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1 Section : Course Syllabus



 COURSE SYLLABUS 

A Course Title 
& Number Differential Equations – MTH205 

B Pre/Co-
requisite(s) Pre-requisite: MTH104 (Calculus II) 

C Number of 
credits 3 

D Faculty Name Ayman Badawi 

E Term/ Year Fall 2020 

F Sections Course No. Sec. No. Room Days Start End 
11103 – MTH205 07 Online UTR 13:00 13:50 

G Instructor 
Information 

Instructor Office Telephone Email 

Ayman Badawi NAB 262 abadawi@aus.edu 

Office Hours:    UTR:  or      by appointment (send me an EMAIL ) 

H Course 
Description from 
Catalog 

Covers mathematical formulation of ordinary differential equations, methods of solution 
and applications of first order and second order differential equations, power series 
solutions, solutions by Laplace transforms and solutions of first order linear systems.

I Course Learning 
Outcomes 

Upon completion of the course, students will be able to:

Explain basic definitions, concepts, vocabulary, and mathematical notation of
differential equations. Exam one and Final Exam
Demonstrate the necessary manipulative skills (usually Algebra Skills)
required to solve equations of first order and higher-order constant-coefficient
linear differential equations. First Exam and Final Exam
Demonstrate the necessary manipulative skills (usually Algebra Skills)
required to find particular solutions of second order differential equations.
Exam Two and Final Exam
Apply Laplace transform to solve IVPs and systems of linear differential
equations. First Exam and  Final Exam
Understand the fundamental properties of power series, and how to use them to
solve linear differential equations with variable coefficients. Final Exam
Formulate and give reasonable approximation solutions to applied physical
problems arising in science and engineering. Exam Two and Final Exam

J Textbook, 
Instructional 
Material, and 
Resources  

MAIN : CLASS NOTES, My personal webpage (old exams, quizzes)
http://ayman-badawi.com/MTH%20205.html
Problems with solutions for each section will be posted on I-
Learn
(Optional)  Zill D.G., A First Course in Differential Equations with
Modeling and Applications, International Metric Edition, 11th ed,,
2018, CENGAGE Learning Custom Publishing.
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 COURSE SYLLABUS 

(Optional) WebAssign: To purchase the access code and get the
discount, you need the following details:
Cengage Brain URL : https://login.cengagebrain.co.uk/cb/
Product ISBN : 9781337786911  (  click here)
Discount Code : MEBACKTOUNIVERISTY25

K Teaching and 
Learning 
Methodologies 

This is a traditional lecture based course. Students are tested and given feedback 
throughout the semester via regular homework, quizzes, and exams

L Grading Scale, 
Grading 
Distribution, and 
Due Dates 

Grading Scale 

Grading Distribution 

Assessmet Weight Date 
Quizzes 15% TBA 
Exam 1 25% Sunday , Oct  11, 6:00pm - 

7:15pm 
Exam 2 25% Sunday, Nov 29, 6:00pm - 7:15pm 
Final Exam 35% TBA 
Total 100% 
   

[92 , 100] 4.0 A [72 , 77) 2.3 C

[89 , 92) 3.7 A- [66, 72) 2.0 C

[85 , 89) 3.3 B+ [62 , 66) 1.7 C- 

[81 , 85) 3.0 B [50 , 62) 1.0 D 

[77 , 81) 2.7 B- [0 , 50) 0 F 

M Explanation of 
Assessments 

There will be quizzes, two midterm tests, and a comprehensive final exam. 

Most quizzes will be pre-announced at least one lecture in advance. No make-
up quizzes will be given.  However the lowest quiz will not be counted toward
your final grade.
With a valid written excuse and making immediate arrangements with the
instructor, a missed exam might be replaced with the grade of the final exam
and/or the average grade of all tests (including final) and/or quizzes.
The final exam is common and comprehensive.  The date and time of the final
exam will be scheduled by the registrar’s office.

N Student 
Academic 
Integrity Code 
Statement 

Student must adhere to the Academic Integrity code stated in the 2019-2020
undergraduate catalog   
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 COURSE SYLLABUS 

SCHEDULE 

Note: Tests and other graded assignments due dates are set.  No addendum, make-up exams, or extra 
assignments to improve grades will be given. 

# WEEK CHAPTER/SECTIONS NOTES 

1 Week one 

4.1 Notations and Fundamental Theorem of IVP  

7.1 Definition of the Laplace Transform 

7.2 Inverse Transforms and Transforms of Derivative 

 

2 Week two 
 Continue with 7.2 and solving linear diff. equations using 

Laplace Transformation 
 

3 Week three 
 7.4 Derivatives of Transform, Transforms of integrals and 

Periodic Functions and solving linear diff. equations 
 

4 Week four 7.5 The Dirac Delta Function and solving linear diff. equations  

5 Week five 7.6 Solving  Systems of Linear Diff Equations  

6 Week six 

4.3 Homogeneous Linear Equations with Constant 

Coefficients 

4.7 Cauchy-Euler Equation 

 

7 Week seven 
4.4 Undetermined Coefficients – Superposition Approach 

4.6 Variation of Parameters 
 

8 Week eight 4.2 Reduction of Order  

9 
Week nine 

2.3 Linear Equations and Bernoulli Equation 

2.4 Exact Equations 
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 COURSE SYLLABUS 

10 
Week ten 

2.1 Solution Curves Without the Solution   

2.2 Separable Equations 
 

11 
Week eleven 

 2.5 Solutions by Substitution 

 
 

 

12 

 

 

Week twelve 3.1 Applications of First order linear ODE 

 Formulate and give reasonable approximation 
solutions to applied problems arising in science 
and engineering. 

 

 

13 

Week thirteen  Applications of second order diff equation 
Formulate and give reasonable approximation solutions to 
applied problems arising in science and engineering. 

 

 

14 

Week fourteen 6.1 Review of Power Series  

6.2 Solutions of basic linear diff. equation using the concept 

of power series 

 

 

15 

Week fifteen More on first and second linear diff. equations, Bernoulli, 

Exact, separable, pictures for diff.  equations without 

finding the exact diff. equation 

 
One day or two 

days (depends!) 
Reviews/Final Exam (Comprehensive) 
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 COURSE SYLLABUS 

Math 205 Suggested Problems (if you choose to use the textbook) 

TEXT: A First Course in Differential Equations with Modeling Application, by D.G. Zill, 11th Edition. 

 

 

Section Page Exercises 

1.1 10 1-8, 12, 15, 19, 27, 32 

1.2 17 4, 8, 14, 17, 18, 23, 24, 25, 27 

1.3 28 1, 5, 13, 14, 17 

2.1 43 1, 9, 13, 21, 22, 25, 27, 29 

2.2 51 3, 6, 7, 8, 13, 14, 17, 25, 27, 30, 36(a) 

2.3 61 5, 9, 12, 13, 17, 23, 24, 25, 28, 29, 31 

2.4 69 2, 3, 6, 8, 12, 16, 24, 32, 35, 37 

2.5 74 3, 5, 8, 11, 15, 18, 22, 23, 25, 28 

3.1 90 1, 3, 6, 7, 14, 15, 23, 26, 27 

4.1 127 1, 3, 5, 6, 9, 13, 15, 17, 19, 23, 26, 31, 36, 38, 40 

4.2 131 2, 3, 9, 11, 17 

4.3 137 3, 5, 11, 15, 16, 22, 23, 24, 31, 33, 43-48, 56, 57, 59 

4.4 147 1, 5, 8, 11, 13, 15, 19, 20, 24, 26, 29, 32, 45 

4.6 161 1, 3, 9, 15, 19, 25 

4.7 168 1, 3, 4, 5, 6, 11, 14, 15, 17, 19, 29, 45 

5.1 205 1, 2, 4, 5, 9, 11, 17-20, 21, 23, 29, 31, 45, 47 

6.1 237 23, 24, 25, 27, 29, 31,33 

6.2 246 1, 2, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21 

7.1 280 4, 13, 15, 18, 21, 25, 29, 31,33, 37 

7.2 288 2, 3, 7, 9, 11, 15, 19, 24, 33, 34, 36, 39 

7.3 297 1, 3, 6, 7, 15, 22, 23, 26, 29, 37, 39, 43, 45, 47, 49, 51, 54, 55, 58 63, 65 

7.4 309 1, 5, 7, 8, 11, 23, 25, 27, 29, 37, 39, 41, 45, 49, 51 

7.5 315 1, 3, 6, 10 

7.6 319 1, 3, 6, 7, 9, 12 

8
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2 Academic Integrity Measures



Academic Integrity Measures in Online Exams 

List the measures taken to ensure the academic integrity of the exam. 

 

Quizzes 1-6, all students were in the lecture room (blackboard Ultra room). All 

students had 20-25 minutes. All questions are essay. Students submitted their 

solution in a folder that I created on I-learn.   

       Students used lockdown browser for exams one, two and final exam. All 

questions are essay. Students submitted their solution in a folder that I created 

on I-learn.  The outcome (scores) was not significantly different from  a normal 

in-class exams (see the scores of the students in the excel-sheet) 

I am completely satisfied with the outcome of MTH205. 
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3 Section : Instructor Teaching
Material-Handouts
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3.1 Questions with Solutions on Chapter 7.1 (Find
Laplace)



Exercises 7.1 Definition of the Laplace Transform

17. if{ /(t)}  = j  t(cost)e s'

st

~sldt

s2- 1
+ 1 (s2 + 1)"

(cost)e- + ( ^  4- (sint)e-sf
OC

s2- l
s > 0

2 s
s2 + 1 (s2 + 1)

2 . (cost)e - ( 3 ^ 7  + 717— ^ 2) (sini)e
y + i  (s-2+ ir ,

OO

2s

(*2 + 1) ’

.4!

.9 > 0

19. if{2t4} = 2 j

4 10
21. i f  {4t - 10} = ^  - —

23. i f  {t2 + 6 i-3} =  -^ + - ^- -
5 s

3 13[ 2_ _
s4 s3 s2 + s

27. if { l + eAt} =  - +
1

29. if{ l + 2e2i + e4t} =  - + ——7: +

s s — 4

1 2

31. if{4£2 — 5 sin 31\ = 4^- — 5-=— - 
1 J s3 s2 + 9

33. if{sinhfci} = ^ if{ e fct —e~kt} =  ^Zt £

20. ^  = $

22. ¥{7t + 3} = + -

24. if{ —4tf2 + im  + 9} =  - , 2 It
_4?  + ?

26. i f  {8t3 —12£2+6f—1} = OO
*11

 £
2 

1 to 1

28. if{ i2 - e"* + 5} = |
1

5 + 9 "*

30. X{e21 2 + e~2t} =
s

1 2 
-2

32. i'-Jcos 51 + sin 2t} = 8
+ 25 ' A’

s —k s + k. s2 —k‘2

34. i f  {cosh kt} =  12 {eu  + eH} = s2 - k2

35. if{e‘ sinhi} = y  |e* - i }  =  - ±

36. ^ - ‘ oosh t) = 2  |e-‘ = X {5 + je " 2'}  =  ^  + ~

1 9
r H—,s

2 6
J* 5'

5
s

1
A1 + -

2
^+4

354
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3.2 Questions with Solutions on Chapter 7.2 (Find
Laplace Inverse)



Exercises 7.2 Inverse Transforms and 1;

,s3J 2 Is 3/ 2

o ^f-i/J_\  — — I^3«  « C s 6 '  1 1 1  “  -  A i  /  —  _ 1/U4 J 6 I *4 I 6

« . „ - . { ! ^ 2 } . | } . . * . * »

S. + ---- }= if~ 1 (4-i + I . ^ - - i - l = 4 + ^ 4-e-8t
Is  s° s + 8 J [ s 4 5° + 8 J 4

9 -  ^ {sriK M rT iT iH ^ 4
10- ^ ‘ { ^ - ^ “ { s - r i T s } - ^

n - sf" 1{ ? T « }  =  i f “ , { ? - ? T 4 9 }  = ? sin7t

12. -| =  10cos4<
I s2 + 16 J

:3- ^ " 1{ 4? ? l }  = ^ 1 { ? T w } =cos5t 

:4- ^ ' ' { 5 5 T l } = ^ " 1 { 5 '? T 1 7 l}  = 5 si4 *

ives

357
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Exercises 7.2 Inverse Transforms and Transforms of Derivatives

15. if '

16. se

t t .  i f  

IS. if '

19. i f

20. if ' 

21. if '

2 2 . i f '

23. if "

24. i f

25. Jf-

26. i f '

27. ^

28. i f

l {% — >FT I  =  i f _ 1 12 • “  2 • “9 ^ 1  = 2cos31 - 2sin31ls 2 + 9J I  s2 + 9 s2 + 9j

= y “ ‘ { ? T 2 + 7=2 - ^ h }  =  “ s ^  + f sinv^

-1 f 1 i =  y - i  r i . i  _  i . J _ \  = I  _  1 -a
I s2 + 3<s J 13 s 3 s + 3 / 3 3

* { ?

1 1 5  1 1 1 5 4#
7 + 7 e 4 4

_  1 ^  3 _3t
+ 2s — 3J ~ U  s- 1  ' 4 S + 3J ”  4e 1 46

- 1  ( 1 1 =  i f -1 / i . — ___ 1 ___ -_\
5 0

1 \_
-4

3 1
4

CO-1-

1 1
9 ’ S + 5

1
s -0.1

-e - -e 9 9

- if «-  3 1 ( a  *  V3=  ?£ 1 < 5 Vs \/3 Vs Vz t
[s - y/3)(s + V3) J U 2-3  -  s2 — 3

-1 < f - l 2 ‘St 1 6
S-6)J  12 s - 2  s - 3  2 ,8-6/ 2 '  ' ' 2 '(s-2)(s-3)(s

s2 + l  ) ,„_r ( 1 1  1 1 1 5  1
.s(.s — l)(s + l)(s —2)

=  i f -
.1 f 1 1 1 1 1  5 1 "j 

12 .8 s- 1  3 ‘ 8 + 1 + 6 ’ 5 - 2 /

2 3 6
f 1 •'i r 1-1

-1

-XI= * - - 7 t M  = * - 7 008>/5tI.s + 5s J [s(s2 + 0) j 15 s 5 s2 + 0 ) 0  5

f S \ co-l f l s  1 2  1 1 1  1 ^ 1 . ^
t(?T 4 )(S + 2)| = ^  \4'?T4 + 4 ' ? T 4 _ 4-7f2/  = 4 0082<+45m2i_

f 2a-4  1 _ v-i  [ 2« - 4  ) t f _ ! f  4 3 s 3
1(s2 + 6-)(6-2 + 1)/ ' \s(s+l)(s2- l . ) j  I S + S ^ l  + S2 -r l  + ? - T

t

11 1  ̂ n I  =  ^  117~r ' ---7= ‘ 2 ^ q1 = ~ 7= sin^ V3 f ---sin Vs tU l -9J  [6y/3 ,s2- 3 6-\/3 s2+3j 6^3 6\/3

358

use partial fraction, /(s^2 + 3) = a/s +b/(s+3)
find a, b by cover method

use partial fraction

use partial fraction

use partial fraction from 20 to 24
and cover method.
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3.3 Questions with Solutions on Chapter 7.2 (Solving IVP
using Laplace)



Exercises 7.2 Inverse Tra::?:

y - i / ______ 1______ \ = * - i  ( I . _ J _____I . _ i _ l
[ (s2 + l)(s2+ 4) J 13 s2 + l 3 »2- 4 j

= ___ -____ - • -7-̂ ___i
13 s2 + 1 6 s2 -r 4 J

1 • 1 . «=  - sm t- - sin
3 6

ff-i I 6.9 + 3 \ _  ^>-112 ____£___ |___ _̂___ 9
| (s2 + l)(s2 + 4) J I s2 + l s2 + l "

.9 1 2
s2 + 4 2 s2 + 4.

= 2 cos i + sin t — 2 cos 2i — ^ sin 2iZj
The Laplace transform of the initial-value problem is 

Solving for i?{y} we obtain

.9 5 — 1
Thus

! / = - l  +  e‘ .

The Laplace transform of the initial-value problem is

2s i f {y} - 2y(0) + i?{y} =  0.

5:’;ving for if{y} we obtain
v r ,  1 6 _  3

25 5
7::us

y =  3 e-t'/2.

T..- Laplace transform of the initial-value problem is

- !/(0) + = 1
.9 —4

' :lv:ng for Z£{y} we obtain
oj f 1 1 2 1 1 19 1

T u r. ^  + m  = 77;  7 + ^(.9 —4)(s + 6) 5+ 6 10 5 —4 10 s + 6 -

v =  — e4t -1- — e~6i 
y 10 ' 10 '

Laplace transform of the initial-value problem is

^ « - * W  = ? T 25-

359
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Exercises 7.2 Inverse Transforms and Transforms of Derivatives

? living for Z£\y\ we obtain
vr  ̂ _  2s 1 1 1 s 5 5

M i  ~  /„ , — 10 „ „2 I (s - l)(s2 + 25) 13 s - 1 13 s2 + 25 13 s2 + 25 '
TI'/.is

1 1  0
i, =  i3 '’‘ “ T3COs5t + S 5inM-

Ti.f Laplace transform of the initial-value problem is

ving for l£{y} we obtain
s + 5 4 1 1 1

s2 + 5s + 4 3 s + 1 3 s + 4 
Tims

^ —t 1 —At
y = ?  ~ r •

36. The Laplace transform of the initial-value problem is

s2 2{y} - sy(0) - </(0) - 4 !.SZ{y} - 3,(0)] =  6 35- 3  5+1
5 T.ving for 1£ {y} we obtain

<rr l 6 3 5 - 5
^{y} ~~ 77.— 5T772--7^ ~ 77TTu72 +(s — 3)(s2 — 4s) (s + l)(s2 —4s) S2— 4,s

5 1 2 3 1 11 1
+ ~r~r2 5 5-3  5 5 + 1 10 5 - 4

Tims
->Sf 3  ̂ 11

V = 2 ~ 2c ~ r + K e
\ The Laplace transform of the initial-value problem is

2
s2X{y} - sy(0) + % {?/} = -ns2 + 2 ‘ 

jiving for i f  {y} we obtain
2 105 10s 2 2

(s2  + l)(s2  + 2) 52  + l S2 l s2 l  s2 2 ’ 
Thus

y = 10 cos t + 2 sin t — a/2 sin \[21.

