-4 t} d t}=e^{-\alpha \ln |1200-4 t|}
$$

$$
=(1200-4 t)^{-\alpha}
$$

$$
A=\frac{\int I \cdot f(t)}{I}=\frac{\int(1200-4 t)^{-2}(8) d t}{(1200-4 t)^{-2}}
$$

$$
=8 \int 1200-4 t \frac{2(1200-4 t)^{-1}+C}{(1200-4 t)^{-2}}
$$

$$
A=2(1200-4 t)+C(1200 *-4 t)^{2}
$$

$$
A=2(1200-4 t)-
$$

$$
A(0)=0
$$

$$
\frac{1}{600}(1200-4 t)^{2}
$$

$$
\begin{aligned}
& \Rightarrow 0= 2(1200)+C(1200)^{2} \\
&-2(1200)=c(1200)^{2} \\
&-2=1200 C \quad c=-600-\frac{1}{600} \quad \begin{array}{l}
\text { Empty y } \\
0=1200-4 t . \text { Sot }=300 \text { mint }
\end{array}
\end{aligned}
$$

Rama Al:
Differentials final exam
(1) Given
weight - 128 pounds

$$
m x^{\prime \prime}(t)=-\beta x(t)^{0}-k x(t)
$$

$$
\begin{array}{ll}
\text { displacement }=2 \mathrm{ft} & w=m g \\
x(0)=-0.5 \mathrm{ft} & \frac{128}{32}=\frac{m 3}{3 /} \\
x^{\prime}(0)=2 \mathrm{ft} / \mathrm{sec} & m=4 \text { pounds } \\
\text { gravity }=32 \mathrm{ft} \mid \mathrm{sec}^{2} & w=k x \quad 128=k(2) \\
B \rightarrow 0 & k=64
\end{array}
$$

i) $4 x^{\prime \prime}(t)+64 x(t)=0$
undetermined $=$

$$
\begin{aligned}
& 4 m^{2}+64=0 \\
& \sqrt{m^{2}}=\sqrt{-\frac{64}{4}} \\
& m= \pm 4 \\
& x(t)=c_{1} \cos (4 t)+c_{2} \sin (4 t) \\
& x(0)=c_{1} \cos (4(0))+c_{2}\left(\sin (4(0))^{0}\right) \\
& c_{1}=-0 \cdot 5=-\frac{1}{2} \\
& x^{\prime}(t)=-4 c_{1} \sin (4 t)+4 c_{2} \cos (4 t) \\
& x^{\prime}(0)=-4(-0 \cdot 5) \sin (4(0))+4 c_{2} \cos (4(0)) \\
& \left.\frac{2}{4}=2 t 6\right)+\frac{4 c^{2}}{4} \\
& x(t)=\frac{1}{2} \cos 4 t+\frac{1}{2} \sin 4 t
\end{aligned}
$$

\square
is e Pros

$$
\begin{aligned}
& \frac{1}{2}(\sin 4 t-\cos 4 t) \\
& =\frac{\sqrt{2}}{2}\left(\sin 4 t\left(\frac{1}{\sqrt{2}}\right)-\cos 4 t\left(\frac{1}{\sqrt{2}}\right)\right)
\end{aligned}
$$

$$
\begin{aligned}
& \frac{1}{\sqrt{2}}\left(\sin 4 t\left(\frac{1}{\sqrt{2}}\right)\right. \\
& \frac{1}{2}\left(\sin 4 t+\cos \frac{\pi}{4}-\cos 4 t \sin \frac{\pi}{4}\right)
\end{aligned}
$$

$$
n \phi 1=\frac{1}{\sqrt{2}} \sin \left(4 t \frac{-\pi}{4}\right)
$$

Phase angle $=\frac{\pi}{4}$
\qquad

\qquad

Q42) $y^{\prime}=y^{4}-16 y^{2}$

$$
\begin{aligned}
& m^{4}-16 m^{2}=0 \\
& m^{2}\left(m^{2}-16\right)=0 \\
& m=0 \quad m=4 \quad m=-4
\end{aligned}
$$