35. The Laplace transform of the initial-value problem is

=,2 y /„ i _i_ 0 y/,A _  ls ^ { y }  + 9^{y} = —

360

y'' + 5y' + 4y = 0, y(0) = 1, y'(0) =  0

19
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3.4 Questions with Solutions
More-Questions-Solutions-Laplace-IVP
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Exercises 7.3 Operational Properties

and the zero-state response is
6 3

yi{t) =5£ 1-[ (s — 3)(-s2 — 4s) (s + l)(s2 — 4s) j

= i f -1 <f — __-______ 2 i 5 1 3 1 ]
120 s — 4 s — 3 4 s 5 s + 1J

27 a* n ~ 5 3 _t
“ 20e “ 2e + I “ 5C '

From Theorem 7.2.2, if /  and f  arc contiimous and of exponential order. =  sF(s) — /
From Theorem 7.1.3. = 0 so

lim [sF(s) - /(0)] =  0 and lim F(s) =  /(0).o *\JG & *

For /(t) = cos Ai,
lim sF(s) = lim s 9 * 9 = 1 = /(0).S->O C  V ’  8 —>OC A>2 £ 2  J \  /

<>pwati<?na| Frop«rties I "irf:;'• j' -V \ s' L s' - : - ~... '' 2 ~ “ •'* 5 '•...\ *“v” » *“ “j
s. i:v ;•£;

-  (s _  10)2

* { * * }  -  j r t w

= ( J W

{t(ef + e!t) | = if{ le 2< + 'lteM + te4'} = ^  _  ,-,,2 , (s _  3 ) 2 1 (s _ 4 ) 2

jf  {e2«(f - 1)2} = i f  {tV> - 2(e2‘ + e21} = ^ - 4 ^  - + 1

2 1
+

(s - 2)3 (s - 2)2 s - 2

= (s _1)2 + 9

jf{e-2f cos4f) =  -—
* J (s + 2)2 + 16
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Exercises 7.3 Operational Properties I

9. J. {(1 —et + 3e ) cos 5#} = i f  {cos bt —ef cos 51 + 3e 4< cos 51}

_  $ 5  1 3 (5  4- 4 )

,s'2+ 25 (s — l)2 + 25 (s + 4)2 + 25

9 4
+3 (s - 3)2 (s - 3)‘2 + 1 /•;

10. if  je 3f 9̂ —At + 10s i n ^ | = i f |9e^ —A te + lOe^sin^|= -

11 -/_1(  - \ = i f —1 / — - 1 = - f 2p~2/
~  I  ( « +  2)3 /  *  \ 2  (5 +  2)3 /  2

“  l ( ^ - l ) 4 J 6 ^  l ( 5 - l ) 4 /  6 t e

13- - 1  + 10} = { (« - 3)2 + 12 } = ^  Sin*

14' *  ‘ { S2 + 2s + o } = ,y  ^ 2  (s-H I)2 -H 22} = 2e >Sm2t

- i f  S \ _ V - l j  5 +  2 1 1 ___ —2t ____ r >-2t.15. i f  M —r-- ----- f =  i f  <-----r~— —2----—~— -k > = e “ cost —2e sint
ls 2 + 4s + 5j \(5 + 2)2 + l 2 ( s  + 2)2 + l 2 J

16, —-V~ J— } =  i f - 1 / 2-— r2 — ~ — 3 } = 2e_,%cos51 — ^e_3tsinof 152 + 65 + 34 j \ (s + 3)2 + 52 5 (s + 3)2 + 52 J 5

( W ) =' i  A  * 5 ^ 1  �
,0  r - i f  25-1 1 t, ,  [5 1 5 4 3 2 ) -f -t19. i f  <-K-,— — so > = £  \----o --- —r —7---tt? — - 7-----To r = 5—t—5e —Ate —5 (5 +1) J \s 5 5 + 1 (5 + 1)2 2 (5 + l )3 J

o0 y - J  (6~ + 1I 2l  =  ^ - 1/ _____________ -___+ 1 ___ -__ \ = f ( - x _ t 2e-2t + -t3(-'2tJ- x l ( 5  + 2)4/  x \(5 + 2)2 (5 + 2)3 + 6 (5 + 2)4j tC te 6

21. The Laplace transform of the differential equation is
15if{y} - y(0) + 4if{y}

5 + 4
Solving for if{y} we obtain

1 2V\ = 7 . +(5 + 4)2 s + 4 ’ 
Thus

y = te~if’ + 2e~4t.

364

IO 
I C

Ofind y(t), where y^\ + 4y = e^{-4t}, y(0) = 2.
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Exercises 7.3 Operational Properties I

When l/R C  = k we have

Thus

<sr i _  ^  1
(? ! H (s + fc)2 '

9W = f f c - “  = f t e - ‘/BC

38. if{e2“* (f - 2)} =  i f  {e-(t_2> *1/ (* - 2)} =  -̂
+ 1

39. if{t9i(t-2)} = ^ { ( i - 2 ) ;W ^ - 2 )+ 2 ^ ( i- 2 ) }  = ^
<5 ^

Alternatively, (16) of this section in the text could be used:
/ 1 2'i f{t V (t - 2)} = e~2s ¥ {t + 2} - e_2s + -) •

Q — <S 1

40. if{(3t + 1)% (i — 1)} =  3if{(£ — I ) 3?/ ( t— 1)} + 4 i f { ^  (t — 1)} = '-̂—  + ~6 tS
Alternatively, (16) of this section in the text could be used:

if{(3 i + 1) °U- (t - 1)} = e-*Z{3t + 4} = e~* ( ^  ^  ^ ) •

S€~vs
41. i f  {cos 2 t LU(t — tt )} = if{cos2(i —x)''U(t — 7r)} = 2 t

Alternatively, (16) of this section in the text could be used:

if{cos2t £W(t - 7r)} =  e-7™ i f  {cos 2(t + tt)} =  e~xs if{cos2t} =  e~

42. v  u - z w - - ~ " ' 227 J ~  y  27 " V 27J s2 + l 
Alternatively, (16) of this section in the text could be used:

if-fsint (t — ^  } =  e~vst2 i f  (sin (t + ^  1 =  e~™/2 ^{cosi} =  e

e~*a45. i?  1 <~2 > =  sin(i — 7r) ~V, (t — tt) = — sint °U(t — tt)

�fi

s2 + 4 ’

-tt.s/2 *
,S2 + 1
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7.3 OPERATIONAL PROPERTIES I ● 279

In Problems 21–30 use the Laplace transform to solve the
given initial-value problem.

21. y� � 4y � e�4t, y(0) � 2

22. y� � y � 1 � tet, y(0) � 0

23. y� � 2y� � y � 0, y(0) � 1, y�(0) � 1

24. y� � 4y� � 4y � t3e2t, y(0) � 0, y�(0) � 0

25. y� � 6y� � 9y � t, y(0) � 0, y�(0) � 1

26. y� � 4y� � 4y � t3, y(0) � 1, y�(0) � 0

27. y� � 6y� � 13y � 0, y(0) � 0, y�(0) � �3

28. 2y� � 20y� � 51y � 0, y(0) � 2, y�(0) � 0

29. y� � y� � et cos t, y(0) � 0, y�(0) � 0

30. y� � 2y� � 5y � 1 � t, y(0) � 0, y�(0) � 4

In Problems 31 and 32 use the Laplace transform and
the procedure outlined in Example 9 to solve the given
boundary-value problem.

31. y� � 2y� � y � 0, y�(0) � 2, y(1) � 2

32. y� � 8y� � 20y � 0, y(0) � 0, y�(p) � 0

33. A 4-pound weight stretches a spring 2 feet. The weight
is released from rest 18 inches above the equilibrium
position, and the resulting motion takes place in a
medium offering a damping force numerically equal to

times the instantaneous velocity. Use the Laplace
transform to find the equation of motion x(t).

34. Recall that the differential equation for the instanta-
neous charge q(t) on the capacitor in an LRC series
circuit is given by

. (20)

See Section 5.1. Use the Laplace transform to find q(t)
when L � 1 h, R � 20 �, C � 0.005 f, E(t) � 150 V,
t � 0, q(0) � 0, and i(0) � 0. What is the current i(t)?

35. Consider a battery of constant voltage E0 that charges
the capacitor shown in Figure 7.3.9. Divide equa-
tion (20) by L and define 2l � R�L and v2 � 1�LC.
Use the Laplace transform to show that the solution
q(t) of q� � 2lq� � v2q � E0 �L subject to q(0) � 0,
i(0) � 0 is

q(t) � �
E0C�1 � e�	t (cosh 1	2 � 
2t

  �
	

1	2 � 
2
 sinh 1	2 � 
2t)�, 	 � 
,

E0C[1 � e�	t (1 � 	t)],        	 � 
,

E0C�1 � e�	t (cos 1
2 � 	2t

  
�

	

1
2 � 	2
sin 1
2 � 	2t) �,

 	 � 
.

L
d 2q

dt2 � R
dq

dt
�

1

C
q � E(t)

7
8

36. Use the Laplace transform to find the charge q(t)
in an RC series circuit when q(0) � 0 and
E(t) � E0e�kt, k � 0. Consider two cases: k � 1�RC
and k � 1�RC.

7.3.2 TRANSLATION ON THE t-AXIS

In Problems 37–48 find either F(s) or f (t), as indicated.

37. 38.

39. 40.

41. 42.

43. 44.

45. 46.

47. 48.

In Problems 49 – 54 match the given graph with one of 
the functions in (a)–(f ). The graph of f (t) is given in
Figure 7.3.10.

(a)

(b)

(c)

(d)

(e)

(f) f (t � a) �(t � a) � f (t � a) �(t � b)

f (t) �(t � a) � f(t) �(t � b)

f (t) � f (t) �(t � b)

f (t) �(t � a)

f (t � b) �(t � b)

f (t) � f (t) �(t � a)

� �1� e�2s

s2(s � 1)�� �1� e�s

s(s � 1)�

��1�se�
s/2

s2 � 4�� �1� e�
s

s2 � 1�

� �1�(1 � e�2s)2

s � 2 �� �1�e�2s

s3 �

��sin t ��t �



2���{cos 2t �(t � 
)}

�{(3t � 1)�(t � 1)}�{t �(t � 2)}

�{e2�t �(t � 2)}�{(t � 1)�(t � 1)}

FIGURE 7.3.9 Series circuit in Problem 35

E0 R

C

L

FIGURE 7.3.10 Graph for Problems 49–54

t

f(t)

a b

49.

FIGURE 7.3.11 Graph for Problem 49

t

f(t)

a b
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280 ● CHAPTER 7 THE LAPLACE TRANSFORM

FIGURE 7.3.12 Graph for Problem 50

t

f(t)

a b

FIGURE 7.3.13 Graph for Problem 51

t

f (t)

a b

FIGURE 7.3.14 Graph for Problem 52

t

f(t)

a b

FIGURE 7.3.15 Graph for Problem 53

t

f(t)

a b

FIGURE 7.3.16 Graph for Problem 54

t

f(t)

a b

50.

51.

52.

53.

54.

In Problems 55–62 write each function in terms of unit step
functions. Find the Laplace transform of the given function.

55.

56.

57. f (t) � �0,

t2,

 0 � t � 1

 t � 1

f (t) � �1,

0,

1,

 0 � t � 4

 4 � t � 5

 t � 5

f (t) � �2,

�2,

 0 � t � 3

 t � 3

58.

59.

60. f (t) � �sin t,

0,

0 � t � 2


t � 2


f (t) � � t,

0,

0 � t � 2

t � 2

f (t) � �0,

sin t,

 0 � t � 3
>2

 t � 3
>2

61.

62.

FIGURE 7.3.18 Graph for Problem 62

3

2

1

staircase function

t

f(t)

1 2 3 4

FIGURE 7.3.17 Graph for Problem 61

1

rectangular pulse

tba

f(t)

In Problems 63–70 use the Laplace transform to solve the
given initial-value problem.

63. y� � y � f (t), y(0) � 0, where f (t) �

64. y� � y � f (t), y(0) � 0, where

65. y� � 2y � f (t), y(0) � 0, where

66. where

67. , y(0) � 1, y�(0) � 0

68. , y(0) � 0, y�(0) � 1

69. where

70. y� � 4y� � 3y � 1 � �(t � 2) � �(t � 4) � �(t � 6),
y(0) � 0, y�(0) � 0

f (t) � �
0,

1,

0,

0 � t � 



 � t � 2


       t � 2


y� � y � f(t), y(0) � 0, y�(0) � 1,

y� � 5y� � 6y � �(t � 1)

y � � 4y � sin t �(t � 2
)

f(t) � �1,

0,

0 � t � 1

t � 1

y � � 4y � f (t), y(0) � 0, y�(0) � �1,

f(t) � � t,

0,

0 � t � 1

t � 1

f (t) � � 1,

�1,

0 � t � 1

t � 1

�0,

5,

0 � t � 1

t � 1
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Exercises 7.3 Operational Properties I

22. The Laplace transform of the differential equation is

s (s — l)2 ' 
Solving for i f {y} we obtain

v r i 1 . 1 1 1  1
° £ { y }  —  ~ ( -------------- T T  1 "  7 -------------- T y T  — ----------------!--------------------7  +s(s —1) (s — l)3 s s —1 (s — l)3 ’ 

Thus
y = - l  +e‘ + itV .

23. The Laplacc transform of the differential equation is

s2if{y} - <*(()) - y'(0) + 2[sX{y} - j,(0)) + ^{j/} =  0. 

Solving for ?£{y} we obtain

<c r 1 s + 3 1 2
£  iv} = TTV^v} = TTT +(s + l)2 s 4- 1 (s + l)2 ‘

Thus
y = e-* + 2te~l.

:4. The Laplace transform of the differential equation is

S2 X { y ]  - Sy(0) - y'{0) - 4 (S X { y )  - y(0)] + iZ {y )  = 6
(s-2) 4 *

Solving for 2 {?;} we obtain ¥{y} =  ^  6 . Thus, y = ^ t 5e2t.

25. The Laplace transform of the differential equation is

s2 X{y} -  51/(0) -  j/(0) -  6 [ ^ { y }  -  s,(0)] +  92{y} =  i  .
Solving for i?{y} we obtain

. 1 + s 2 2 1 1 1  2 1 10 1
s2{s - 3)2 27 s 9 s2 27 s - 3 9 (s - 3)2 ' 

Thus 2 1 2 v  10 «
V = — 4- - t--- e6t H---te .
* 27 9 27 9

2o. The Laplace transform of the differential equation is

s2 %{y} - sy(Q) - ?/(0) -4[s¥{y} - 2/(0)] + 4¥{y} =  .
s

Solving for if{y} we obtain

,rr . .s5 — 4.s4 4- 6 3 1 9 1 3 2 1 3! 1 1 13 1 
y} = — 7ZT - 7 7 + o72 + 7 3  + 774 + 7l(s - 2)2 4 s 8 s2 4 s3 4 s4 4 s — 2 8 (s - 2)2 ‘

32



Exercises 7.3 Operational Properties I

Thus
3 9 3 9 1 o 1 <>/ 13 ->t

+ + ?  - ¥ te
27. The Laplace transform of the differential equation is

s2 <£{y} - sy(0) - y'(0) - 6 \s%{y} - y(0)] + 13 2{y} =  0.

Solving for ££{y} we obtain

Vt — ,s2 - C)5 + 13 2 (5 - 3)2 + 22 '

Thus
3 v

y = — (r sin 21.J 2

2S. The Laplace transform of the differential equation is

2|V2if{y} - 5y(0)] + 20[s%{y} - y(0)j + 51 if{y} = 0.

Solving for i f  {y} we obtain
(„f 1 4s + 40 25 +  20 2 (5  +  5 ) 10

i on,, i ci („ i C\2 i i/o  i rt\2 i 1 /o2s2 + 20s + 51 (s+ 5)2 + 1/2 (5 + 5)2 + l/2 (5 + o)2 + 1/2 ' 
Thus

y = 2e~ot cos(t/\/2) + 10 V 2  e~ot sin(t/y/2-).

29. The Laplace transform of the differential equation is

- s»(°)-J/'(0) - -»(0)] =  4 1(«-1)2 + r
Solving for if{y} we obtain

f. r , 1 1 1 1 5 -1 1 1
2 o» 1 o \ o  ̂ o ( „  i \ 2  1 1 <15(s2 - 2s + 2) 25 2 (5 - I)2 + 1 2 (5 - l)2 + 1 ‘ 

Thus
1 1 * 1 1y = - — -e cos t + -e sm t.z z z

30. The Laplace transform of the differential equation is

s2 %{y} - 5y(0) - y'(0) - 2 [s£{y} - 2/(0)] + 5 %{y} = 7 + -  ̂•s &
Solving for if{y ) we obtain

^  r 4a’2 + 5 + 1 _  7_ 1 ^  1 1_ , -75/25 - 109/25
^ 52(s2 — 2s + 0) 25 5 ' 5 s2 T 52 — 25 + 5

7 1 1 1  7 5-1 51 2
<-»- I- _ 7 TTo ! 4"25 5 5 52 25 (5 - I)2 + 22 25 (5 - I)2 + 22 '

366
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Exercises 7.3 Operational Properties I

When l/R C  = k we have

Thus

<sr i _  ^  1
(? ! H (s + fc)2 '

9W = f f c - “  = f t e - ‘/BC

38. if{e2“* (f - 2)} =  i f  {e-(t_2> *1/ (* - 2)} =  -̂
+ 1

39. if{t9i(t-2)} = ^ { ( i - 2 ) ;W ^ - 2 )+ 2 ^ ( i- 2 ) }  = ^
<5 ^

Alternatively, (16) of this section in the text could be used:
/ 1 2'i f{t V (t - 2)} = e~2s ¥ {t + 2} - e_2s + -) •

Q — <S 1

40. if{(3t + 1)% (i — 1)} =  3if{(£ — I ) 3?/ ( t— 1)} + 4 i f { ^  (t — 1)} = '-̂—  + ~6 tS
Alternatively, (16) of this section in the text could be used:

if{(3 i + 1) °U- (t - 1)} = e-*Z{3t + 4} = e~* ( ^  ^  ^ ) •

S€~vs
41. i f  {cos 2 t LU(t — tt )} = if{cos2(i —x)''U(t — 7r)} = 2 t

Alternatively, (16) of this section in the text could be used:

if{cos2t £W(t - 7r)} =  e-7™ i f  {cos 2(t + tt)} =  e~xs if{cos2t} =  e~

42. v  u - z w - - ~ " ' 227 J ~  y  27 " V 27J s2 + l 
Alternatively, (16) of this section in the text could be used:

if-fsint (t — ^  } =  e~vst2 i f  (sin (t + ^  1 =  e~™/2 ^{cosi} =  e

e~*a45. i?  1 <~2 > =  sin(i — 7r) ~V, (t — tt) = — sint °U(t — tt)

�fi

s2 + 4 ’

-tt.s/2 *
,S2 + 1
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Exercises 7.3 Operational Properties I

C / ? - l  .
se -Trs/2

48 . i f

49 . ( c)

,s’2 +  4 j

iSiil
' p - 2s

= i f

= if- x

•(-a

= ~m (*- 2) “  (t - 2)^  (* - 2) + et_2fiM (t - 2)

j =<U(t- 1) - e " ^  92 (* - 1)

2*s 2 s p—2<s

50. (e) 51. (f) 52. (b) 53. (a) 54. (d)

oo.

56 .

35.

59.

i f {2 - 4 s?/ (* - 3)} =  - - -e~3s
s s

if { l —°1l (t - 4) +S1Z (£ - 5)} =  - - —  + —
s s s

%{t2cU (t- l)}  =  if{ [ ( i-  l)2 + 2t- l] °U (t-  1)} =  i f  j [(£ - l)2 + 2(t — 1) + l] M (t-  1)}

/ 2 2 1\
- ( ?  + P  + l ) e

Alternatively, by (16) of this section in the text,

2 { t2 %\t -  1)} =  e-s i f { f 2 + 2t + 1} =  eT* ( 4  + 4  + - )  •
\ S S S /

se-37rs/2
if  | sin t ~U ~ ) } - 4 cos t

s2 + 1

%{t-t<U{t-2)} = 2 { t - ( t -  2) W (t - 2) - 2oil (t - 2)} =  \ ^
qA qZ

oO. i f  {sin i — sinf °U. (t — 27r)} = i f  {sinf — sin(f — 2tt) cU(t — 27t)} =

sA s*

1

s
— s

s2 + 1 S2 + 1

51. if{ /(f)}  = i f  {9/ (t — a) — % (t — b)} =
e-as e-b*

1 e~
52. + + — + — + ^  + . —  ,6‘ s s s 1 — e~s
53. The Laplace transform of the differential equation is

s i f  {y} - y(0) + if{y}

Solving for i f {y} we obtain

.s s + 1

371
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Exercises 7.3 Operational Properties I

Tims
y = 5 ’V(t — 1) — 5e-^-1) 'tt (t — 1). 

64. The Laplacc transform of the differential equation is

So'-ving for ^{y} we obtain

x{v} =
2e~H

s(s + 1) .9(5 + 1) ,9 .9 + 1 — 2e"
s s + 1.

Thus
y =  l- e ~ i - 2 [1 - - 1).

65. The Laplace transform of the differential equation is

S y{8,} - 1,(0) + 2 Z{y} = I  - e - £ ± i

Solving for 

•*{»} =

Tims

we obtain
1 $ + 1

,92 (,9 + 2) ,92 (.9 + 2)
11 1 1  1 1_ _ _ I _

'4 ,9 T 2 ,92  4 .9 + 2
11 1 _1
4 s + 2 ss

1 1 1
» — i + 5t + i « _ a - L4 2

66. The Laplace transform of the differential equation is

S 2 {y }-3y (P )- ,/(p )+ 4  2 { y} =
1 e

Solving for ¥{y} we obtain
1 —s

s(s2 + 4)
I l l s 1 2

s(.92 + 4) 4 .9 4 .92 + 4 2 s2 + 4
1 1 
4 s

Thus
1 1  „ 1 • „y = - — - cos 21 — - sm 2t —4 4 2 ^ - i c o s 2 ( « - l )  ^ ( i- 1 ) .

6 7. The Laplace transform of the differential equation is

s2 if{y} - *2,(0) - t/(0) + 4 ^{i,}  = .
s* + 1

Solving for if{ y} we obtain

Thus

VY = 8 + e_27r,s

y —cos 2t +

.s2 + 4 

'1

1 1 1 2
.3 s’2 + 1 6 s2 + 4.

sin(t — 2tt) — - sin2(£ — 2-tt)o u —  27r).

1 1 1
4 s + 2.

1 s ~
4 s2 + 4.
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7.4 OPERATIONAL PROPERTIES II ● 289

From

we can then rewrite (13) as

1

s(s � R>L)
�

L>R

s
�

L>R

s � R>L

.�
1

R �
1

s
�

e�s

s
�

e�2s

s
�

e�3s

s
� � � �� �

1

R �
1

s � R>L
�

1

s � R>L
e�s �

e�2s

s � R>L
�

e�3s

s � R>L
� � � ��

I(s) �
1

R �1

s
�

1

s � R>L�(1 � e�s � e�2s � e�3s � � � �)

By applying the form of the second translation theorem to each term of both series,
we obtain

�
1

R
(e�Rt/L � e�R(t�1)/L �(t � 1) � e�R(t�2)/L �(t � 2) � e�R(t�3)/L �(t � 3) � � � �)

i(t) �
1

R
(1 � �(t � 1) � �(t � 2) � �(t � 3) � � � �)

or, equivalently,

To interpret the solution, let us assume for the sake of illustration that R � 1, L � 1,
and 0 � t � 4. In this case

i(t) �
1

R
(1 � e�Rt/L) �

1

R �
�

n�1
(�1)n (1�e�R(t�n)/L) �(t � n).

;i(t) � 1 � e�t � (1 � et�1) �(t � 1) � (1 � e�(t�2)) �(t � 2) � (1 � e�(t�3)) �(t � 3)

in other words,

The graph of i(t) for 0 � t � 4, given in Figure 7.4.5, was obtained with the help
of a CAS.

i(t) � �
1 � e�t,

�e�t � e�(t�1),

1 � e�t � e�(t�1) � e�(t�2),

�e�t � e�(t�1) � e�(t�2) � e�(t�3),

 0 � t � 1

 1 � t � 2

 2 � t � 3

 3 � t � 4.21 3 4

2
1.5
1

0.5
t

i

FIGURE 7.4.5 Graph of current i(t) in
Example 8

EXERCISES 7.4 Answers to selected odd-numbered problems begin on page ANS-11.

7.4.1 DERIVATIVES OF A TRANSFORM

In Problems 1–8 use Theorem 7.4.1 to evaluate the given
Laplace transform.

1. 2.

3. 4.

5. 6.

7. 8.

In Problems 9–14 use the Laplace transform to solve
the given initial-value problem. Use the table of Laplace
transforms in Appendix III as needed.

9. y	 � y � t sin t, y(0) � 0

10. y	 � y � tet sin t, y(0) � 0

�{te�3t cos 3t}�{te2t sin 6t}

�{t2 cos t}�{t2 sinh t}

�{t sinh 3t}�{t cos 2t}

�{t3et}�{te�10t}

11. y
 � 9y � cos 3t, y(0) � 2, y	(0) � 5

12. y
 � y � sin t, y(0) � 1, y	(0) � �1

13. y
 � 16y � f (t), y(0) � 0, y	(0) � 1, where

14. y
 � y � f (t), y(0) � 1, y	(0) � 0, where

In Problems 15 and 16 use a graphing utility to graph the
indicated solution.

15. y(t) of Problem 13 for 0 � t � 2p

16. y(t) of Problem 14 for 0 � t � 3p

f(t) � �1,

sin t,

 0 � t � �>2

 t � �>2

f(t) � �cos 4t,

0,

  0 � t � �

 t � �
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Exercises 7.3 Operational Properties I

(b) The Laplace transform of the differential equation is

Solving for Z£{x) we obtain = sj(s2 + u?)2. Thus x =  (l/2u>)tsmut.

Exercises 7.4
.s r̂"l:vl“ 'a''<.... '

>':..Vk.L-; iKv¥̂ ; ' • ;:S?r"r-tiSifiiSi i w S I S i W i i i
i .

2. 2 { tV }  = (-1)3|

3. i?{tcos2£} =

4. i?{isinh3i} = — ̂

J2
5. i?{f2sinht} =

' 1 1
1

+ 10/ _ (5 + 10)2

~ ( 1 \ - 6
:« U - l . / (s - l)4

( 6 ^
s2 - 4

Vs2 + 4/ (s2 + 4)2

( 3 '
\ 6 s

; vs2 — 9.' (s2 — 9)2

r . 1 'i 6,s2 + 2
ds2 Vs2 — 1/ (,§2 _  i)3

d? / s \ _  d (  1 —s2 \ _  2s (s2 — 3̂
ds2 Vs2 + l7  d.9 ^(s2 + l)2,/ (,s2 _|_1)3 

d (  6 \ 12(s-2)
7. ^ { tA m 6 *}  = V(8_ 2)2 + 36y -  |(s_ 2)2 + 36]2

8. ^{te-3‘ cos3t} =  ~  f — * + 3— )  = (s + 3)2 ~ 9,
I J ds \(s + 3)2 + 9/ [(5 + 3)2 + 9]

9. The Laplace transform of the differential equation is

sX{y} + X{y} =
2s

(s2 + 1)2 -

Solving for i?{y} we obtain

2s 1 1  1 1  I s
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Exercises 7.4 Operational Properti

Thus
1 - t  1 • 1 1 / • x 1y[t) =  --e — - sin £ + - cos t + - (sm t — t cos t) 4- -t sin tZi Li Zj Ai

1 - / 1  1 1 •=  —-e + -cost —-t cost + -tsmt.z z z z
0. The Laplace transform of the differential equation is

2 (s -1)
( ( s- l )2+ l )2 

Solving for i?{y} we obtain

( ( » - 1)2+ 1)2 ' 
Thus

y =  eL sin t — tet cos t.

1. The Laplace transform of the differential equation is

s2£{y} - -sy{0) - y'(0) + 9 ¥{y} =
s2 4- 9

Letting y(0) = 2 and z/(0) = 5 and solving for Z£{y} we obtain
f .. . 2s3 -|- 5s2 -(- 19s 4- 45 2s 5 s

= ---- („2 ,-^2----  = ~jr~7n + 7iTT~n +(s2 + 9)2 ,s‘2 + 9 s2 + 9 (<s2 4- 9)2
Thus

5 1
y =  2 cos 3£ + - sin 31 + -t sin 31.

3 6
2. The Laplace transform of the differential equation is

.2  <r,( > //" s . T, 1%{v} - 52/(0) - 1/(0) +Z£{y} = s + 1
Solving for i?{y} we obtain

on r > s3 - s2 + s s 1 1
= -7:5". .'2 = ^ T T  - ^TTT +(s2 4-1)2 s2 + 1 s2 + 1 (s2 + l)2 ’

Thus
y =  cos t — sin 14- f - sin t — -t cos t ] =  cos t — - sin t —-t cos t.\Z Li J Zi Zi

i. The Laplace transform of the differential equation is

s2i?{y} - sy(0) - z/(0) + 16if{y} = !£ {cos4£ - cos4t°U(t - 7r)} 

or bj' (16) of Section 7.3.

(s2 + 16) X{y} =  1 + - C-" if{cos4(t + *)}
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290 ● CHAPTER 7 THE LAPLACE TRANSFORM

In some instances the Laplace transform can be used to solve
linear differential equations with variable monomial coeffi-
cients. In Problems 17 and 18 use Theorem 7.4.1 to reduce
the given differential equation to a linear first-order DE
in the transformed function . Solve the first-
order DE for Y(s) and then find .

17. ty� � y� � 2t2, y(0) � 0

18. 2y� � ty� � 2y � 10, y(0) � y�(0) � 0

7.4.2 TRANSFORMS OF INTEGRALS

In Problems 19–30 use Theorem 7.4.2 to evaluate the given
Laplace transform. Do not evaluate the integral before
transforming.

19. 20.

21. 22.

23. 24.

25. 26.

27. 28.

29. 30.

In Problems 31–34 use (8) to evaluate the given inverse
transform.

31. 32.

33. 34.

35. The table in Appendix III does not contain an entry for

.

(a) Use (4) along with the results in (5) to evaluate this
inverse transform. Use a CAS as an aid in evaluating
the convolution integral.

(b) Reexamine your answer to part (a). Could you have
obtained the result in a different manner?

36. Use the Laplace transform and the results of Problem 35
to solve the initial-value problem

.

Use a graphing utility to graph the solution.

y� � y � sin t � t sin t,  y(0) � 0, y�(0) � 0

� �1� 8k3s

(s2 � k2)3�

� �1� 1

s(s � a)2�� �1� 1

s3(s � 1)�

� �1� 1

s2(s � 1)�� �1� 1

s(s � 1)�

��t �t

0
� e�� d����t �t

0
sin� d��

���t

0
sin � cos (t � �) d�����t

0
� et�� d��

���t

0
� sin � d�����t

0
e�� cos � d��

���t

0
cos � d�����t

0
e� d��

�{e2t � sin t}�{e�t � et cos t}

�{t2 � tet}�{1 � t3}

y(t) � � �1{Y(s)}
Y(s) � �{y(t)}

In Problems 37–46 use the Laplace transform to solve the
given integral equation or integrodifferential equation.

37.

38.

39.

40.

41.

42.

43.

44.

45.

46.

In Problems 47 and 48 solve equation (10) subject to i(0) � 0
with L, R, C, and E(t) as given. Use a graphing utility to graph
the solution for 0 � t � 3.

47. L � 0.1 h, R � 3 	, C � 0.05 f,

48. L � 0.005 h, R � 1 	, C � 0.02 f,

7.4.3 TRANSFORM OF A PERIODIC
FUNCTION

In Problems 49–54 use Theorem 7.4.3 to find the Laplace
transform of the given periodic function.

49.

E(t) � 100[t � (t � 1)�(t � 1)]

E(t) � 100[�(t � 1) � �(t � 2)]

dy

dt
� 6y(t) � 9 �t

0
y(�) d� � 1, y(0) � 0

y�(t) � 1 � sin t � �t

0
y(�) d�, y(0) � 0

t � 2 f (t) � �t

0
(e� � e�� ) f (t � �) d�

f (t) � 1 � t �
8

3
�t

0
(� � t)3 f (�) d�

f (t) � cos t � �t

0
e��  

f (t � �) d�

f (t) � �t

0
f (�) d� � 1

f (t) � 2 �t

0
f (�) cos (t � �) d� � 4e�t � sin t

f (t) � tet � �t

0
� f (t � �) d�

f (t) � 2t � 4 �t

0
sin � f (t � �) d�

f (t) � �t

0
(t � �) f (�) d� � t

FIGURE 7.4.6 Graph for Problem 49

1

meander function

t2aa

f(t)

3a 4a

1
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Exercises 7.4 Operational Properties II

22. ¥\e2t*sm t) =  7---  *
*- J (s — 2)(s2 + 1)

23. A  f* eTd r )  = - ¥ { 6 * } =  . 1[Jo J s s(s - 1)
24. Z£< [ cos r  dr 1 =  -i?{cos t} — —— = 9 1[Jo J 6* + 1) 5̂  + 1
25. * { j V c o e r d r }  = \ if  {a cco st} = +  + 1 = 5(s2++2i + ^

26. i f j  f  T s m r d r \  =  -  i?{£sin£} =  -  ( —j~  T T t )  =  7~o— =  T T ~—\2{JO J a 8\ dss2 + l j  f l( s2 + 1)“ (s2 + l) 2

27‘ * { £ Tê dT} = m * {* } = * ( 7 :T )

28. /  sinr cos(t — r) dr| = if{sint}if{cos£} = 2 _|_

29. J f { * j f - n r d r }  =  (± ^

30. * { * £  „ - * }  =  - I  * { £  r e * * }  ( I  -  ^ 3

32- = j y  - d * = ^  -1

3 3 ' 2 ' l { ? ( r r i j }  = y _ 1  {iZ£!T ^ i } = i y

34. Using i f -1 i 7— rTj 1 =  teai, (8) in the text gives
I (s ~ a) J

* ~ l { j ( ^ } = i ‘ Te“T d T = i (ate
=  —y ( a t e  -  e  + 1). az

35. (a) The result in (4) in the text is i? " 1{F(s)C?(s)} =  /  * g, so identify

f W  = ( ? f p ) 2  “ d ° ^  = ^ T ¥ -
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Exercises 7.4 Operational Properties II

Solving for if{ /}  we obtain

.s/f, _  2s2+2 _ 2 1 8 V5
J _  ^1! rfl I c\ — c „2 +s2(,s2 + 5) 5 s2 5\/5 52 + 5 

Thus
2 8 /(£) = -t + 7-7= sin V51.
o oVo

39. The Laplace transform of the given equation is

<t{f} = y{te‘} +y{t}i?{/}.
Solving for i?{/} we obtain

=  7— T^TTTY = I A  +  7 1 1 2(.9 — l)3(<s + 1) 8 s — 1 4 (s — l )2 ' 4 (.9 — l )3 
Thus

1 + 3 * 1 o t 1 _t
m  = + -4tel + - -e-‘

40. The Laplace transform of the given equation is

if{ /}  + 2 if{cosi}if{/} = 4if{e"*} + ^{sint}. 

Solving for if{ /}  we obtain

^ { / }  = 4f .+ *+ 5 = J -  - + 4- 2
(s + l )3 s + 1 (s + l )2 (s + l )3 

Thus
f(t) =  4e_* - 7te '1 + 4i2e_<.

41. The Laplace transform of the given equation is

i ? { / } + i f { l } n / }  =  i f { l } .

Solving for i f  {/} we obtain if{ /}  =  — . Thus, f(t) = e_t.
5 + 1

42. The Laplace transform of the given equation is

X { f }  =  2{c<xt} + 2{e rt}Z { f} .

Solving for i f  {/} we obtain 

Thus
j(t) =  cost + sini.

1 1 8 7+ 1 '
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Exercises 7.4 Operational Properties II

43. The Laplace transform of the given equation is

y{/> = y  {1} + y  {i} -  y  {jj J ‘(t -  r)3/M *  J
1 1 8 cr rj.3i <v*c /0 1 1 16
- + "2 + o %{f} = - + ~2 + T ’S .9 3 S S S4

Solving for if{ /}  we obtain

s2(a + l) 1 1  3 1 1 2  I s
„4 i c  o „ > o q o ^  /i „2 i /< os4 — 16 8 s + 2 8 s - 2 4 s2 + 4 2 s2 + 4 

Thus

f(t) = ^e-2< + ^e2t + i  sin2t + ^ cos 21.

44. The Laplace transform of the given equation is

y{(} - 2  y {/>  = y  {e* -  e-‘}y{/> .
Solving for i f  {/} we obtain

f\ -- - = - —____L ^1
U i  2s4 2 s2 12 s4 '

Thus

f(t) =  - t-  — t*.
J w  2 12

45, The Laplace transform of the given equation is

s2{y}-y(0) =  i f{ l}  - if{s in i}  - if{ l} if{y } .

Solving for if{ /}  we obtain

y, ( 1 _  s2 - s + 1 _  1 1 2s
iV) ~ (s2 + l)2 '  “  2 (s2 + l)2 ‘

Thus

y — sint — ^ tsini.