4: instable paint
o: semi stable print -4 : stable paint

$$
\begin{aligned}
& \text { Q3) } \frac{d y}{d x}=\frac{x}{2 x(y+3)+y+3}=\frac{x}{(y+3)(2 x+1)} \\
& (y+3) \frac{d y}{d x}=\frac{x}{2 x+1} \\
& \left((y+3) d y=\int \frac{x}{2 x+1} d x \rightarrow \frac{y^{2}}{2}+3 y=\int \frac{x}{2 x+1} d x\right.
\end{aligned}
$$

$$
u=x \quad d u=\frac{1}{2 x+1} \rightarrow \frac{y^{2}}{2}+3 y=\frac{1}{4}(2 x+x-
$$

$$
d u=d x \quad v=\ln (2 x+1) \quad \frac{1}{4}\left(2 x+1-\ln (2 x+1)+c_{1}\right.
$$

$$
\begin{aligned}
& \text { Q4) }\left(x^{2} y+4 y^{3}\right) d x=\left(3 x y^{2}+x^{3}\right) d y \\
& \frac{d y}{d x}=\frac{x^{2} y+4 y^{3}}{3 x y^{2}+x^{3}} \\
& \text { * } y=v_{x} \quad v=\frac{y}{x} \\
& \frac{d y}{d x}=v+x \frac{x d v}{d x} \\
& v+x \frac{d v}{d x}=\frac{v+4 v^{3}}{3 v^{2}+1} \\
& x \frac{d v}{d x}=\frac{v+4 v^{3}}{3 v^{2}+1}-v \\
& x \frac{d v}{d x}=\frac{v+4 v^{3}-3 v^{3}-v}{3 v^{2}+1} \\
& x \frac{d v}{d x}=\frac{v^{3}}{3 v^{2}+1} \\
& \frac{3 v^{2}+1}{v^{3}} d v=\frac{1}{x} \cdot d x \\
& \int\left(\frac{3}{v}+\frac{1}{v^{3}}\right) d v=\int \frac{1}{x} \cdot d x \\
& 3 \ln v \varphi-\frac{1}{2 v^{2}}=\ln x+c \\
& 3 \ln \left(\frac{y}{x}\right)-\frac{x^{2}}{2 y^{2}}=\ln x+c
\end{aligned}
$$

5) Find y_{g}

$$
\begin{aligned}
& y^{\prime \prime}+y^{\prime}=\frac{1}{t}-\frac{1}{t^{2}}, t>0 \\
& y^{\prime \prime}+y^{\prime}=\frac{1}{t}-\frac{1}{t^{2}}\left(\frac{t-1}{t^{2}}\right) \\
& y^{\prime \prime}+y^{\prime}=0 \\
& D^{2}+D=0 \\
& D(D+1)=0
\end{aligned}
$$

$$
\begin{gathered}
y(x)=c_{1} e^{0 \cdot x}+c_{2} e^{-t} \\
y_{1}=1 \quad y_{2}=e^{-t} \\
y_{1}^{\prime}=0 \quad y_{2}^{\prime}=-e^{-t}
\end{gathered}
$$

$$
\begin{aligned}
& w=y_{1} y_{2}^{\prime}-y_{2} y_{1}^{\prime}=1 x-e^{-\phi}-0=-e^{-t} \\
& w=-e^{-t x} \quad t(t)=\left(\frac{1}{t}-\frac{1}{t^{2}}\right)
\end{aligned}
$$

$$
\begin{aligned}
& y_{p}=-y_{1} \int \frac{y_{2} f(t)}{\omega} d t+y_{2} \int \frac{y_{1} f(t)}{\omega} d t \\
& =-1 \int \frac{e^{-t}\left(\frac{1}{t}-\frac{1}{t^{2}}\right)}{-e^{-t}} d t+\frac{e^{-t} \int \frac{1\left(1 / t-1 / t^{2}\right)}{-e^{-t}} d t}{}
\end{aligned}
$$

$$
-\int \frac{1}{t^{2}}-\frac{1}{t} d t e^{-t}\left[\int e^{t}\left(\frac{1}{t}-\frac{1}{t^{2}}\right) d t\right.
$$

$$
=-[-1 / t-\ln t] \bar{*} e^{-t}\left[e^{t}(1 / t) \xi d t\right.
$$

$$
=1 / t+\ln t \frac{\bar{x}}{\pi} \frac{x}{t}=\ln t
$$

$$
y_{p}=\ln t
$$

(6)