-6. The Laplace transform of the given equation is

»y(s) -  i/(o) + e y w  + 9y{i}y{j,} = y{i>.
Solving for if{ /}  we obtain if{y} = -— • Thus, y =  ie~3t.(s + 3)
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7.6 SYSTEMS OF LINEAR DIFFERENTIAL EQUATIONS ● 295

COUPLED SPRINGS Two masses m1 and m2 are connected to two springs A and
B of negligible mass having spring constants k1 and k2, respectively. In turn the two
springs are attached as shown in Figure 7.6.1. Let x1(t) and x2(t) denote the vertical
displacements of the masses from their equilibrium positions. When the system is in
motion, spring B is subject to both an elongation and a compression; hence its net
elongation is x2 � x1. Therefore it follows from Hooke’s law that springs A and B
exert forces �k1x1 and k2(x2 � x1), respectively, on m1. If no external force is
impressed on the system and if no damping force is present, then the net force on m1

is �k1x1 � k2(x2 � x1). By Newton’s second law we can write

.m1
d 2x1

dt2 � �k1x1 � k2(x2 � x1)

EXERCISES 7.5 Answers to selected odd-numbered problems begin on page ANS-12.

In Problems 1–12 use the Laplace transform to solve the
given initial-value problem.

1. y� � 3y � d(t � 2), y(0) � 0

2. y� � y � d(t � 1), y(0) � 2

3. y� � y � d(t � 2p), y(0) � 0, y�(0) � 1

4. y� � 16y � d(t � 2p), y(0) � 0, y�(0) � 0

5.

6. y� � y � d(t � 2p) � d(t � 4p), y(0) � 1, y�(0) � 0

7. y� � 2y� � d(t � 1), y(0) � 0, y�(0) � 1

8. y� � 2y� � 1 � d(t � 2), y(0) � 0, y�(0) � 1

9. y� � 4y� � 5y � d(t � 2p), y(0) � 0, y�(0) � 0

10. y� � 2y� � y � d(t � 1), y(0) � 0, y�(0) � 0

11. y� � 4y� � 13y � d(t � p) � d(t � 3p),
y(0) � 1, y�(0) � 0

12. y� � 7y� � 6y � et � d(t � 2) � d(t � 4),
y(0) � 0, y�(0) � 0

13. A uniform beam of length L carries a concentrated load
w0 at . The beam is embedded at its left end andx � 1

2L

y(0) � 0, y�(0) � 0

y� � y � � (t � 1
2�) � � (t � 3

2�),

is free at its right end. Use the Laplace transform to
determine the deflection y(x) from

where y(0) � 0, y�(0) � 0, y�(L) � 0, and y	(L) � 0.

14. Solve the differential equation in Problem 13 subject to
y(0) � 0, y�(0) � 0, y(L) � 0, y�(L) � 0. In this case
the beam is embedded at both ends. See Figure 7.5.5.

EI
d 4y

dx4 � w0 ��x � 1
2 L�,

FIGURE 7.5.5 Beam in Problem 14

x

y

L

w0

Discussion Problems

15. Someone tells you that the solutions of the two IVPs

are exactly the same. Do you agree or disagree? Defend
your answer.

y� � 2y� � 10y � 0,

y� � 2y� � 10y � �(t),

   y(0) � 0,  y�(0) � 1

   y(0) � 0,  y�(0) � 0

SYSTEMS OF LINEAR DIFFERENTIAL EQUATIONS

REVIEW MATERIAL
● Solving systems of two equations in two unknowns

INTRODUCTION When initial conditions are specified, the Laplace transform of each equation
in a system of linear differential equations with constant coefficients reduces the system of DEs to a
set of simultaneous algebraic equations in the transformed functions. We solve the system of
algebraic equations for each of the transformed functions and then find the inverse Laplace trans-
forms in the usual manner.

7.6
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Exercises 7.5 The Dirac Delta Function

Exercises 7.5

1. The Laplace transform of the differential equation yields

i f {y} = —2s
S —  3

so that
y  =  ^ - 2 ) ^  _ 2 )_

2. The Laplace transform of the differential equation yields

, , ,  , 2 e“s
- i n  + i n

so that
y = 2e t + e ^ (t —1).

3. The Laplace transform of the differential equation yields

^ «  =  j r n ( 1 + < rW )

so that
y = sini + sin t ,:U(t — 2n).

4. The Laplace transform of the differential equation yields

in = -14 ,s2 + 16
- ‘2ns

so that
y = ^ sin4(t —2%)°U(t — 2ir) = ^sin4t °U(t — 2-k).

:. The Laplace transform of the differential equation yields

^ “ p s T I  («~” /2 + «‘ 3” /2)

so that

v=sin (f “ I)* (‘_ I)+ sin (*- f)* (*_ f)
= — cos t % (t — + COS t (t. — ) .

The Laplace transform of the differential equation yields
s 1

VY = +32 + 1 S2 +

397
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Exercises 7.5 The Dirac Delta Function

so that
y = cost +  sinif5?/^ —2tt) +  °U(t — 4?r)].

The Laplace transform of the differential equation yields

=
1

so that
s2 + 2.9 

1 1

(1 + 0  =
ri l i i

y = 2 ~ 2 e~* +

12 s 2 s + 2J

n iit- i) .

(i + O

.2 2

5. The Laplace transform of the differential equation yields
3 1 3 1 1 1%sv\ _  3 + 1 + -- _-- e~^

m  s2(s —2) s(s —2) + n i i  n 2s

so that

4 s - 2 4 s  2 s2

°U(t- 2).

2 s —2 2 s.

L2 2J

9. The Laplace transform of the differential equation yields
1

(s + 2)2 + 1
— 2tt s

so that
y ^  e-2̂ -2vh m tcU(t - 2tt).

10. The Laplace transform of the differential equation yields

2{y} =
i

(s + 1)

so that
y = { t- l ) e ~ ^ % { t- l ) .

11. The Laplace transform of the differential equation yields

n y ]  = , 4 t ‘ . +
e-7TS‘ e-37T5

s2 + 4s + 13 s2 + 4s + 13

3 (s + 2)2 + 32 + (s + 2)2 + 32 ' 3 (s + 2)2 + 32

y =  ^e_2tsin31 + e~2t cosSt + ie _2^_7r̂ sin 3(t —tr) JU(t — tt)
O o

+ ~e_2(i_37r) ain 3 (t — 3iv)°V*(t — 3tt).
o

8 + 2 1
+ - (e-™ + e_37r'

so that

s)
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7.6 SYSTEMS OF LINEAR DIFFERENTIAL EQUATIONS ● 299

EXERCISES 7.6 Answers to selected odd-numbered problems begin on page ANS-12.

In Problems 1–12 use the Laplace transform to solve the
given system of differential equations.

1. 2.

x(0) � 0, y(0) � 1 x(0) � 1, y(0) � 1

3. 4.

x(0) � �1, y(0) � 2 x(0) � 0, y(0) � 0

5.

x(0) � 0, y(0) � 0

6.

x(0) � 0, y(0) � 1

7. 8.

x(0) � 0, x�(0) � �2, x(0) � 1, x�(0) � 0,

y(0) � 0, y�(0) � 1 y(0) � �1, y�(0) � 5

9. 10.

x(0) � 8, x�(0) � 0, x(0) � 0, y(0) � 0,

y(0) � 0, y�(0) � 0 y�(0) � 0, y�(0) � 0

11.

x(0) � 0, x�(0) � 2, y(0) � 0

12.

x(0) � 0,  y(0) � 1
2

dy

dt
� 3x � y � �(t � 1)

dx

dt
� 4x � 2y � 2�(t � 1)

d 2x

dt2 � 3y � te�t

d 2x

dt2 � 3
dy

dt
� 3y � 0

dx

dt
� 2x � 2

d 3y

dt3 � 0
d 2x

dt2 �
d 2y

dt2 � 4t

dx

dt
� 4x �

d 3y

dt3 � 6 sin t
d 2x

dt2 �
d 2y

dt2 � t2

d 2y

dt2 �
dy

dt
� 4

dx

dt
� 0

d 2y

dt2 � y � x � 0

d 2x

dt2 �
dx

dt
�

dy

dt
� 0

d 2x

dt2 � x � y � 0

dx

dt
�  dy

dt
� 2y � 0

dx

dt
� x �

dy

dt
� y � 0

    
dx

dt
�

dy

dt
� 3x � 3y � 2

2
dx

dt
�

dy

dt
� 2x � 1

dx

dt
� x �

dy

dt
� y � etdy

dt
� 5x � y

dx

dt
� 3x �

dy

dt
� 1

dx

dt
� x � 2y

dy

dt
� 8x � t

dy

dt
� 2x

dx

dt
� 2y � etdx

dt
� �x � y

13. Solve system (1) when k1 � 3, k2 � 2, m1 � 1, m2 � 1
and x1(0) � 0, , x2(0) � 1, .

14. Derive the system of differential equations describing the
straight-line vertical motion of the coupled springs shown
in Figure 7.6.6. Use the Laplace transform to solve the
system when k1 � 1, k2 � 1, k3 � 1, m1 � 1, m2 � 1 and
x1(0) � 0, , x2(0) � 0, .x�2(0) � 1x�1(0) � �1

x�2(0) � 0x�1(0) � 1

k

m2

k2

3

x2 = 0

m1

k1

x1 = 0

FIGURE 7.6.6 Coupled springs in Problem 14

15. (a) Show that the system of differential equations for
the currents i2(t) and i3(t) in the electrical network
shown in Figure 7.6.7 is

(b) Solve the system in part (a) if R � 5 �, L1 � 0.01 h,
L2 � 0.0125 h, E � 100 V, i2(0) � 0, and i3(0) � 0.

(c) Determine the current i1(t).

L2
di3

dt
� Ri2 � Ri3 � E(t).

L1
di2

dt
� Ri2 � Ri3 � E(t)

FIGURE 7.6.7 Network in Problem 15

L1

R

E

i1 i2
i3

L2

16. (a) In Problem 12 in Exercises 3.3 you were asked to
show that the currents i2(t) and i3(t) in the electrical
network shown in Figure 7.6.8 satisfy

�R1
di2

dt
� R2

di3

dt
�

1

C
i3 � 0.

L
di2

dt
� L

di3

dt
� R1i2 � E(t)
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Exercises 7.6 Systems of Linear Differential Equations

Exercises 7.6 *vrr hi >

* ;;''V>'rV r ~ , O :-; ,v *: /;'.;'-";;';r vr- ; rv;r:: rr:r,.;• r : v:Jv“3 rJZxlS.
i'l')..'. ; : ~ ?;"';'r ..!'..: 1"**. 'i lIl'X; J17 ?. I V *‘> !*>»«;• ;:r ';L'p:Ii"

1. Taking the Laplace transform of the system gives

s%{x} = -%{x} + 2{y}

sX{y} — 1 = 2X{x}

so that

and

_  1 _  1 1 1 1  
' X* ~ (s — l)(s + 2) “  3 s - l  ~ 3 7+2

a>f , 1 2 2 1 1 1
%{y} = 7 + 1u",-o-v = o — T + o

Then

s 5(5 —l)(s + 2) 3s —1 3s  + 2

1 f 1 —Of -, 2 + 1  _Ofa: = -eL — -e and y = -e + -e .
3 3 y 3 3

2. Taking the Laplace transform of the system gives
1

s X{x} — 1 = 2 X{y} +
s — 1

s2 {y }-  l =  SX {x}-\
52

so that
f/,f , s3 + 7s2 — s + 1 1 1 8 1 173 1 53 1
% { y )  =  ,» .2  ^  t  -  7;  — 7 +

and

Then

s{s - l)(s2 - 16) 16 s 15 s - 1 96 5 - 4 160 s + 4

1 8 f  173 ^  53 _ 4 f
y = -------e ^---- e ----- e .
J 16 15 96 160

1 , 1 1 1 t 173 4f 53 _4f 
I = 8I , + 8f = 8t - i 5 e' + i « e ' + 320e '•

3. Taking the Laplace transform of the system gives

sX{x} + 1 =  X{x} - 2X{y}

s2{y}-2 = 52{x}-X{y}

so that
oj f ->_ s 5 _ s 5 3

W  “  ^ T 9  “  “ ? + 9  "  3 ^ + 9
and

400
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Exercises 7.6 Systems of Linear Differential Equat

5
x = — cos 31—~ sin 3f.O

Then
1 1  7

y =  -x — — 2 cos 3t — - sin 31.
y 2 2 3

Taking the Laplace transform of the system gives
1

(5 + 3) i f  {x} + s if {?/} —
s

so that

and

Then

(s - 1) £?{x} + (,s - 1) i?  {£,} =

, 56--1 1 1 1 1  4 1
2{v} =  O,/ -- TT2 = - o 7 + o — T + O3s(s - l)2 3 6- 3 s - 1 3 (5 - l)2

1 - 2s 1 1 1 1  1 1 
3s(a - l)2 “  3 s ~ 3 s- 1  “  3 (s - l)2 ‘

1 1 t t j 1 1 t 4. t
x = 3 ~ r ' - 3 t€ and y = ~ 3 + r + 3te -

Taking the Laplace transform of the system gives
1

(2s —2) if{;r;} + sif{y} =
s

so that

and
s(s — 2)(s — 3) 2s 2s — 2 s — 3

, 3 s - 1 1 1 5  1 8 1
*{»>  = = - ; : - s r ^  + ;

Then
s(s —2)(s — 3) 6s 2 s —2 3 s - 3'

X = - i  + |e2‘ - 2e»  and y =  - 1- - \e2* + |e3‘ .

Taking the Laplace transform of the system gives

{s + l ) 2 { x } - { * - \ ) 2 { y }  = - \
s i f  {x} + (s + 2) i f  {y} = 1

so that
s H-1/2 s "h 1/2

%{v} = s2 + S + 1 (s + 1/2)2 + (v/3/2)2 
and
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Exercises 7.6 Systems of Linear Differential Equations

2?(x\ : ^  = -y/%_______ \/3/2_______
' 1 s2 + s + 1 ‘ (s- + 1/2)2 + (\/3/2)2 '

7:ien

y = e-^ 2 cos and x = —VSe~^2 sin

Taking the Laplace transform of the system gives

(s2 + \)%{x}-!£{y} = -2

+ (s2 + 1) %{y} =  X

so that
crr ^ _  -2s2 -1 1 1 3 1 

W  “  s4 + 2s2 2 s2 2 s2 + 2
and

1 3 .

Then
// 1 3 . r-y =  x +x = --t + ^-j=smV2t.

?. Taking the Laplace transform of the system gives

(s + l)X{x} + 2{y} = l

4 # { * } - (*  + l)2 {y }  =  l

so that

and

v ? r i _  -s + 2 _  s + 1 1 2
W  "  s2 + 2s + 5 “  (s + l)2 + 22 2 (s + l)2 + 22

OJ r _  ~s + 3 __ s +1 2
‘2 , o„ I e I 1N2 I 02 2-

Then
s2 + 2s + 5 (s + l)2 + 22 (s + l)2 + 22 '

x =  e~f cos 21 + ^ e~* sin 2t and y = — e“* cos 2t + 2e-< sin 2i.

9. Adding the equations and then subtracting them gives

d2x 1 o
W = 2t 2‘

^  = i / 2 - 2<
dt2 2

Taking the Laplace transform of the system gives
1 1 4 ' 13'

^ >  = 8; + 2 4 ?  + 3 7  
and
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Exercises 7.6 Systems of Linear Differential Equations

1 4f l 31

so that
o 1 4 1 1 , 1 4 1 O

I  =  8 + 24t ' + 3t ^  V = T4f - f -
10. Taking the Laplace transform of the system gives

(*-4) *{*}  + »»:*{!,} = 2^

(s + 2) %{x} - 2s32{y} = 0
so that

and

Then

and

so that

Then

:id

* {»}  = 4 4 1 4 , 8 1
(s-2 )(s2 + l) 5 5 - 2  5 s2 + 1 5 s2 + 1

r 1 2s + 4 1 2 0 2 _ 1 1 6 s
* {y} = ^ 7T~on/-9 , ^  = - - - o - 2 z*  + cs3(s — 2)(s2 + 1) s s2 s3 5 s —2 5 s2 + 1

4 of A 8 .
x — -e — - cos t — - sm t

5 5 5

0 1 w 6 8
y = 1 —2t — 2tr + ye — - cos t + - sin£.

gives

s2i f  {.x} + 3(s + {y} =  2

s*2{x} + Z2{y} = 1(s + I f

2s+ 1 1 1  1 2
s3(s + 1) s '  s2 ' 2 s3 s + 1 '

x = 1 + t -f -12 —e 1
Zi

1 _f 1 „ 1 _f 1 _f 1
y = 3te ’ ~ r  = 3te + 3e - 3

faking the Laplace transform of the system gives

( * - 4 ) * { s } + 2 i f { ! , } = ^

- 3 i? M  + (s+ l)if{ !,}  =  i  + ^
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REMARKS

(i) In Problems 27–36 in Exercises 4.4 you are asked to solve initial-value
problems, and in Problems 37–40 you are asked to solve boundary-value
problems. As illustrated in Example 8, be sure to apply the initial conditions or
the boundary conditions to the general solution y � yc � yp. Students often
make the mistake of applying these conditions only to the complementary
function yc because it is that part of the solution that contains the constants
c1, c2, . . . , cn.

(ii) From the “Form Rule for Case I” on page 145 of this section you see why
the method of undetermined coefficients is not well suited to nonhomogeneous
linear DEs when the input function g(x) is something other than one of the four
basic types highlighted in color on page 141. For example, if P(x) is a polyno-
mial, then continued differentiation of P(x)eax sin bx will generate an indepen-
dent set containing only a finite number of functions—all of the same type,
namely, a polynomial times eax sin bx or a polynomial times eax cos bx. On
the other hand, repeated differentiation of input functions such as g(x) � ln x
or g(x) � tan�1x generates an independent set containing an infinite number of
functions:

derivatives of  tan�1x:  1

1 � x2
, �2x

(1 � x2)2
, �2 � 6x2

(1 � x2)3
, . . . .

derivatives of  ln x:  1

x
, �1

x2
, 2

x3
, . . . ,

148 ● CHAPTER 4 HIGHER-ORDER DIFFERENTIAL EQUATIONS

EXERCISES 4.4 Answers to selected odd-numbered problems begin on page ANS-5.

In Problems 1–26 solve the given differential equation by
undetermined coefficients.

1. y� � 3y� � 2y � 6

2. 4y� � 9y � 15

3. y� � 10y� � 25y � 30x � 3

4. y� � y� � 6y � 2x

5. y� � y� � y � x2 � 2x

6. y� � 8y� � 20y � 100x2 � 26xex

7. y� � 3y � �48x2e3x

8. 4y� � 4y� � 3y � cos 2x

9. y� � y� � �3

10. y� � 2y� � 2x � 5 � e�2x

11.

12. y� � 16y � 2e4x

13. y� � 4y � 3 sin 2x

14. y� � 4y � (x2 � 3) sin 2x

15. y� � y � 2x sin x

y� � y� �
1

4
y � 3 � ex/2

1

4

16. y� � 5y� � 2x3 � 4x2 � x � 6

17. y� � 2y� � 5y � ex cos 2x

18. y� � 2y� � 2y � e2x(cos x � 3 sin x)

19. y� � 2y� � y � sin x � 3 cos 2x

20. y� � 2y� � 24y � 16 � (x � 2)e4x

21. y� � 6y� � 3 � cos x

22. y� � 2y� � 4y� � 8y � 6xe2x

23. y� � 3y� � 3y� � y � x � 4ex

24. y� � y� � 4y� � 4y � 5 � ex � e2x

25. y(4) � 2y� � y � (x � 1)2

26. y(4) � y� � 4x � 2xe�x

In Problems 27–36 solve the given initial-value problem.

27. y� � 4y � �2,

28. 2y� � 3y� � 2y � 14x2 � 4x � 11, y(0) � 0, y�(0) � 0

29. 5y� � y� � �6x, y(0) � 0, y�(0) � �10

30. y� � 4y� � 4y � (3 � x)e�2x, y(0) � 2, y�(0) � 5

31. y� � 4y� � 5y � 35e�4x, y(0) � �3, y�(0) � 1

y��

8� �
1

2
, y���

8� � 2

Note: Solve the INITIAL VALUE Problem, (means , conditions
are given at the SAME X-VALUE, i.e., y(0) = ...., y^\(0) = .....
(here x = 0) or y(1) = ... , y^\(1) = ...., y^\\(1) = ........(here x =
1)(see 27-31)

Solve the boundary value problem: (means , The given
conditions NEED not be the same x; i.e y(0) = ...., y^\prime (1)
= ...., (here the conditions are given at x = 0 and at x = 1), see
37-- 40
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32. y� � y � cosh x, y(0) � 2, y�(0) � 12

33. , x(0) � 0, x�(0) � 0

34. , x(0) � 0, x�(0) � 0

35. y� � 2y� � y� � 2 � 24ex � 40e5x,

36. y� � 8y � 2x � 5 � 8e�2x, y(0) � �5, y�(0) � 3,
y�(0) � �4

In Problems 37–40 solve the given boundary-value problem.

37. y� � y � x2 � 1, y(0) � 5, y(1) � 0

38. y� � 2y� � 2y � 2x � 2, y(0) � 0, y(p) � p

39. y� � 3y � 6x, y(0) � 0, y(1) � y�(1) � 0

40. y� � 3y � 6x, y(0) � y�(0) � 0, y(1) � 0

In Problems 41 and 42 solve the given initial-value problem
in which the input function g(x) is discontinuous. [Hint:
Solve each problem on two intervals, and then find a solution
so that y and y� are continuous at x � p�2 (Problem 41) and
at x � p (Problem 42).]

41. y� � 4y � g(x), y(0) � 1, y�(0) � 2, where

42. y� � 2y� � 10y � g(x), y(0) � 0, y�(0) � 0, where

Discussion Problems

43. Consider the differential equation ay� � by� � cy � ekx,
where a, b, c, and k are constants. The auxiliary
equation of the associated homogeneous equation is
am2 � bm � c � 0.

(a) If k is not a root of the auxiliary equation, show
that we can find a particular solution of the form
yp � Aekx, where A � 1�(ak2 � bk � c).

(b) If k is a root of the auxiliary equation of multiplicity
one, show that we can find a particular solution of
the form yp � Axekx, where A � 1�(2ak � b).
Explain how we know that k 	 �b�(2a).

(c) If k is a root of the auxiliary equation of multiplicity
two, show that we can find a particular solution of the
form y � Ax2ekx, where A � 1�(2a).

44. Discuss how the method of this section can be used
to find a particular solution of y� � y � sin x cos 2x.
Carry out your idea.

g(x) � �20, 0 
 x 
 �

0, x � �

g(x) � �sin x, 0 
 x 
 �>2

0,  x � �>2

y�(0) � �9
2y�(0) � 5

2,
y(0) � 1

2,

d 2x

dt 2 � �2x � F0 cos 
t

d 2x

dt2 � �2x � F0 sin �t

4.4 UNDETERMINED COEFFICIENTS—SUPERPOSITION APPROACH ● 149

45. Without solving, match a solution curve of y� � y � f (x)
shown in the figure with one of the following functions:

(i) f (x) � 1, (ii) f (x) � e�x,
(iii) f (x) � ex, (iv) f (x) � sin 2x,
(v) f (x) � ex sin x, (vi) f (x) � sin x.

Briefly discuss your reasoning.

x

y

FIGURE 4.4.1 Solution curve

FIGURE 4.4.3 Solution curve

FIGURE 4.4.4 Solution curve

FIGURE 4.4.2 Solution curve

x

y

x

y

x

y

(a)

(b)

(c)

(d)

Computer Lab Assignments

In Problems 46 and 47 find a particular solution of the given
differential equation. Use a CAS as an aid in carrying out
differentiations, simplifications, and algebra.

46. y� � 4y� � 8y � (2x2 � 3x)e2x cos 2x
� (10x2 � x � 1)e2x sin 2x

47. y(4) � 2y� � y � 2 cos x � 3x sin x
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Exercises 4.3 Homogeneous Linear Equations with Constant Coefficients

so ci = 2. c-2 — —2, c-3 = 2. c-4 — —1/ 2. and

y =  2- 2ex + 2xex - \xi€e.
Z

Undetermined Coefficients — Superposition Approach

1. From rri2 + 3m + 2 = 0 we find mi = —1 and m2 = —2. Then yc =  cie-* + C2e~2x and we assum. 
yp = A. Substituting into the differential equation we obtain 2A =  G. Then A =  3. yp = 3 and

y — cie x + C2C' ~'2* + 3.

2. From 4rri2 + 9 =  0 we find mi = — § i and m 2 — | i. Then yc = c\ cos |.t + C2 sin and we assnn:-. 
yp = A. Substituting into the differential equation we obtain 9A = 15. Then A = | , yv = | and

3 . 3 5
y = ci cos -x + C‘2 sin -x + - .Z t-t o

3. From rri2 — 10m + 25 =  0 we find mi =  m2 =  5. Tlicn yc = + ojxe™ and we assun. 
yp =  Ax + .13. Substituting into the differential equation we obtain 25.4 =  30 and —10.4 + 25B = •: 
Then A = | . B = i  , yv = |x + § , and

y =  cie " + C2xe + -x + - .
5 5

4. From m2 + rn —6 = 0 we find m i =  —3 and m2 = 2. Then yc — cie~'ix + C2e2x and we assui:. 
yp — Ax + B. Substituting into the differential equation we obtain —6.4 =  2 and A — 6B =  0. Th. 
.4 = - § , B = , yp =  ^  , and

—3 r 2 x  ^ ^y = cie 'ix +c2e l - -x - — .

o. From ^m2 + m + 1 = 0 we find mi =  m2 =  —2. Then yc = C\ e~2x + c.2xe~2x and wc assui:. 
yp = Ax2 + Bx + C. Substituting into the differential equation we obtain A = 1, 2A + B = —.
and \A + B + C = 0. Then A = 1, B =  —4, C = 5 . yp = x2 — 4x + | , and

y =  cie~2x + C2xe~2x + x2 — 4x + -̂.

6. From m2 —8rn + 20 =  0 we find m i =  4 + 2i and m2 = 4 — 2i. Then yc = eix(ci cos 2x + C2 sin2. 
and we assume yp =  Ar2 + Bx + C + (Dx + £J)ex. Substituting into the differential equation r
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Exercises 4.4 Undetermined Coefficients - Superposition Approach

; otain
2A - SB + 20C = 0 

-6D + 1SE = 0

-16,4 + 20 B = 0

132? = -26 

204 = 100.

Then A =  5; B =  A. C =  ^  , D =  —2, E  = — , yp =  5x2 + Ax + jjj -+ (—2x — ex and

y = e4x(c\ cos 2a: + eg sin2z) + 5a:2 + Ax + ^  2x — ex.

From m2 + 3 = 0 we find m\ =  y/3i and m2 = —a/3 i. Then yc =  ci cos V3 + C2 sin \/3 .x 
and we assume yp =  (Ax2 + Bx + C)e3x. Substituting into the differential equation we obtain
2-4 + 6B + 12C = 0, 12A + 12B = 0, and 12A = -48. Then A = -A, B =  4, C =  - § , 
:jp =  (—4:r2 + 4x — e3x and

y = c\ cos \/3x + C'2 sin y/% x + 4.t2 -t- 4ar — ^  e?x.

5. From 4m2 — 4m — 3 = 0 wc find mi =  5 and m2 =  —5 . Then yc =  c\eix’2 + C2e_a:/2 and we assume 
ijp = A cos 2a; + Bsin 2x. Substituting into the differential equation we obtain —19 —8B = 1 and 
SA — 19£? =  0. Then A = —^  , B = — |̂g . yp =  —̂  cos 2x — |̂g sin 2rc, and

y = ^ie3x'/2 + c2e~x-2 - ^  cos 2« - —  sin 2x.

9. From rn2 — m =  0 we find rn-i =  1 and m2 = 0. Then yc = c\ex + c2 and we assume yp = Ax.
Substituting into the differential equation we obtain —A = —3. Then A = 3. yp = 3x and 
y =  ciex + C2 + 3x.

-0. From m2 + 2rn - 0 we find m\ =  —2 and m2 =  0. Then yc = ci e~2x + c2 and we assume 
yp =  Ax2 + jB.t + Cxe~2x. Substituting into the differential equation we obtain 2A + 2B =  5, 
4A = 2, and —2C = —1. Then A = \ , B =  2, C = | = 5.T2 + 2x + ijxr;-2*, and

y = cie_2-T + c2 + + 2x + i;re_2a:.

.1. From m2 — rn +  ̂ = 0  we find m i =  m2 = 5 • Then yc =  c\ex!2 -f o2xex-'2 and we assume 
yp = A + Bx2ex'2. Substituting into the differential equation we obtain | A = 3 and 2B = 1. Then 
A = 12, B = i  , = 12 + \x2ex'2, and

y = c,\ex‘2 + C2Xext2 + 12 + ^x2e^2.
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Exercises 4.4 Undetermined Coefficients - Superposition Approach

12. From rn2 — 16 = 0 wc find mi =  4 and m,:2 = —4. Then yc == c\e4x + o2e~4x and we ass... 
yp - Axe4x. Substituting into the differential equation wc obtain 8.4 = 2. Then A = | , yp =
and

y = c\e4x + C2 (~4x + 7«e4;);.4
13. From m2 + 4 = 0 we find m\ = 2i  and m 2 =  —21 Then yc — c\ cos 2;r + <12 sin 2:r and we as?' 

yp = Ax cos 2x + Bx sin 2x. Substituting into the differential equation we obtain 4B =  0
—4A = 3. Then .4 =  — | , B =  0. yp = —\xc,os2x.: and

3
y = ci cos 2x + ( ‘2 sin 2x — -x cos 2x.4

14. From m2 — 4 = 0 we find mi =  2 and m2 = —2. Then yc = c\e2x + C2e~2x and wc assume ' 
y.p =  (A t 2 +Bx + C) cos 2x + (Dx2 + Ex + F) sin 2x. Substituting into the differential equa.ti( 
obtain

-8A = 0

-SB + 8D =  0 

2A - 8C + 4E = 0

-8D =  1 

-8A -8E  = Q

-4B + 2D - 8F =  -3.

Then A =  0; B = — £ , C =  0, D =  — | . E — 0, F  = , so yp =  a.-cos2;r + (—| x2 - I - •
and

1 „ / 1 o 13'9r —2r r\ ( ly = c\e + C2e - - x cos 2x + ( —- x -I- — I sm2x.

15. From rn2 + 1 = 0 we find mi = i and m2 — —i. Then yc = c\ cos x + c? sin x and wc a.--
ijp = (Ax2 + Bx) cosx -r (Cx2 -j-Dx) sinx . Substituting into the differential equation we •;
4C = 0, 2A + 2D = 0, -4A =  2, and -2B + 2C =  0. Then A = -5 , B = 0, C = 0, D = 
Up = ~^%2 cos a; + Resins, and

1  9  1  .y — ci cos x + 0 2 sm x —~x~ cos x + -x sin x.

16. From m2 — 5m - 0 we find mi =  5 and m2 =  0. Then yc = cie5x + c-2 and we a-- 
ijp = .4a:4 + BxA + Cx2 + Dx. Substituting into the differential equation we obtain - 20.-' =
12.4 - 155 = -4, 6B - 10C =  -1, and 2C - 5D = 6. Then A = - ± , B  =  i j £ ,C  = 
D  _  _697  _  _ J _  4 , 14 .3 , 53. 2 _  697 d  
^  — 625 ’ yp — 10x  ^  75 ^  250 6 2 5 ddm

5̂ . 1 a 14 y 53 2 69/V =  c,e -+C2 - - X   +  - * • + — *
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Exercises 4.4 Undetermined Coefficients - Superposition Approach

From rri2 — 2m + 5 = 0 we find m i = 1 + 2i and m-2 = 1—21 Then y(. = ex(ci cos 2x + 02 sin 2x) and 
v.*e assume yp = Axex cos 2x + Bxex sin 2x. Substituting into the differential equation we obtain 
-B = 1 and —4A = 0. Then A =  0. B = | , yp = |xe:,; sin2x, and

y =  ex(ci cos 2x + co sin 2x) + sin 2x.
4

From m2 —2m + 2 = 0 we find mi = 1 + i and m 2 = 1 —i. Then y(. = e:c(cicosx + C2sinx) 
r.nd we assume yp = -4e2'r cos x + Be2x sinx. Substituting into the differential equation we obtain 
A — 2B = 1 and —2,4 + B = —3. Then A = ± . B =  — i  . y„ = ie2x cos x — ie2x sin x and0 ' O O O

J 1
y =  ex(ci cos x + c-2 sin x) + ~e2x cos x — -c2x sin x.

0 0

From m2 + 2m + 1 =  0 we find m\ = m2 = —1. Then yc =  c\e~x + C2xe~x and we assume 
.• = A cosx + B sin x + C cos 2x + D  sin 2x. Substituting into the differential equation we obtain 
2B = 0, -2.4 = 1: -3C + 4D  = 3, and —4C - 3D = 0. Then A =  , B = 0, C = , D = §  . 
- = —5 cosx — ^  cos 2x + sin2x. and

-t 1 9  ̂ 12 .y = c\ e + (>2xe — - cos x — — cos 2x + —: sin 2x.
2 25 25

From rn2 + 2m — 24 = 0 we find m\ = —6 and m2 = 4. Then yc =  cie~6x + C2e4x and we 
-."Sume yp — A + (Bx2 + Cx)e4x. Substituting into the differential equation wc obtain —24.4 = 16, 
1B+1QC =  - 2, and 20B =  -1. Then A = - ^  B = C = - ^  ,yp =  Q }*2 + ^ x )  e4a\

y =  * ,«- * + «</•' - | - ( I f  + £ L X)  e «

From m.3 —6m2 = 0 we find mi = m2 — 0 and m3 = 6. Then yc = ci + c2x + and we assume 
. = Ax2 + B cos x + C sin x. Substituting into the differential equation we obtain —124 = 3, 
IB - C = - 1. and B + 6(7 = 0. Then A = , B =  — ̂  , C — ^  , yP =  — Jx2 - ^  cosx + ^  sinx, 

-nd
6a- 1 2 6 1 .

V=  Cl + c2x + c3e - - X  - — cos x + — sm x.

From rn* —2rn2 — 4m +8 = 0 we find m\ = m2 = 2 and m3 = —2. Then yc = Ci e2x + -rC3e_2a: 
;-.:id we assume yp = (Ax3 + Bx2)e2x. Substituting into tlie differential equation we obtain 24A =  6
r.:id 6A + 8B = 0. Then A = \,B = - ^ , y p = (Jx3 - ^ x 2) elx, and

y =  c.ie2x + C2X(ilx + C3e_2a; + Q x 3 - e2x.

From m3 — 3m2 + 3m — 1 = 0 we find m-i = rn2 = m3 =  1. Then yc = ciex + C2XCX + cyx2ex and 
~’e assume yp = Ax + B + Cx*ex. Substituting into the differential equation wc obtain —A = 1,
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Exercises 4.4 Undetermined Coefficients - Superposition Approach

3.4 — B =  0. and 6(7 = —4. Then A = —1, B =  —3, C - —| . yp = —x — 3 —^x^e1, and
9

y = ciex + C2.'rex + C3X2ex —x - 3 - -̂ x3ex.
O

24. From m3-m 2 —4m+4 =  0 vve find mi =  1, m2 = 2. and m3 =  —2. Then yc = c\ex+ c2e2x+c$e~'
and we assume yp = A+Bxex+Cxe2x. Substituting into the differential equation we obtain 4A = '
— SB - - 1, and 4 C =  1. Then A = \, B = =\,yp = \ + ±;rex + \xe2x, and

y = c\?x + c2elx + cse~2x + 7 + \xex + ^xe2x.
4 o 4

-5. From m'1 + 2m2 + 1 = 0 we find mi = m3 = i and m2 = m.4 =  —i. Then yc = ci cos a? + C2sin; -
-V cos :r + C4X sin x and wc assume yp =  Ak2 + Bx + <7. Substituting into the differential equat: 
"v obtain A = 1. B = —2. and 4.,4 + (7 =  1. Then A =  1. B =  —2, (7 = —3, yp = x2 —2x — 3,

y =  ci cos x + Co sin ;c + c^x cos x + c\x sin x + x2 — 2x — 3.

26. From m4 — m2 = 0 we find m i = m2  = 0. m3 = 1, and 7*14 = —1. Then yc =  ci + C2« + 036* + C4-" 
.Mid we assume = Ax6 + B.t2 + (Cfr2 + Dx)e~*. Substituting into the differential equation • 
brain -6A =  4. -2B =  0, 10(7 - 2D = 0, and -4(7 = 2. Then A = - § , £  =  0. C =

^   S/p =  - §*3 - (s*2 + |*) «“*. and

x2 + e~x.

2~. We have yc = ci cos 2x + c2 sin 2.x and we assume yp = A. Substituting into the differential cquar. 
v.t find A =  — ̂  . Thus y = ci cos 2a: + C2 sin 2;k — ^ . From the initial conditions we obtain c\ -

c2 ~ V2. so y =  y/2 sin 2x —  ̂.