$$
\begin{aligned}
& \text { Given } D E=y^{\prime}=\frac{2 x+y}{(4 x+2 y)^{2}+1}-2 \\
& 2 x+y=v \rightarrow 2 v=4 x+2 y \\
& 2+\frac{d y}{d x}=\frac{d v}{d x} \\
& \frac{d y}{d x}=\frac{d v}{d x}-2 \\
& \frac{d v}{d x}-2=\frac{v}{(2(v))^{2}+1}=2 \\
& \frac{d v}{d x}=\frac{v}{4 v^{2}}+1 \\
& \left(\frac{4 v^{2}+1}{v}\right) d v=d x \\
& \left(4 v+\frac{1}{v}\right) \frac{d}{v}=d x \\
& \frac{4\left(\frac{v^{2}}{2}\right)+\ln v=x+c}{2 v^{2}+\ln v=x+c} \\
& \frac{2}{2 x+y)^{2}+\ln (2 x+y)=x+c}+2
\end{aligned}
$$

$$
\begin{aligned}
& y^{\prime}+2 y=e^{-t}-\int_{0}^{t} y(t-r) d r, y(0)=0 \\
& l\left\{y^{3^{\prime}}+2 y\right\}=l\left\{e^{-t}-\int_{0}^{t} 1 \cdot y(t-r) d r\right\} \\
& \delta Y(s)-y(s)+2 Y(s)=\frac{1}{s+1}-\frac{Y(s)}{s} \\
& \text { let } l\{y(t)\}=4(s)\} \\
& (s+2) Y(s)=\frac{1}{s+1}-\frac{1}{s} Y(s) \quad \therefore y(0)=0 \\
& \left(s+2+\frac{1}{s}\right) y(s)=\frac{1}{s+1} \\
& \left(\frac{s^{2}+2 s+1}{s}\right) V(s)=\frac{1}{s+1} \\
& \left(\frac{s+1}{s}\right)^{2} \varphi(s)=\frac{1}{s+1} \\
& y(s)=\frac{s}{(s+1)^{3}}\{ \\
& y(t)=l^{-1}\left\{\frac{s}{(s+1)^{3}}\right\} \rightarrow y(t)=l^{-1}\left\{\frac{s+1-1}{(s+1)^{3}}\right\} \\
& y(t)=e^{-1}\left\{\frac{\delta+1}{(\delta+1)^{3}}-\frac{1}{(\delta+1)^{3}}\right\} \\
& y(t)=l^{-1}\left\{\frac{1}{(s+1)^{2}}\right\}-l^{-1}\left\{\frac{1}{(s+1)^{3}}\right\} \\
& y(t)=t e^{-t}-\frac{1}{2} t^{2} e^{-t} \\
& y(t)=e^{-t}\left(t-\frac{t^{2}}{2}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \text { Q8) } y^{\prime \prime}+2 y^{\prime}+5 y=d_{3}(t) \quad y(0)=y^{\prime}(0)=0 \\
& s^{2} y(x)+2 s y(s)+5=e^{-3 s} \\
& Y(s)\left[s^{2}+2 s+5\right]=e^{-3 s} \\
& y^{\prime}(s)=\frac{e^{-3 s}}{s^{2}+2 s+1-1+5}=e^{-1}\left\{\frac{\left(e^{-3 s}\right)}{(s+1)^{2}+4}\right\}, U_{3}(t) \\
& l^{-1} \frac{1}{2}\left\{\frac{1(2)}{(s+1)^{2}+4}\right\}=\frac{1}{2} e^{-t} \sin (2 t) \\
& y(t)=u_{3}(t)\left[\frac{1}{2} e^{-(t-3)} \sin (2(t-3)]\right.
\end{aligned}
$$

$$
\begin{aligned}
& \text { 9) } y^{(5)}+6 y^{(4)}+9 y^{(3)}=4 t^{3}+t^{2} e^{-3 t} \\
& m^{5}+6 m^{4}+9 m^{3}=0 \\
& m^{3}\left(m^{2}+6 m^{2}+9\right)=0 \\
& m=0,0,0,-3,-3 \\
& y_{h}=c_{1}+c_{2} t+c_{3} t^{2}+c_{4} e^{-3 t}+c_{5} t e^{-3 t} \\
& Y_{p} \rightarrow\left[a_{1}+a_{2} t+a_{3} t^{2}+a_{4} t^{3}+a_{5} e^{-3 t}+\right. \\
& \left.a_{6} t e^{-3 t}+a_{7} t^{2} e^{-3 t}\right] \\
& x t^{3} \\
& y_{p}=a_{1} t^{3}+a_{2} t^{4}+a_{3} t^{5}+a_{4} t^{b_{1}} \\
& a_{5} t^{3} e^{-3 t}+a_{6} t^{4} e^{-3 t}+a_{7} t^{5} e^{-3 t}
\end{aligned}
$$

Q10) $y^{3}+\frac{6.5}{t^{2}} y^{\prime}=0$

$$
t^{53} y^{(3)}+6.5 t y^{\prime}=0
$$

$\operatorname{let} e^{2}=t \quad z=\ln (t)$

$$
\begin{aligned}
& m(m-1)(m-2) y+6.5 m y=0 \\
& m\left(m^{2}-3 m+2\right) y+6.5 m y=0 \\
& \left(m^{3}-3 m^{2}+2 m+6.5 m\right) y=0 \\
& m^{3}-3 m^{2}+8.5 m=0 \\
& m=0+1.5+2.5 j \\
& y=c_{1} e^{16)^{2}}+c_{2}+c^{1.52}\left[c_{2} \cos 2.5 z+c_{3} \sin 2.52\right] \\
& y=c_{1}+t^{1.5}\left[c_{2} \cos [2.5 \ln (t)]+c_{3} \sin [(2.5 \ln t]\right.
\end{aligned}
$$

$$
\begin{aligned}
& \text { QII) } y_{1}=1 \quad y_{2}=\ln (t) \quad g=\frac{1}{t^{2}} \\
& y^{\prime \prime}+a_{1}(t) y^{\prime}+a_{0}(t) y=\frac{1}{t^{2}} \\
& y_{p}(t)=-y_{1} \int_{\frac{y_{2} g}{w} d t+y_{2} \int \frac{y_{1} g}{w} d t}^{w=\left|\begin{array}{cc}
1 & \ln (t) \\
0 & 1 / t
\end{array}\right|=1 / t}
\end{aligned}
$$

$$
\begin{aligned}
& y_{p}(t)=-\int \frac{\ln (t)}{t^{2}\left(\frac{1}{t}\right)} d t+\ln (t) \int \frac{1}{t^{2}(1 / t)} d t \\
& y_{p}(t)=-\int \frac{1}{t} \ln (t) d t+\ln (t) \int \frac{1}{t} d t
\end{aligned}
$$

let $\ln (t)=\beta K$

$$
\begin{aligned}
& \quad \frac{1}{t} d t=d k \\
& =-\int k \cdot d k+[\ln (t)]^{2} \\
& y_{p}(t)=-\frac{k^{2}}{2}+[\ln (t)]^{2} \\
& y_{p}(t)=\frac{-[\ln (t)]^{2}}{2}+[\ln (t)]^{2}=\frac{(\ln (t))^{2}}{2}
\end{aligned}
$$

$$
\begin{aligned}
& \text { Q13) } \\
& \ell\left\{x^{\prime}(t)-y(t)=0\right\} \quad x(0)=0 \\
& l\left\{x(1)+y^{\prime}(t)=t\right\} \quad, y(0)=2 \\
& s \times(s)-x(0)^{0}-Y(s)=0 \\
& x(s)+s y(s)-\frac{y^{\prime}(0)}{2}=\frac{1}{s^{2}}+\frac{2 s^{2}}{s^{2}} \\
& s X(s)-Y(s)=0 \\
& X(s)+s Y(s)=\frac{1+2 s^{2}}{s^{2}} \\
& \begin{array}{l}
x(s)=\left|\begin{array}{cc}
0 & -1 \\
\frac{1+2 s^{2}}{s^{2}} & 0
\end{array}\right| \frac{1+s^{2}}{s^{2}} \\
e^{-1}\left\{x(s)^{2}\right\}=e^{-1}\left\{\frac{1+2 s^{2}}{s^{2}} \div s^{2}+1\right.
\end{array} \\
& x(t)=l^{-1}\left\{\frac{\frac{1+2 s^{2}}{s^{2}}}{s^{2}+1}\right\} \\
& x(t)=t+\sin (t)
\end{aligned}
$$

${ }_{5}$ Section : Assessment Tools-Quizzes (unanswered)
5.1 Quiz I

Quiz One, MTH 205 , Fall 2020

Ayman Badawi

QUESTION 1. (i) $\ell^{-1}\left\{\frac{3}{2 s+5}\right\}$
(ii) $\ell^{-1}\left\{\frac{3}{s^{2}+4}+\frac{7}{s^{9}}\right\}$
(iii) $\ell\left\{(t+2)^{2}\right\}$