25. We have yc = cje-2x + c2eX/'2 and we assume yp =  Ac2 + Bx + C. Substituting into the differe:.' 
-.;uation we find A =  —7. B =  —19, and C =  —37. Thus y = c\e~2x + c2ex,!2 — 7x2 — 19a: —
From the initial conditions we obtain ci =  —r} and c.2 =  , so

1 _9a. 186 ,. /n _ 9 - „ _y/ : —-a -I— — e ' - 7a:" — 19rr — 37.
0 5

29. We have yc =  ae~'x/5+C2 and we assume yp = Ax*+Bx. Substituting into the differential eqiu'
”'e find A =  —3 and B =  30. Thus y = cie-r/0 + c.2 —3x2 + 30a:. From the initial conditio:.- 
:btain c\ = 200 and <;2 =  —200, so

y =  200e_x/5 - 200 - 3a:2 + 30.x.

30. We have yc =  c\e~2x + c2xe~2x and we assume yp =  (A®3 + Bx2)e~2x. Substituting int 
.arferential equation we find A =  | and B =  %• Thus y = c\e~2x + c2xe"2x + Q ®3 + |x‘2) 
From the initial conditions we obtain c\ - 2 and c2 =  9, so

y = 2e_2a: + 9xe~2x + e~2x.

y = c\ + c2x + csex + C4 e x - :X' - -
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Exercises 4.4 Undetermined Coefficients Superposition Approach

From the initial conditions we obtain c\ = — . C2 = — . and 03 = . so 

23 _ / 59 17 \ 1 5 2
y

23 _9r 7’ ( 59 f— 1 I r~ . /— \ 1 O 2 —2t= - — e + e‘ — jtt cosvix  — — v3sm V 3x ) + -x - - -!--xe .
12 V 24 (2 / 4 o o

37. We have yc =  c\ C0SX — C2 sinx and wc assume yp = Ax? + Bx+C. Substituting into the differei:' 
equation wc find A =  1. B =  0. and C = —1. Thus y = c.\ cosx + c-2 sinx + x2 — 1. From y(0) = 
and y( 1) =  0 we obtain

ci -1 = 5

(cosl)ci + (sinl)c2 = 0.

Solving this system we find ci = 6 and C2 = — 6cot 1. The solution of the boundary-value pro!:' 
is

y — 6 cos x — 6(cot 1) sin x + x2 — 1.

38. We have yc = ex(c\ cosx + C2 sinx) and we assume yp =  Ax + B. Substituting into the differeiv 
equation we find A — 1 and B =  0. Thus y = ex(ci cosX + C2 sinx) +x. From y(0) = 0 and y(tt; = 
we obtain

ci = 0

tt —enci = 7r.

Solving this system we find ci =  0 and C2 is any real number. The solution of the boundary-v;. 
problem is

y = C2 (::c sin x + x.

39. The general solution of the differential equation y" + 3y =  6x is y = ci cos a/3x + 02 sin\/3x — -
The condition y(0) — 0 implies c\ = 0 and so y = C2 sin \/3x + 2x. The condition ;t/(l) + y'( 1 -
implies c2 sin y/3 + 2 + C2\/3 cos \/3 + 2 = 0 so 0 2 = —4/(sin \/3 + VS cos \/?>). The solution is

—4 sin y/Sx
V — --- 7=— 7=--- 7= + 2x.sin V3 + V3 cos V3

40. Using the general solution y — c\ cos \/3x+C2 sin y/3x+2x, the boundary conditions y(0)+j/(0 = 
y(l) = 0 yield the system

c\ + a/302 + 2 = 0

c\ cos \/3 + (>2 sin V3 + 2 = 0.

Solving gives
2(—y/3 + sin\/3) , 2(1 —cos\/3)ci =  —1=--- -j=-- ;— 7= ana 02 =

yf?i cos V3 — sin \/3 \/3 cos \/3 — sin \/3
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168 ● CHAPTER 4 HIGHER-ORDER DIFFERENTIAL EQUATIONS

EXERCISES 4.7 Answers to selected odd-numbered problems begin on page ANS-5.

In Problems 1–18 solve the given differential equation.

1. x2y� � 2y � 0 2. 4x2y� � y � 0

3. xy� � y� � 0 4. xy� � 3y� � 0

5. x2y� � xy� � 4y � 0 6. x2y� � 5xy� � 3y � 0

7. x2y� � 3xy� � 2y � 0 8. x2y� � 3xy� � 4y � 0

9. 25x2y� � 25xy� � y � 0 10. 4x2y� � 4xy� � y � 0

11. x2y� � 5xy� � 4y � 0 12. x2y� � 8xy� � 6y � 0

13. 3x2y� � 6xy� � y � 0 14. x2y� � 7xy� � 41y � 0

15. x3y� � 6y � 0 16. x3y� � xy� � y � 0

17. xy(4) � 6y� � 0

18. x4y(4) � 6x3y� � 9x2y� � 3xy� � y � 0

In Problems 19–24 solve the given differential equation by
variation of parameters.

19. xy� � 4y� � x4

20. 2x2y� � 5xy� � y � x2 � x

21. x2y� � xy� � y � 2x 22. x2y� � 2xy� � 2y � x4ex

23. x2y� � xy� � y � ln x 24.

In Problems 25–30 solve the given initial-value problem.
Use a graphing utility to graph the solution curve.

25. x2y� � 3xy� � 0, y(1) � 0, y�(1) � 4

26. x2y� � 5xy� � 8y � 0, y(2) � 32, y�(2) � 0

27. x2y� � xy� � y � 0, y(1) � 1, y�(1) � 2

28. x2y� � 3xy� � 4y � 0, y(1) � 5, y�(1) � 3

29.

30.

In Problems 31–36 use the substitution x � et to transform
the given Cauchy-Euler equation to a differential equation
with constant coefficients. Solve the original equation by
solving the new equation using the procedures in
Sections 4.3–4.5.

31. x2y� � 9xy� � 20y � 0

32. x2y� � 9xy� � 25y � 0

33. x2y� � 10xy� � 8y � x2

34. x2y� � 4xy� � 6y � ln x2

x2y� � 5xy� � 8y � 8x6, y�1
2 � � 0, y��1

2 � � 0

xy� � y� � x, y(1) � 1, y�(1) � �1
2

x2y� � xy� � y �
1

x � 1

35. x2y� � 3xy� � 13y � 4 � 3x

36. x3y� � 3x2y� � 6xy� � 6y � 3 � ln x3

In Problems 37 and 38 solve the given initial-value problem
on the interval (��, 0).

37. 4x2y� � y � 0, y(�1) � 2, y�(�1) � 4

38. x2y� � 4xy� � 6y � 0, y(�2) � 8, y�(�2) � 0

Discussion Problems

39. How would you use the method of this section to solve

Carry out your ideas. State an interval over which the
solution is defined.

40. Can a Cauchy-Euler differential equation of lowest
order with real coefficients be found if it is known that
2 and 1 � i are roots of its auxiliary equation? Carry
out your ideas.

41. The initial-conditions y(0) � y0, y�(0) � y1 apply to
each of the following differential equations:

x2y� � 0,

x2y� � 2xy� � 2y � 0,

x2y� � 4xy� � 6y � 0.

For what values of y0 and y1 does each initial-value
problem have a solution?

42. What are the x-intercepts of the solution curve shown
in Figure 4.7.1? How many x-intercepts are there for

?

Computer Lab Assignments

In Problems 43–46 solve the given differential equation by
using a CAS to find the (approximate) roots of the auxiliary
equation.

43. 2x3y� � 10.98x2y� � 8.5xy� � 1.3y � 0

44. x3y� � 4x2y� � 5xy� � 9y � 0

45. x4y(4) � 6x3y� � 3x2y� � 3xy� � 4y � 0

46. x4y(4) � 6x3y� � 33x2y� � 105xy� � 169y � 0

47. Solve x3y� � x2y� � 2xy� � 6y � x2 by variation of
parameters. Use a CAS as an aid in computing roots of
the auxiliary equation and the determinants given in
(10) of Section 4.6.

0 	 x 	 1
2

(x � 2)2y� � (x � 2)y� � y � 0?
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Exercises 4.6 Variation of Parameters

yp(x) = ( G(x, t)e2tdt,
J  0

where G(x,t) =  sinh (a; —t). Then

34. From the solution of Problem 32 we have that a particular solution of the differential equation

yp(x) — e2t sinh(x —t)dt =  j~ e

= - T  \ex+t - e~x+:it:
2 Jo L

dt

d t  =  \ x+ t  1 -x+3t,
2 3

= 1 2x _  1 2« _  1 « + 1 -* =  l a *  _  1 + 1
2 6 2 6 3 2 6

Exercises 4.7
I-'  •:  <v:’: • SVivIw ;;
1 . . . .' .  • '• ; '. .7 • h;!:

1. The

2. The

3. The

4. The

5. The

6. The

7. The

8. The

9. The

10. The

11. The

12. The

13. The

,,2auxiliary equation is m2 — m —2 = (m + l)(m  —2) = 0 so that y = c\x~x + c<ix

auxiliary equation is 4m2 — 4to + 1 = (2m — l )2 =  0 so that y =  cix1/2 + C2X1/2 In x

auxiliary equation is to2 =  0 so that y = c.\ + c2 In x.

auxiliary equation is m2 — 4m = m(m — 4) = 0 so that y = c\ + c2x4. 

auxiliary equation is m2 + 4 = 0 so that y = ci cos(2lnx) + C2 sin(2In x).

auxiliary equation is m2 + 4m + 3 = (m + l)(rn + 3) — 0 so that y — cix-1 + C2X-3, 

auxiliary equation is rri2 — 4-rn — 2 = 0 so that y =  cix2-'/® + c2x2+v̂ . 

auxihary equation is to2 + 2m — 4 = 0 so that y =  c\x~l+ŝ > -f c2x~1_v^. 

auxiliary equation is 25m2 + 1 = 0 so that y =  ci cos Q  In xj + c2 sin ( l  lnx).

auxiliary equation is 4m2 — 1 =  (2m — l)(2m + 1) = 0 so that y =  cix1'2 + c^x-1-'2. 

auxiliary equation is m2 + 4m 4- 4 = (m + 2)2 = 0 so that y =  c\x~2 + c-2X~2lnx. 

auxiliary equation is m2 + 7m + 6 = (to + l)(m  + 6) = 0 so that y = c\x~l + c2x-6. 

auxiliary equation is 3m2 + 3rn + 1 = 0 so that

f >/3 \ . fy/S 'c\ cos [ In x + C2 sin —— In x

14. The

6 ~~) ' 6

auxiliary equation is to2 —8rn + 41 = 0 so that y =  x4 [ci cos(51nx) + C2 sin(51n.x)].
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Exercises 4.7 Cauchy-Euler Equation

m(m — l)(m  — 2) —6 = m3 — 3m2 + 2m —6 = (in, — 3)(m2 + 2) = 0.

Thus
y — c\X3 4- C‘2 cos (V2 In x̂ j + 03 sin (y/2 In x) .

Assuming that y ==xm and substituting into the differential equation we obtain

m(m — l)(m  — 2) + m — 1 ~ m3 - 3 m2 + 3m - 1 = (m - l )3 = 0.

Thus
y = c\x + C-2'X In x 4- C3x(lna;)2.

Assuming that y = xm and substituting into the differential equation we obtain

n(m — l)(m  — 2 )(m — 3) + 6m(m — l)(m. —2) = m4 — 7m2 + 6m = m(m —1)(??7 — 2 )(m + 3) = 0.

Thus
y — c\ + cox 4- c$x2 + C4X~'i .

Assuming that y = xm and substituting into the differential equation we obtain

Am — 1) (m — 2) (m — 3) 4- 6m(m — 1) (m — 2) 4- 9rn(rn —1) 4- 3m +1 = m4 + 2 m24-1 = (m2 +1)2 = 0.

Thus
y =  ci cos(ln x) 4-C2 sin (In x) + oj (In x) cos (hi :r) 4-C4 (In x) sin(ln x).

The auxiliary equation is m2 — 5m =  m(m — 5) = 0 so that yc =  c\4 C2Xr> and

1 a:5
0 5a;4

Assuming that y — xrn and substituting into the differential equation we obtain

K 4 = oar.

Identifying f(x) =  a;3 we obtain u[ = - lxAand u'2 = 1/5*. Then ui = - ^ x 5, 112 = Aina;, and

y = ci + C2X0 — Jr .r ’ 4- \a:5 Ins = ci 4-c$xa 4- ln.r.2b 5 5

The auxiliary equation is 2m2 + 3m + 1 = (2m + l)(m  + 1) =  0 so that yc = cyxr1 + c-2X~ 1 '2 and

W{x-X,x-V2) =
a;  a - 1/ 2,,-1

- :r - 2 -Js-3/2 =  r f- 5/2.

! ::?ntifying f(x) — \ we obtain a[ = 1: - X1 and u'2 = x3 2̂ — x1/2. Then u\ = lx 2 — kx3;

. = 2^/2 _  p / 2, and

—1 —1 / 2 ^  1 - 2 ^ 2 ^  —I —1/2 1 1 2y = CiX + C-2X + -x- -x + -X - = ClX + Ĉ x ' - -x + — X -
2 3 b 6 6 lt>
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Exercises 4.7 Cauchy-Euler Equation

Then u'i =  W\/W =  —l/2(x + 1), u2 = W2 /W  — lj2x‘1(x + 1), and integration (by partial 
fractions for u2) gives

50

and

m

U2

~2 + 1)

^lnrr + ^ln(a: + l),

Vp =  U-m +  U-2V2 =
1 ln(a; + 1) x 1 + 1 -1 1 , /

~ 2 X — 2 9 X

1 1 , 1 , , ln(.-r + 1) 1 1 / 1\ ln(x + l)= ~  -  -2x ln x + ^x \n (x  + 1) - ^ — 11 = __ + _,;ln (1 + _)
2x

- 1  1 1 , ln(x+l)=  Vc + Vp =  ci a: + e2x - - 4- -xln 1:1 + - J ----—— x > 0.

The auxiliary equation is m2 + 2m = rn(m + 2) = 0, so that y = c.\ + c2x 2 and 
/  = —2c2-'E~3. The initial conditions imply

ci + C2 = 0

- 2 c 2 =  4 .

Thus, ci = 2. c2 = —2, and y — 2 —2a;-2. The graph is given to the right.

yn

-1.0 —

-20

-K

rhe auxiliary equation is m2 —6m + 8 = (m, — 2)(m — 4) =  0, so that 

y =  Cix2 + c2x4 and y' =  2cix + 4c2.t3.

Tae initial conditions imply

4ci -i- 16c2 =  32 

4ci + 32c2 =  0.

. :ius, ci = 16. c*2 = —2, and y =  16a;2 —2x4. The graph is given to the right.
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Exercises 4.7 Cauchy-Euler Equation

27. The auxiliary equation is m2 + 1 = 0. so that

y =  ci cos (In x) + c-2 sin(ln x)
and

1 1
y' =  —ci — sin (In x) + Oz~ cos (In a;).

it .2/
The initial conditions imply ci =  1 and C2 = 2. Thus 
j  = cos (In x) + 2 sin (In x). The graph is given to the right.

J*

l\H .l-f -!-l-
50

2S. The auxiliary equation is m2 — 4m + 4 = (in — 2)2 = 0, so that

y =  c\ x2 + C2X2 hi x and y' = 2c\_x + (x + 2x In a;).

The initial conditions imply ci =  5 and (>i -t-10 = 3. Thus y = bx2 —7x2 lu x. The 
graph is given to the right.

y
5 --/

- i o  —

-20

-30 -r

W (l, ln;r) =

29. The auxiliary equation is rri2 = 0 so that y<: = c\ + C2 hi a; and
1 In ;r | 1
0 l/x\ x

Identifying f(x) = 1 we obtain u[ = —xhi a; and ih = x. Then
?./i = j  a:2 —\x2 In x. U2 =  ?x2, and

y = ci + C2 In x + -x2 — ^a;2 In x + -̂x2 hi x = c\ + C2 In x + ^.t2.

The initial conditions imply ci + 1 =  1 and cj + ^ . Thus, ci = | , C2 = 
and y = | — In a; + |a:2. The graph is given to the right.

1

15 —

10

5 —

3U. The auxiliary equation is rri2 -  6rn +8 = ( m  — 2)(777. — 4) = 0, so 
that ijc = C]x2 + C2X4  and

W =
x2 a;4

= 2x°.

0.05

2a; 4a;3

Identifying f(x) = 8x4 we obtain u\ = —4xA and u!2 = 4a;. Then 1
i': — —a;4, U‘i —2a;2. and y — cyx2 + c^x4 + x6. The initial conditions imply
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The first n � 1 equations in this system, like in (4), are assumptions
that are made to simplify the resulting equation after yp � u1(x)y1(x) � � � � �
un(x)yn(x) is substituted in (9). In this case Cramer’s rule gives

where W is the Wronskian of y1, y2, . . . , yn and Wk is the determinant obtained by
replacing the kth column of the Wronskian by the column consisting of the right-
hand side of (10) —that is, the column consisting of (0, 0, . . . , f (x)). When n � 2,
we get (5). When n � 3, the particular solution is yp � u1y1 � u2y2 � u3y3, where
y1, y2, and y3 constitute a linearly independent set of solutions of the associated
homogeneous DE and u1, u2, u3 are determined from

(11)u�1 �
W1

W
,    u�2 �

W2

W
,    u�3 �

W3

W
,

u�k �
Wk

W
, k � 1, 2, . . . , n,

y1u�1 � y2u�2 � 0
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W1 � p 0

0

f (x)

y2

y�2
y�2

y3

y�3
y �3

p ,  W2 � p y1

y�1
y �1

0

0

f (x)

y3

y�3
y �3

p ,  W3 � p y1

y�1
y�1

y2

y�2
y�2

0

0

f (x)
p ,  and  W � p y1

y�1
y�1

y2

y�2
y�2

y3

y�3
y�3

p .
See Problems 25 and 26 in Exercises 4.6.

REMARKS

(i) Variation of parameters has a distinct advantage over the method of
undetermined coefficients in that it will always yield a particular solution yp

provided that the associated homogeneous equation can be solved. The pre-
sent method is not limited to a function f (x) that is a combination of the four
types listed on page 141. As we shall see in the next section, variation of
parameters, unlike undetermined coefficients, is applicable to linear DEs
with variable coefficients.

(ii) In the problems that follow, do not hesitate to simplify the form of yp.
Depending on how the antiderivatives of and are found, you might not
obtain the same yp as given in the answer section. For example, in Problem 3
in Exercises 4.6 both yp � sin x � x cos x and yp � sin x � x cos x
are valid answers. In either case the general solution y � yc � yp simplifies to
y � c1 cos x � c2 sin x � x cos x. Why?1

2

1
2

1
4

1
2

1
2

u�2u�1

EXERCISES 4.6 Answers to selected odd-numbered problems begin on page ANS-5.

In Problems 1–18 solve each differential equation by varia-
tion of parameters.