QUESTION 2. find $y(t)$, where $y^{(2)}-5 y^{\prime}+6 y=1, y(0)=y^{\prime}(0)=0$

Faculty information

Ayman Badawi, Department of Mathematics \& Statistics, American University of Sharjah, P.O. Box 26666, Sharjah, United Arab Emirates. E-mail: abadawi@aus.edu, www.ayman-badawi.com

5.2 Quiz II

Quiz Two, MTH 205 , Fall 2020

Ayman Badawi

QUESTION 1. (i) $\ell^{-1}\left\{\frac{e^{-4 s}}{s^{2}+9}\right\}$
(ii) $\ell^{-1}\left\{\frac{1}{(s-3)^{2}+4}+\frac{6 e^{-3 s}}{s^{4}}\right\}$
(iii) $\ell\left\{U_{5}(t) e^{t-5} \cosh (t-5)\right\}$

QUESTION 2. find $y(t)$, where $y^{\prime}-2 y=U_{3} e^{t-3}, y(0)=0$

Faculty information

Ayman Badawi, Department of Mathematics \& Statistics, American University of Sharjah, P.O. Box 26666, Sharjah, United Arab Emirates. E-mail: abadawi@aus.edu, www.ayman-badawi.com

s.3 Quiz III

Quiz Three, MTH 205 , Fall 2020

Ayman Badawi

QUESTION 1. Let $f(t)=\left\{\begin{array}{lll}1 & \text { if } & 0 \leq t<3 \\ 0 & \text { if } & t \geq 3\end{array}\right.$
(i) Write $f(t)$ in terms of unit-step functions
(ii) Find $y(t)$, where $y^{\prime}-4 y=f(t)$.

QUESTION 2. Find $y(t)$, where $y^{(2)}-6 y^{\prime}-5 y=0, y(0)=0, y^{\prime}(0)=2$

Faculty information

Ayman Badawi, Department of Mathematics \& Statistics, American University of Sharjah, P.O. Box 26666, Sharjah, United Arab Emirates. E-mail: abadawi@aus.edu, www.ayman-badawi.com

Quiz Four, MTH 205 , Fall 2020

Ayman Badawi

QUESTION 1. Find the general solution of the L.D.E : $y^{(3)}-6 y^{(2)}+9 y^{\prime}=e^{-2 t}$

QUESTION 2. Find the general solution of the L.D.E : $y^{\prime}+3 y=\cos (t)$

QUESTION 3. Find the general solution of the L.D.E : $y^{(3)}-3 y^{(2)}+6.25 y^{\prime}=25$

Faculty information

Ayman Badawi, Department of Mathematics \& Statistics, American University of Sharjah, P.O. Box 26666, Sharjah, United Arab Emirates. E-mail: abadawi@aus.edu, www.ayman-badawi.com

5.s Quiz V

Quiz Five, MTH 205 , Fall 2020

Ayman Badawi

QUESTION 1. Consider $t y^{(2)}-4 y^{\prime}=t^{4}$. Find y_{g}

QUESTION 2. Solve for y_{g}.
$t y^{\prime}+y=t \sin \left(t^{2}\right)$.

Faculty information

Ayman Badawi, Department of Mathematics \& Statistics, American University of Sharjah, P.O. Box 26666, Sharjah, United Arab Emirates. E-mail: abadawi@aus.edu, www.ayman-badawi.com
${ }_{5.6}$ Quiz VI

Quiz Six, MTH 205, Fall 2020

Ayman Badawi

QUESTION 1. (i) Given $\frac{d y}{d x}=\frac{-e^{x} y+4 x-3 y^{2}+2 x y}{e^{x}-x^{2}+6 y x+\sin (y)-7}$
a. Convince me that the given D.E is Exact (hint: rewrite it as $f_{x} d x+f_{y} d y=0$ be careful with the sign)?SHOW THE WORK
b. Solve the D.E. (Show the work)

QUESTION 2. $\frac{d y}{d x}=y^{3}-6 y^{2}-7 y$. Classify each critical value as stable, semistable, or nonstable.
QUESTION 3. Imagine a company is making a fake-sweet drink (only water and sugar). The tank has capacity of 1200 liters. Initially, it contains 300 liters of brine (water and sugar) that contains 80 grams of sugar, i.e. $A(0)=80$. A solution containing 2 grams of sugar per liter is pumped into the tank at rate 6 liter per min and the solution is pumped out at rate 3 liter per min.
(i) Let $c(t)$ be the concentration of the sugar in the tank at time t . Find $c(t)$.
(ii) Let $A(t)$ be the amount of sugar in the tank at time t . Find $A(t)$.