1. y� � y � sec x 2. y� � y � tan x

3. y� � y � sin x 4. y� � y � sec u tan u

5. y� � y � cos2x 6. y� � y � sec2x

7. y� � y � cosh x 8. y� � y � sinh 2x

9. 10. y� � 9y �
9x

e3xy� � 4y �
e2x

x

11.

12.

13. y� � 3y� � 2y � sin ex

14. y� � 2y� � y � et arctan t

15. y� � 2y� � y � e�t ln t 16.

17. 3y� � 6y� � 6y � ex sec x

18. 4y� � 4y� � y � ex/211 � x2

2y� � 2y� � y � 41x

y� � 2y� � y �
ex

1 � x2

y� � 3y� � 2y �
1

1 � ex

Variation and undetermined method
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Exercises 4.5 Undetermined Coefficients - Anniliilator Approach

Variation of Parameters

The particular solution. yp — u\y\ + u-2y-2 - in the following problems can take on a variety of
especially where trigonometric functions are involved. The validity of a particular form can
checked by substituting it back into the differential equation.

1. The auxiliary equation is m? + 1 = 0, so yc =  ci cos x + c2 sin a: and

cosx sin x
W =

sm a; cos x
= 1.

Identifying fix) = sec a; we obtain

u\
smx sec x

1
cosx secx

Uo 1

= — tan x

= 1.

Then uj = In | cosx|. U2 = x, and

y =  c\ cos x + C2 sinx + cosx In | cosx| + x sin x.

2. The auxiliary equation is m2 + 1 = 0, so yc = c\ cos x + c2 sinx and

W =
cosx sm x

—sin x cos x
= 1.

Identifying f(x) =  tanx we obtain

u[ = — sin x tan x =
cos" x —1

cosx
= cos x — sec x

u2 = sin x.

Then ui =  sin x — In | sec x + tan x|, u2 = — cos x, and

y =  ci cos x + C2 sin x + cos x (sin x — In | sec x + tan x|) — cos x sin x

=  ci cos x + C2 sin x — cos x In | sec x + tan x|.

3. The auxiliary equation is m2 + 1 = 0, so yc = c\ cos x + c2 sinx and

W =
cos x sm x 

-sinx cosx
-  1.
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Exercises 4.6 Variation of Parameters

Identifying f(x) =  sinx we obtain

u'i - — sin2x

u2 =  cos x s in  x.

Then
l . r t l 1 . 1u\ — - sm 2x — -x - - sinx cosx-- x4 2 2 2

1
"U2 =  — -  cos x.z

and
1 • 2 1 1 2y =  ci cos x -f C2 sin x + - sm x cos x — -x cos x — - cos x sin x

=  Cl COS X -r C2smx — —x cos x .
£

4. The auxiliary equation is rn.2 + 1 =  0; so yc = C] cos x -f c-2 sin x and

cos x sm x
— sin x cos x

: 1.

Identifying f (x )=  sec x tan x we obtain

« i - — sin x(sec x tan x) = — tan2 x =  1 — sec2 x 

«2 = cosx(secxtanx) = tan x.

Then ui =  x — tanx. u2 = — In | cosx), and

y =  ci cos x + C2 sin x + x cos x — sin x — sin x In | cos x|

- ci cos x + C3 sin x + x cos x — sin x In I cos x|.

•5. The auxiliary equation is m +1 =  0, so yc — ci cosx + c2 sinx and

cos x sin x
W  =

— sm x cos x
= 1.

Identifying f(x) =  cos2 x we obtain

u'i = — sin x cos2 x

u2r2 =  co s3 X  — COS X  ( l  — s i l l2 x )  .
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Exercises 4.6 Variation of Parameters

Then u\ =  | cos3x, «2 — sin x — | sinJ x, and

y =  ci cos x + C2 sin x + ^ cos4 x + sin2x — ^ sin4 x
0 o

= ci cos x + c-2 sin x + ^ (cos2x + sin2 .xj (cos2x — sin2 xj + sin2

1 9 ^ • 2= ci cos x + c2 sm x + - cos" x + - sin x
0 o

1 1 • 2= ci cos x + C2 sm x + - + - sm x.
o o

6. The auxiliary equation is m2 + 1 —0. so yc =  ci cos x + c2 sin x and
cosx sin x

X

W =
— sm x cos x

= 1.

Identifying f(x) =  sec2x we obtain

u[
sinx 
cos2x

Then
u2 = sccx. 

1
U i  = = — sec x

cosx

u2 =  In I secx + tan x\
and

y =  ci cos x + C2 sin x — cos x sec x + sin x In | sec x + tan x| 

= ci cos x + C2 sin x —1 + sin x In | sec x + tan x|.

7. The auxiliary equation is m2 —1 = 0, so yc = ciex' + C2 ?~x and

W  =
ex e~x
ex —e x

= -2.

Identifying f(x) =  coshx = |(e x + ex) we obtain
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Exercises 4.6 Variation of Parameters

-.::d
y = Clex + c2e~x - ^e~x + ^xex - ^ex - ^xe~s

= c3ex + c4e~x + \x(ex - e~x)4
1

= c$ex + c±e x + -a? sinhx.£
The auxiliary equation is to2 —1 = 0. so yc =  c,\ex + C2e~x and

I e* e~x !
W = I = - 2.

ex —e x
identifying f(x) =  sinh2.r we obtain

_ r.en

1
: — T<,-3* + * *

4 4
1

= -e * - -e3a\
4 4

1 -3s + I  x
12 4

1
--- P -x 1 J3<x

4 12
-.r.d

y = cie* + e*r*  + i e -21 + ^  ^  - ~e

= c1ex + c2e-x + U e 2x-e-21)

= ciex + c2e~x + ^ sinh 2a;.
O

i 7;-.e auxiliary equation is m2 — 4 = 0, so yc - c\e2x + C2 e~2x and

W =
! e2x e~2x

= -4.
2e2x —2e 2x

’ iriitifying f(x) =  e2x/x wc obtain u[ = l/4x and u'2 = —eAx/4x. Then

•u\ — J  In |ar|.

1 fx e ,u2 = - -  / — dt4 JX(j t

y = c\e?x + c.2e~2x + \ (e2x In |x| —e~2x f
4 y Jx,

- d t
XQ t )

,2x

XQ > 0.
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Exercises 4.6 Variation of Parameters

10. The auxiliary equation is m2 —9 = 0. so yc = c\e6x -+c2e 6X and

w = \ e'ix e 3ar
=  - 6 .

13e3x -Se~3x

Identifying f(x) =  9x/e3x we obtain u[ =  ^xe_(ix and Then

1 -e* 1xe

and

Ul =  “ 2i e
3 2

“ 2 =

V =  c1(>  +  C2e - 31  -  -  ?  A “ 3*24 4 4
1

= cie3* + cse-te - ^ ^ ( l  - 3 ).

11. The auxiliary equation is m,2 + 3m + 2 = (m + l)(m  + 2) = 0, so yc =  c\e~x + c.2e~2x and
„ —x  2x !

w =
—e x —2e 2x j

i = —e -3x

Identifying f(x) =  1/(1 + e*) we obtain

cx
«! =

u2 —

l + ex
2xer

1 4- ex 1 + ex
Then u\ =  ln(l + ex), u2 — ln(l + ex) — ex, and

ex.

y =  Cle~x + c2e~ + e-* ln(l 4-ex) + ln(l + ex) - e~x

= C3e_x + c2e~2x 4- (1 4- e~x)e~x ln(l 4- e31).

12. The auxiliary equation is to2 —2m + 1 = (m — l )2 =  0, so yc =  c\ex + c2xex and

W =

Identifying f(x) = ex/ ( l + x2) we obtain

ex xex
ex xex 4-ex

= e2x

ui =
xexex

e2x (1 + x2) 14-x2

u2 
exex 1

e2x( l+ x 2) 1 + x2'
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168 ● CHAPTER 4 HIGHER-ORDER DIFFERENTIAL EQUATIONS

EXERCISES 4.7 Answers to selected odd-numbered problems begin on page ANS-5.

In Problems 1–18 solve the given differential equation.

1. x2y� � 2y � 0 2. 4x2y� � y � 0

3. xy� � y� � 0 4. xy� � 3y� � 0

5. x2y� � xy� � 4y � 0 6. x2y� � 5xy� � 3y � 0

7. x2y� � 3xy� � 2y � 0 8. x2y� � 3xy� � 4y � 0

9. 25x2y� � 25xy� � y � 0 10. 4x2y� � 4xy� � y � 0

11. x2y� � 5xy� � 4y � 0 12. x2y� � 8xy� � 6y � 0

13. 3x2y� � 6xy� � y � 0 14. x2y� � 7xy� � 41y � 0

15. x3y� � 6y � 0 16. x3y� � xy� � y � 0

17. xy(4) � 6y� � 0

18. x4y(4) � 6x3y� � 9x2y� � 3xy� � y � 0

In Problems 19–24 solve the given differential equation by
variation of parameters.

19. xy� � 4y� � x4

20. 2x2y� � 5xy� � y � x2 � x

21. x2y� � xy� � y � 2x 22. x2y� � 2xy� � 2y � x4ex

23. x2y� � xy� � y � ln x 24.

In Problems 25–30 solve the given initial-value problem.
Use a graphing utility to graph the solution curve.

25. x2y� � 3xy� � 0, y(1) � 0, y�(1) � 4

26. x2y� � 5xy� � 8y � 0, y(2) � 32, y�(2) � 0

27. x2y� � xy� � y � 0, y(1) � 1, y�(1) � 2

28. x2y� � 3xy� � 4y � 0, y(1) � 5, y�(1) � 3

29.

30.

In Problems 31–36 use the substitution x � et to transform
the given Cauchy-Euler equation to a differential equation
with constant coefficients. Solve the original equation by
solving the new equation using the procedures in
Sections 4.3–4.5.

31. x2y� � 9xy� � 20y � 0

32. x2y� � 9xy� � 25y � 0

33. x2y� � 10xy� � 8y � x2

34. x2y� � 4xy� � 6y � ln x2

x2y� � 5xy� � 8y � 8x6, y�1
2 � � 0, y��1

2 � � 0

xy� � y� � x, y(1) � 1, y�(1) � �1
2

x2y� � xy� � y �
1

x � 1

35. x2y� � 3xy� � 13y � 4 � 3x

36. x3y� � 3x2y� � 6xy� � 6y � 3 � ln x3

In Problems 37 and 38 solve the given initial-value problem
on the interval (��, 0).

37. 4x2y� � y � 0, y(�1) � 2, y�(�1) � 4

38. x2y� � 4xy� � 6y � 0, y(�2) � 8, y�(�2) � 0

Discussion Problems

39. How would you use the method of this section to solve

Carry out your ideas. State an interval over which the
solution is defined.

40. Can a Cauchy-Euler differential equation of lowest
order with real coefficients be found if it is known that
2 and 1 � i are roots of its auxiliary equation? Carry
out your ideas.

41. The initial-conditions y(0) � y0, y�(0) � y1 apply to
each of the following differential equations:

x2y� � 0,

x2y� � 2xy� � 2y � 0,

x2y� � 4xy� � 6y � 0.

For what values of y0 and y1 does each initial-value
problem have a solution?

42. What are the x-intercepts of the solution curve shown
in Figure 4.7.1? How many x-intercepts are there for

?

Computer Lab Assignments

In Problems 43–46 solve the given differential equation by
using a CAS to find the (approximate) roots of the auxiliary
equation.

43. 2x3y� � 10.98x2y� � 8.5xy� � 1.3y � 0

44. x3y� � 4x2y� � 5xy� � 9y � 0

45. x4y(4) � 6x3y� � 3x2y� � 3xy� � 4y � 0

46. x4y(4) � 6x3y� � 33x2y� � 105xy� � 169y � 0

47. Solve x3y� � x2y� � 2xy� � 6y � x2 by variation of
parameters. Use a CAS as an aid in computing roots of
the auxiliary equation and the determinants given in
(10) of Section 4.6.

0 	 x 	 1
2

(x � 2)2y� � (x � 2)y� � y � 0?

Variation Method and Cauchy-Euler Equations

86



Exercises 4.7 Cauchy-Euler Equation

m(m — l)(m  — 2) —6 = m3 — 3m2 + 2m —6 = (in, — 3)(m2 + 2) = 0.

Thus
y — c\X3 4- C‘2 cos (V2 In x̂ j + 03 sin (y/2 In x) .

Assuming that y ==xm and substituting into the differential equation we obtain

m(m — l)(m  — 2) + m — 1 ~ m3 - 3 m2 + 3m - 1 = (m - l )3 = 0.

Thus
y = c\x + C-2'X In x 4- C3x(lna;)2.

Assuming that y = xm and substituting into the differential equation we obtain

n(m — l)(m  — 2 )(m — 3) + 6m(m — l)(m. —2) = m4 — 7m2 + 6m = m(m —1)(??7 — 2 )(m + 3) = 0.

Thus
y — c\ + cox 4- c$x2 + C4X~'i .

Assuming that y = xm and substituting into the differential equation we obtain

Am — 1) (m — 2) (m — 3) 4- 6m(m — 1) (m — 2) 4- 9rn(rn —1) 4- 3m +1 = m4 + 2 m24-1 = (m2 +1)2 = 0.

Thus
y =  ci cos(ln x) 4-C2 sin (In x) + oj (In x) cos (hi :r) 4-C4 (In x) sin(ln x).

The auxiliary equation is m2 — 5m =  m(m — 5) = 0 so that yc =  c\4 C2Xr> and

1 a:5
0 5a;4

Assuming that y — xrn and substituting into the differential equation we obtain

K 4 = oar.

Identifying f(x) =  a;3 we obtain u[ = - lxAand u'2 = 1/5*. Then ui = - ^ x 5, 112 = Aina;, and

y = ci + C2X0 — Jr .r ’ 4- \a:5 Ins = ci 4-c$xa 4- ln.r.2b 5 5

The auxiliary equation is 2m2 + 3m + 1 = (2m + l)(m  + 1) =  0 so that yc = cyxr1 + c-2X~ 1 '2 and

W{x-X,x-V2) =
a;  a - 1/ 2,,-1

- :r - 2 -Js-3/2 =  r f- 5/2.

! ::?ntifying f(x) — \ we obtain a[ = 1: - X1 and u'2 = x3 2̂ — x1/2. Then u\ =  lx 2 — kx3;

. = 2^/2 _  p / 2, and

—1 —1 / 2 ^  1 - 2 ^ 2 ^  —I —1/2 1 1 2y = CiX + C-2X + -x- -x + -X - = ClX + Ĉ x ' - -x + — X -
2 3 b 6 6 lt>
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Exercises 4.7 Cauchy-Euler Equation

2
X  X.

1 2x
= x2.

21. The auxiliary equation is m? —2m -f 1 = (m — I )2 =  0 so that yc —C\x + c2x In x and

la; xlna; I
I-v (x.xlnx) = j ; = x.

v ' ' |l 1 + In a; j

Identifying /(x) = 2/x we obtain Uj =  —21nx/x and u'2 - 2/x. Then u\ - —(lna;)2, U2 = 2
and

y =  C\x + C2X In x — x(ln x)2 + 2x(ln a;)2 

= cix + cox lna; + a.'(In x)2, x > 0.

22. The auxiliary equation is m2 — 3m + 2 = (m —1 )(m —2) =  0 so that yc - cyx -+c2x2 and

W{x,x2) =

Identifying f(x) = x2ex we obtain - —x2ex and u'2 — xex. Then u\ = —x2ex + 2xex -
= xex —ex, and

y = c\x + C2X2 — x3ex + 2x2ex —2xex + x3ex — x2ex

— cix + C2X2 + x2ex — 2xex.

23. The auxiliary equation m(m — 1) + m — 1 = rn2 — 1 = 0 has roots m i = —1, = -
- - ci a;-1 + C2X. With y\ = a;-1. y2 =  x, and the identification f(x) — lux/x2, we get

W  = 2a;-1, W\ =  — hi x/x, and W2 = In xfx3.

Then u[ = W\fW = —(lnx)/2, =  W2/W  = (lna;)/2x2, and integration by parts gives

u\ = ^x — -̂x 111 x£ z
1 - ll 1-1 U2 = —~x In x — -x .2 2

yp = uryi + U2V2 =  Qa; - ^xlnx^ x_1 + ( - ^ -1 lnx - x = - lnx

y =  yc +  y-p — e j x - 1  -f- c^x -  l n x ,  x  >  0.

24. T .e auxiliary equation m(m — 1) + m — 1 =  m2 — 1 = 0 has roots rm = —1, =
. • = f ix-1 + C2X. With yi =  x_1. y-2 =  x, and the identification /(x) = l/x 2(x + 1), we get

W = 2x“\ Wi = -1 fx(x + 1), and = l/x 3(x + 1).
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Exercises 4.7 Cauchy-Euler Equation

Then u'i =  W\/W =  —l/2(x + 1), u2 = W2 /W  — lj2x‘1(x + 1), and integration (by partial 
fractions for u2) gives

50

and

m

U2

~2 + 1)

^lnrr + ^ln(a: + l),

Vp =  U-m + U-2V2 =
1 ln(a; + 1) x 1 + 1 -1 1 , /

~ 2 X — 2 9 X

1 1 , 1 , , ln(.-r + 1) 1 1 / 1\ ln(x + l)= ~  -  -2x ln x + ^x \n (x  + 1) - ^ — 11 = __ + _,;ln (1 + _)
2x

- 1  1 1 , ln(x+l)=  Vc + Vp = ci a: + e2x - - 4- -xln 1:1 + - J ----—— x > 0.

The auxiliary equation is m2 + 2m = rn(m + 2) = 0, so that y =  c.\ + c2x 2 and 
/  = —2c2-'E~3. The initial conditions imply

ci + C2 = 0

- 2 c 2 =  4 .

Thus, ci = 2. c2 = —2, and y — 2 —2a;-2. The graph is given to the right.

yn

-1.0 —

-20

-K

rhe auxiliary equation is m2 —6m + 8 = (m, — 2)(m — 4) =  0, so that 

y =  Cix2 + c2x4 and y' =  2cix + 4c2.t3.

Tae initial conditions imply

4ci -i- 16c2 =  32 

4ci + 32c2 =  0.

. :ius, ci = 16. c*2 = —2, and y =  16a;2 —2x4. The graph is given to the right.
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60 ● CHAPTER 2 FIRST-ORDER DIFFERENTIAL EQUATIONS

USE OF COMPUTERS The computer algebra systems Mathematica and Maple
are capable of producing implicit or explicit solutions for some kinds of differential
equations using their dsolve commands.*

REMARKS

(i) In general, a linear DE of any order is said to be homogeneous when 
g(x) � 0 in (6) of Section 1.1. For example, the linear second-order DE 
y� � 2y� � 6y � 0 is homogeneous. As can be seen in this example and in the
special case (3) of this section, the trivial solution y � 0 is always a solution of
a homogeneous linear DE.