Faculty information

Ayman Badawi, Department of Mathematics \& Statistics, American University of Sharjah, P.O. Box 26666, Sharjah, United Arab Emirates. E-mail: abadawi@aus.edu, www.ayman-badawi.com
${ }_{6}$ Section : Assessment Tools-EXAMS (unanswered)
$\frac{252}{6.1 \text { Exam I }}$

Exam One, MTH 205, Fall 2020

Ayman Badawi

QUESTION 1. (5 points) Use Laplace Transformation and find $y(t)$, where

$$
y^{\prime \prime}-6 y^{\prime}+5 y=U_{2}(t)\left(e^{(t-2)}\right), \quad y(0)=0, y^{\prime}(0)=0
$$

QUESTION 2. (5 points) Use Laplace Transformation and find $y(t)$, where

$$
y^{\prime \prime}-4 y^{\prime}+13 y=3 \delta_{0}(t), \quad y(0)=0, y^{\prime}(0)=0
$$

QUESTION 3. (5 points) Use Laplace Transformation and find $y(t)$, where

$$
y^{\prime}-4 y=U_{2}(t)-4 \int_{0}^{t} y(r) d r, y(0)=0
$$

QUESTION 4. (5 points) Find $y_{g}(t)$, where

$$
y^{\prime \prime}-2 y^{\prime}+y=2 e^{t}
$$

QUESTION 5. (5 points) Find the largest interval around $t=2$, say I, so that the L. D. E:

$$
\left(t^{2}-9\right) y^{\prime \prime}+\sqrt{t+1} y^{\prime}+t^{2} y=5 t+1, y(2)=4, y^{\prime}(2)=-3
$$

has unique solution over I. [hint: Use the Initial Value Fundamental Theorem]

QUESTION 6. (6 points) Find $y_{g}(t)$

$$
y^{(3)}-4 y^{(2)}+13 y^{\prime}=e^{t}+8 t
$$

QUESTION 7. (5 points) Solve for $\mathscr{X}(t)$ ONLY (do not find $y(t)$)

$$
\begin{array}{ll}
x^{\prime}(t)-y(t)=0, & x(0)=3 \\
x(t)+y^{\prime}(t)=3, & y(0)=1
\end{array}
$$

(i) Find $\ell^{-1}\left\{\frac{s}{(s+3)^{2}}\right\}$.
(ii) Find $\ell\left\{\int_{0}^{t} e^{(7 t-5 r)} \cos (2 r) d r\right\}$
(iii) Find $\ell^{-1}\left\{\frac{s e^{-2 s}}{(s+3)^{2}+9}\right\}$.

QUESTION 9. (5 points) Given $y=3 \sin (t) e^{t}$ is the ONLY solution to the L.D.E

$$
a y^{\prime \prime}+b y^{\prime}+c y=3 \sin (t) e^{t}
$$

Find the values of a, b, c. [Hint: Personally, I will use Laplace, since $y=3 \sin (t) e^{t}$, it is clear that $y(0)=0$ and $\left.y^{\prime}(0)=3\right]$

Faculty information

Ayman Badawi, Department of Mathematics \& Statistics, American University of Sharjah, P.O. Box 26666, Sharjah, United Arab Emirates. E-mail: abadawi@aus.edu, www.ayman-badawi.com

Exam Two, MTH 205, Fall 2020

Ayman Badawi

Score $=\square 50$

QUESTION 1. (i) (4 points) Find $y_{h}(t): t^{2} y^{\prime \prime}+3 t y^{\prime}+4 y=0, t>0$
(ii) $\left(7\right.$ points) Find $y_{g}(t): y^{\prime \prime}-\left(\frac{1}{t}-1\right) y^{\prime}=\frac{e^{-t}}{t}, t>0_{\text {[Hint: you might need }}$ $\int\left(a w(t)+w^{\prime}(t)\right) e^{a t} d t=w(t) e^{a t}$, where a is a real number!!, I gave you one version of this observation when $a=1]$
(iii) (4 points) Find $y_{h}(t): t^{2} y^{\prime \prime}-7 t y^{\prime}+16 y=0, t>0$.
(iv) (6 points) find $y(t): t y^{\prime}+4 y=4 t^{2} e^{t} y^{\frac{3}{4}}, t>0$
(v) ($\mathbf{4}$ points) Solve the nonlinear diff. equation: $\frac{d y}{d x}=\frac{2 x y^{3}}{\sqrt{1+x^{2}}}, x \geq 0$
(vi) (4 points) Solve the nonlinear diff. equation: $\frac{d w}{d h}=\frac{1}{h+4 w^{3} e^{w}}, w>0$
(vii) (6 points) Find $y_{g}(t): y^{\prime \prime}-\frac{4}{t} y^{\prime}+\frac{4}{t^{2}} y=\frac{1}{t^{2}}, t>0$
(viii) ($\mathbf{5}$ points) First convince me that the following D.E. is EXACT. Then solve it.

$$
\left(2 x+y^{2} x+e^{y}+2\right) d x+\left(x^{2} y+x e^{y}+4 y^{3}+7\right) d y=0
$$

QUESTION 2. (5 points) Imagine: A cake is removed from an oven, its temperature is measured at $180^{\circ} \mathrm{C}$. It is placed in a room temperature $23^{\circ} \mathrm{C}$. Two minutes later its temperature is $120^{\circ} \mathrm{C}$. How long will it take for the cake to reach $33^{\circ} \mathrm{C}$?

QUESTION 3. (5 points) Imagine: A large tank is filled to capacity with 1200 gallons of pure water (i.e., $A(0)=0$). Brine containing 2 pounds of salt per gallon is pumped into the tank at a rate of $4 \mathrm{gal} / \mathrm{min}$. The well mixed solution is pumped out at rate $8 \mathrm{gal} / \mathrm{min}$. Find the number $A(t)$ of pounds of salt in the tank at time t . When is the tank empty?

Faculty information

Ayman Badawi, Department of Mathematics \& Statistics, American University of Sharjah, P.O. Box 26666, Sharjah, United Arab Emirates. E-mail: abadawi@aus.edu, www.ayman-badawi.com

Final-Exam, MTH 205, Fall 2020

Ayman Badawi

Score $=-54$

QUESTION 1. (6 points) Imagine a steel ball weighing 128 pounds is attached to spring. The spring stretched 2 foot. The ball started in motion by displacing it in 0.5 foot above the equilibrium point with downward initial velocity 2 foot/second. (note gravity $=32 \mathrm{ft} / \mathrm{sec}^{2}$)
i) Find the equation of the motion of the ball $x(t)$
ii) Rewrite $x(t)$ in terms of the phase angle Φ.

QUESTION 2. (4 points) Given
$y^{\prime}=y^{4}-16 y^{2}$. Find all critical values. Then By drawing (as we did in class), classify each as stable, semi-stable or unstable.

QUESTION 3. (4 points) Solve the following $D . E$:

$$
y^{\prime}=\frac{x}{2 x y+6 x+y+3}, \quad x>0
$$

QUESTION 4. (4 points) Solve the following $D \cdot E$:

$$
\left(x^{2} y+4 y^{3}\right) d x+\left(-3 x y^{2}-x^{3}\right) d y=0, \quad x>0
$$

QUESTION 5. (4 points) Find y_{g}

$$
y^{\prime \prime}+y^{\prime}=\frac{1}{t}-\frac{1}{t^{2}}, \quad t>0
$$

QUESTION 6. (4 points) Solve the following D.E:

$$
y^{\prime}=\frac{2 x+y}{(4 x+2 y)^{2}+1}-2, \quad x>0
$$

QUESTION 7. (4 points) Solve the following D.E:

$$
y^{\prime}+2 y=e^{-t}-\int_{0}^{t} y(t-r) d r, \quad y(0)=0
$$

QUESTION 8. (4 points) Solve the following $D . E$:

$$
y^{\prime \prime}+2 y^{\prime}+5 y=\delta_{3}(t), \quad y(0)=y^{\prime}(0)=0
$$

QUESTION 9. (4 points) Write down the general form of y_{p} for the following $D . E$ (i.e., describe how y_{p} looks like), but do not find it explicitly :

$$
y^{(5)}+6 y^{(4)}+9 y^{(3)}=4 t^{3}+t^{2} e^{-3 t}
$$

QUESTION 10. (4 points) Solve the following D.E. [Note : $m(m-1)(m-2)=m^{3}-3 m^{2}+2 m$]

$$
y^{(3)}+\frac{6.5}{t^{2}} y^{\prime}=0, \quad t>0
$$

QUESTION 11. (4 points) Given $y_{1}=1$ and $y_{2}=\ln (t)(t>0)$ are solutions to

$$
y^{\prime \prime}+a_{1}(t) y^{\prime}+a_{0}(t) y=0
$$

Use variation method to find y_{p}, when solving

$$
y^{\prime \prime}+a_{1}(t) y^{\prime}+a_{0}(t) y=\frac{1}{t^{2}}
$$

QUESTION 12. (4 points) Solve the following D.E:

$$
y^{\prime}=\frac{1}{\left(\ln (y)+y^{-1}\right) \sqrt[3]{t}-\frac{3}{2} t}
$$

QUESTION 13. (4 points) (Note that $1+2 b^{2}=1+b^{2}+b^{2}$) Solve for $x(t)$ ONLY:

$$
\begin{aligned}
& x^{\prime}(t)-y(t)=0, \quad x(0)=0 \\
& x(t)+y^{\prime}(t)=t, \quad y(0)=2
\end{aligned}
$$

Faculty information

Ayman Badawi, Department of Mathematics \& Statistics, American University of Sharjah, P.O. Box 26666, Sharjah, United Arab Emirates. E-mail: abadawi@aus.edu, www.ayman-badawi.com

Formula Sheet

1)

$$
L\{f(t)\}=\int_{0}^{\infty} e^{-s t} f(t) d t \quad U_{a}(t) \equiv U(t-a)= \begin{cases}0, & 0 \leq t<a \\ 1, & a \leq t<\infty\end{cases}
$$

2) $L\{1\}=\frac{1}{s}, \quad L\left\{e^{a t}\right\}=\frac{1}{s-a} \quad L\left\{t^{n}\right\}=\frac{n!}{s^{n+1}}, \mathbf{n}$ is a positive integer
3) $L\{\sin k t\}=\frac{k}{s^{2}+k^{2}}$ $L\{\cos k t\}=\frac{s}{s^{2}+k^{2}}$
4) $L\{\sinh k t\}=\frac{k}{s^{2}-k^{2}}$

$$
L\{\cosh k t\}=\frac{s}{s^{2}-k^{2}}
$$

5) $L\left\{e^{a t} f(t)\right\}=\left.F(s)\right|_{s \rightarrow s-a}$

$$
L^{-1}\left\{\left.F(s)\right|_{s \rightarrow s-a}\right\}=e^{a t} f(t)
$$

6) $L\{U(t-a)\}=\frac{e^{-a s}}{s}$

$$
L^{-1}\left\{\frac{e^{-a s}}{s}\right\}=U(t-a)
$$

7) $L\{g(t) U(t-a)\}=e^{-a s} L\{g(t+a)\} \quad L^{-1}\left\{e^{-a s} F(s)\right\}=f(t-a) U(t-a)$
8) $L\left\{f^{(n)}(t)\right\}=s^{n} F(s)-s^{n-1} f(0)-s^{n-2} f^{\prime}(0)-\ldots .-f^{(n-1)}(0)$
9) $L\left\{y^{\prime}(t)\right\}=s Y(s)-y(0)$
$L\left\{y^{\prime \prime}(t)\right\}=s^{2} Y(s)-s y(0)-y^{\prime}(0)$
10) $L\left\{t^{n} f(t)\right\}(s)=(-1)^{n} \frac{d^{n} F(s)}{d s^{n}} \quad L^{-1}\left\{\frac{d^{n} F(s)}{d s^{n}}\right\}=(-1)^{n} t^{n} f(t)$
11) $L\{f(t) * g(t)\}=F(s) . G(s) \quad f(t) * g(t)=\int_{0}^{t} f(\tau) g(t-\tau) d \tau$
12) $L\left\{\int_{0}^{t} f(\tau) d \tau\right\}=\frac{F(s)}{s} \quad L^{-1}\{F(s) \cdot G(s)\}=f(t) * g(t)$
13) $L\{\delta(t)\}=1 \quad L\{\delta(t-a)\}=e^{-a s}$
14) If $f(t)$ is periodic with period T then $L\{f(t)\}=\frac{1}{1-e^{-T s}} \int_{0}^{T} e^{-s t} f(t) d t$
$\sin (A+B)=\sin A \cos B+\cos A \sin B \quad \sin A \cos B=\frac{1}{2}[\cos (A-B)-\cos (A+B)]$

Faculty information

Ayman Badawi, American University of Sharjah, UAE.
E-mail: abadawi@aus.edu