(ii) Occasionally, a first-order differential equation is not linear in one variable
but is linear in the other variable. For example, the differential equation

is not linear in the variable y. But its reciprocal

is recognized as linear in the variable x. You should verify that the integrating
factor e�(�1)dy � e�y and integration by parts yield the explicit solution
x � �y2 � 2y � 2 � cey for the second equation. This expression is, then,
an implicit solution of the first equation.

(iii) Mathematicians have adopted as their own certain words from engineer-
ing, which they found appropriately descriptive. The word transient, used
earlier, is one of these terms. In future discussions the words input and output
will occasionally pop up. The function f in (2) is called the input or driving
function; a solution y(x) of the differential equation for a given input is called
the output or response.

(iv) The term special functions mentioned in conjunction with the error func-
tion also applies to the sine integral function and the Fresnel sine integral
introduced in Problems 49 and 50 in Exercises 2.3. “Special Functions” is
actually a well-defined branch of mathematics. More special functions are
studied in Section 6.3.

dx

dy
� x � y2    or    

dx

dy
� x � y2

dy

dx
�

1

x � y2

EXERCISES 2.3 Answers to selected odd-numbered problems begin on page ANS-2.

In Problems 1–24 find the general solution of the given dif-
ferential equation. Give the largest interval I over which the
general solution is defined. Determine whether there are any
transient terms in the general solution.

1. 2.

3. 4. 3
dy

dx
� 12y � 4

dy

dx
� y � e3x

dy

dx
� 2y � 0

dy

dx
� 5y

5. y� � 3x2y � x2 6. y� � 2xy � x3

7. x2y� � xy � 1 8. y� � 2y � x2 � 5

9. 10.

11. 12.

13. x2y� � x(x � 2)y � ex

(1 � x)
dy

dx
� xy � x � x2x

dy

dx
� 4y � x3 � x

x
dy

dx
� 2y � 3x

dy

dx
� y � x2 sin x

*Certain commands have the same spelling, but in Mathematica commands begin with a capital letter
(Dsolve), whereas in Maple the same command begins with a lower case letter (dsolve). When
discussing such common syntax, we compromise and write, for example, dsolve. See the Student
Resource and Solutions Manual for the complete input commands used to solve a linear first-order DE.
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14. xy� � (1 � x)y � e�x sin 2x

15. y dx � 4(x � y6) dy � 0

16. y dx � (yey � 2x) dy

17.

18.

19.

20.

21.

22.

23.

24.

In Problems 25–30 solve the given initial-value problem.
Give the largest interval I over which the solution is defined.

25. xy� � y � ex, y(1) � 2

26.

27.

L, R, E, and i0 constants

28.

k, Tm, and T0 constants

29.

30. y� � (tan x)y � cos2x, y(0) � �1

In Problems 31–34 proceed as in Example 6 to solve the
given initial-value problem. Use a graphing utility to graph
the continuous function y(x).

31. where

32. where

f (x) � �1,

�1, 
0 � x � 1

x � 1

dy

dx
� y � f (x), y(0) � 1,

f (x) � �1,

0,

0 � x � 3

x � 3

dy

dx
� 2y � f (x), y(0) � 0,

(x � 1)
dy

dx
� y � ln x, y(1) � 10

dT

dt
� k(T � Tm ); T(0) � T0,

L
di

dt
� Ri � E, i(0) � i0,

y
dx

dy
� x � 2y2,  y(1) � 5

(x2 � 1)
dy

dx
� 2y � (x � 1)2

x
dy

dx
� (3x � 1)y � e�3x

dP

dt
� 2tP � P � 4t � 2

dr

d	
� r sec 	 � cos 	

(x � 2)2 dy

dx
� 5 � 8y � 4xy

(x � 1)
dy

dx
� (x � 2)y � 2xe�x

cos2x sin x
dy

dx
� (cos3x)y � 1

cos x
dy

dx
� (sin x)y � 1

33. where

34. where

35. Proceed in a manner analogous to Example 6 to solve the
initial-value problem y� � P(x)y � 4x, y(0) � 3, where

Use a graphing utility to graph the continuous function
y(x).

36. Consider the initial-value problem y� � exy � f (x),
y(0) � 1. Express the solution of the IVP for x � 0 as a
nonelementary integral when f (x) � 1. What is the so-
lution when f (x) � 0? When f (x) � ex?

37. Express the solution of the initial-value problem 
y� � 2xy � 1, y(1) � 1, in terms of erf(x).

Discussion Problems

38. Reread the discussion following Example 2. Construct a
linear first-order differential equation for which all
nonconstant solutions approach the horizontal asymp-
tote y � 4 as x : 
.

39. Reread Example 3 and then discuss, with reference
to Theorem 1.2.1, the existence and uniqueness of a
solution of the initial-value problem consisting of 
xy� � 4y � x6ex and the given initial condition.

(a) y(0) � 0 (b) y(0) � y0, y0 � 0

(c) y(x0) � y0, x0 � 0, y0 � 0

40. Reread Example 4 and then find the general solution of
the differential equation on the interval (�3, 3).

41. Reread the discussion following Example 5. Construct a
linear first-order differential equation for which all solu-
tions are asymptotic to the line y � 3x � 5 as x : 
.

42. Reread Example 6 and then discuss why it is technically
incorrect to say that the function in (13) is a “solution”
of the IVP on the interval [0, 
).

43. (a) Construct a linear first-order differential equation of
the form xy� � a0(x)y � g(x) for which yc � c�x3

and yp � x3. Give an interval on which 
y � x3 � c�x3 is the general solution of the DE.

(b) Give an initial condition y(x0) � y0 for the DE
found in part (a) so that the solution of the IVP 
is y � x3 � 1�x3. Repeat if the solution is 

P(x) � � 2,

�2>x,
 0 � x � 1,

x � 1.

f (x) � �x,

�x, 
0 � x � 1

x � 1

(1 � x2)
dy

dx
� 2xy � f (x), y(0) � 0,

f (x) � �x,

0, 
0 � x � 1

x � 1

dy

dx
� 2xy � f (x), y(0) � 2,
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Exercises 2.3 Linear Equations

(b) The value of c corresponding to y(0) = 3 is /(0, | ) =
—̂  . The portion of the graph between the dots cor
responds to the solution curve satisfying the intial con
dition. To determine the interval of definition we find 
dy/dx for 2y3 —6y2 + 2a:3 —3:r2 — . Using implicit 
differentiation we get yf =  (x — x2)/(y2 —2y), which 
is infinite when y — 0 and y =  2. Letting y =  0 in 
2y:i — 6y2 + 2x'i —3x2 =  — ̂  and using a CAS to solve
for x we get x - —1.13232. Similarly, letting y = 2, we find x - 1.71299. The largest interval 
of definition is approximately (—1.13232,1.71299).

(c) The value of c corresponding to y(0) = —2 is /(0, —2) = y 
—40. The portion of the graph to the right of the dot 
corresponds to the solution curve satisfying the initial 
condition. To determine the interval of definition we find 
dy/dx for 21/3 —6y2 + 2xi — 3a:2 = —40. Using implicit 
differentiation we get y' = (x — x2)/(y2 —2y), which 
is infinite when y = 0 and y = 2. Letting y — 0 in 
2y?) —6y2 + 2a:3 — 3a:2 = —40 and using a CAS to solve
for a: we get x — —2.29551. The largest interval of definition is approximately (—2.29551, oo).

Exercises 2.3

1. For y — by — 0 an integrating factor is e J ocix = e ox so that —  [e oxy
dx L J

—oo < x < oo. There is no transient term.

2. For y1 + 2y — 0 an integrating factor is eJ 2 dx =  e2x so that

—oo < x < oo. The transient term is ce 2x.

A
dx <-2xy

= 0 and y =  ceox for 

= 0 and y — ce~2x for

d3. For y' + y — eix an integrating factor is eJ dx = ex so that —  [e'Ty] -- and y - ie3* + ce~x fordx * 4
—oo < x < oo. The transient term is ce x.

4. For y' -f-Ay =  4 an integrating factor is eJ 4 dx == e4x so that [e4x
dx L

for — oo < x < oo. The transient term is ce~4x.
V =  |e4x and y =  A + ce -4x

49
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Exercises 2.3 Linear Equations

5. For y'+3x2y = x2 an integrating factor is eJ ,ix dx — e*3 so that dx
-3

e y =  x2ef3 and y =  |+o.

for — oo < x < oc. The transient term is ce—X

6. For y' + 2xy = x:i an integrating factor is eJ 2xdx — ex so that -r~
dxt 9 O

\x? — ^ + CC~X~ for — oo < x < oc. The transient term is ce~x~.

j *e y =  £3e* and .. =

1 1 d 1 17. For y' + —y =  —~ an integrating factor is — x so that —  [xy] = — and y = — In x
x xL dx x x

for 0 < x < oo. The entire solution is transient.

8 .  For y' — 2y = x2 + o an integrating factor is e /  2dx =  e 2x so that y -  fe 2xy
(JLJL

and y =  —̂ x2 - - j  + ce2x for — oo < x < oc. There is no transient term.

=  x V 2*  +  O f'

1 1 d9. For i f ---y = x sin x an integrating factor is e~JO/;r)rf3: =  — so that —
•// CLXX

y — cx — x cos x for 0 < x < oo. There is no transient term.

2 3
x ' x

for 0 < x < oo. The transient term is cx~2.

1 1 
- yx .

=  sin a:

10. For i/  + —y = — an integrating factor is eJ (2/a:)rfx = x2 so that x2y| - dx and y = § + c::t  * t  ri'r L * J zdx

4 dt
11. For y' + — y = :r2 —1 an integrating factor is eJ (4i*)<lx = x 4 so that —  xAy

x ' dx 1
y  — — ix  + cx-4 for 0 < x < oo. The transient term is cx~4.

= x6 — x4 &:

12. For y'- x dy = x an integrating factor is e~Nx,/(1+x̂ dx = (x+l)e-a; so that —  (x + 1 )e~xy
(1 + x) dx l

{̂X | 3
x(x + l)e~x and y = —x — —— — H---—  for —1 < x < oo. There is no transient term.v ' J x + 1 x + 1

(
2 \ €>x dH —  ) y = —? an integrating factor is e-l t1+(2/*)]^ _  X2ex so \x2exy
x j xz dx L ' J

2xe a:
1 ex c.e~x
2 x2 + t-2 for 0 < x < oo. The transient term is ce

x2

14. For y' + (\ + ~') ?/ = —e x sin 2.x an integrating factor is =  xex so that [xexy_x x
1 cesin 2x and y — — r—e x cos 2x +

2x x
for 0 < x < oo. The entire solution is transient.

15. For ~  — -x = 4yD an integrating factor is e J(4̂ dy — elny 4 =  y 4 so that -7-\y 4x =  Ay a:.:rht fn " ' dy l Jdy y
x =  2y 6 + cy4 for 0 < y < 00. There is no transient term.

50
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74 ● CHAPTER 2 FIRST-ORDER DIFFERENTIAL EQUATIONS

EXERCISES 2.5 Answers to selected odd-numbered problems begin on page ANS-2.

Each DE in Problems 1–14 is homogeneous.

In Problems 1–10 solve the given differential equation by
using an appropriate substitution.

1. (x � y) dx � x dy � 0 2. (x � y) dx � x dy � 0

3. x dx � (y � 2x) dy � 0 4. y dx � 2(x � y) dy 

5. (y2 � yx) dx � x2 dy � 0

6. (y2 � yx) dx � x2 dy � 0

7.

8.

9.

10.

In Problems 11–14 solve the given initial-value problem.

11.

12.

13. (x � yey/x) dx � xey/x dy � 0, y(1) � 0

14. y dx � x(ln x � ln y � 1) dy � 0, y(1) � e

Each DE in Problems 15–22 is a Bernoulli equation.

In Problems 15–20 solve the given differential equation by
using an appropriate substitution.

15. 16.

17. 18.

19. 20.

In Problems 21 and 22 solve the given initial-value problem.

21.

22. y1/2 dy

dx
� y3/2 � 1, y(0) � 4

x2 dy

dx
� 2xy � 3y4, y(1) � 1

2

3(1 � t2)
dy

dt
� 2ty( y3 � 1)t2 dy

dt
� y2 � ty

x
dy

dx
� (1 � x)y � xy2dy

dx
� y(xy3 � 1)

dy

dx
� y � exy2x

dy

dx
� y �

1

y2

(x2 � 2y2)
dx

dy
� xy, y(�1) � 1

xy2 dy

dx
� y3 � x3, y(1) � 2

x
dy

dx
� y � 1x2 � y2, x � 0

�y dx � (x � 1xy) dy � 0

dy

dx
�

x � 3y

3x � y

dy

dx
�

y � x

y � x

Each DE in Problems 23–30 is of the form given in (5).

In Problems 23–28 solve the given differential equation by
using an appropriate substitution.

23. 24.

25. 26.

27. 28.

In Problems 29 and 30 solve the given initial-value problem.

29.

30.

Discussion Problems

31. Explain why it is always possible to express any homoge-
neous differential equation M(x, y) dx � N(x, y) dy � 0 in
the form

.

You might start by proving that

.

32. Put the homogeneous differential equation

(5x2 � 2y2) dx � xy dy � 0

into the form given in Problem 31.

33. (a) Determine two singular solutions of the DE in
Problem 10.

(b) If the initial condition y(5) � 0 is as prescribed in
Problem 10, then what is the largest interval I over
which the solution is defined? Use a graphing util-
ity to graph the solution curve for the IVP.

34. In Example 3 the solution y(x) becomes unbounded as
x : ��. Nevertheless, y(x) is asymptotic to a curve as
x : �� and to a different curve as x : �. What are the
equations of these curves?

35. The differential equation dy�dx � P(x) � Q(x)y � R(x)y2

is known as Riccati’s equation.

(a) A Riccati equation can be solved by a succession
of two substitutions provided that we know a

M(x, y) � xaM(1, y>x)    and    N(x, y) � xaN(1, y>x)

dy

dx
� F �y

x�

dy

dx
�

3x � 2y

3x � 2y � 2
, y(�1) � �1

dy

dx
� cos(x � y), y(0) � �>4

dy

dx
� 1 � ey�x�5dy

dx
� 2 � 1y � 2x � 3

dy

dx
� sin(x � y)

dy

dx
� tan2(x � y)

dy

dx
�

1 � x � y

x � y

dy

dx
� (x � y � 1)2
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Exercises 2.5 Solutions by Substitutions

In |a*| —eu = c

In \x\ - eyfx = c.

Using y(l) = 0 wc find c = —1. The solution of the initial-value problem is In |.x[ =  ey,lx —1.

Letting x = vy we have
y(v dy + y dv) + vy(In vy — In y —1) dy = 0

y dv + v In v dy —0

dv dy
+ — = 0

v In v y

In | In I'l.'H + In |y| = c

y In = ci.

Using y(l) “  e we find ci = —e. The solution of the initial-value problem is y In X\= —e.
y

r- / 1 1 - o  o . dw 3 3 . , oFrom y H— y — —y “ and w = y we obtain —— |-—w — — . An integrating factor is x so that 
x' x' dx x x

x3w = x3 + c or t/3 =  1 + cx~A.

(I’ZU
From y' — y — exy2 and w =  y~l we obtain —— I-w = —ex. An integrating factor is ex so that

dx
f:xw ~ — Ie2x + c. or y~l =  —\ex + ce~x.

From y' + y = xy4 and w = we obtain —  —3u> =  —3x. An integrating factor is e~ix so that
dx

e~'ixw = xe~‘ix + + c or ;ty_a = x + ^ -i- cejx.

From y — y =  y2 and w - y~l we obtain ^  + ^1 + w =  —1. An integrating factor is

1 f*
xex so that xexw = —xex + ex H-c or y-1 = —1 + — + —e~x.

x x
/ 1 1 o , _i , . dto 1 1rrom y — -y = —-^y“ and w = y wc obtain —  + —w = • An integrating factor is t so that

1 t-
tw — In i -|-c or y~l — - Inf + Writing this in the form - = hit + c. we see that the solution

t t y ’
can also be expressed in the form e^y =  cit.

/ 2 2t a , _ > . . dw 2t —21
From y + 3 (1 + ^ */ =  3 (1 + t2)y ai W = V W° 0 am ~dt ~ l + f iW =  TT f5 ’ mtcgratmg

-|  ̂* X
factor is 80 that 1 ^ 2  =  + c or y~* = 1 + c ( l + t2).

69

Note for Bernoulli
I used v = y^(1-n)/ here they use w = y^(1-n)

so w^\prime = (1-n)y^(-n) X y^\prime
so y^\prime + a_0(t)y = f(t)y^n, n not = 1.
by substitution....
w^\prime + (1-n)a_0(t)w = (1-n)f(t). Find w/ then
y = w^{1/(1-n)}
Note 23-30 can be done (but i explain in class)
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Exercises 2.5 Solutions by Substitutions

/ 2 3 4 . _o , . dw 6 9 . . . . .  .21. Prom y -- y =  — and w = y we obtain —— h —w =  —  ̂. An integrating factor is x° so tha:
x x *  ' dx x xz

x6w = —§x5 + c or y~3 =  — §x_1 + cx~b. If y( 1) =  ^ then c =  ^  and y~3 =  — fx -1 + ^ x -6.
dtxi.  3 3

22. From if + y =  y~1//2 and w =  y3/2 we obtain —  + -w = - . An integrating factor is e3x-/2 so tha:fix z z
eixl2w — (?x>2 + c or y3/2 = 1 + ce~iX/'2. If y(0) = 4 then c =  7 and ,(/}/2 =  1 + 7e~^xt2.

23. Let u =  x -f'« + l  so that du/dx =  1 + dy/dx. Then ^  — 1 = u2 or — —-x du = dx. Tlni-
dx 1 + tr

tan-5 u = x + c or u =  tan(x + c), and x + y + 1 = t.an(x + c) or y — tan(x + c) —x —1.

24. Let u ~ x + y so that du/dx = 1 + dy/dx. Then ~  —1 = ---- or u du = dx. Thus Aw,2 = x + .
dx u

or u2 = 2x + ci. and (x + y)2 =  2x + cj.

25. Let u = x + y so that du/dx =  1 + dy/dx. Then ^  — 1 = tan2u or cos2udu = dx. Thu?
\JfJU

^«+ |sin2u = x+c or 2«+sin2u = 4x+ei, and 2(x+y)+sin2(x+y) : 4x+ci or 2y+sin2(x+y) = 

2x + ci.

26. Let u —x + y so that du/dx = 1 + dy/dx. Then — 1 =  sin u o r-- — du =  dx. Multiplying
ctcc 1 sm *?/

1 sin ̂
bv (1 — sin if)/(1 — sin u) we have ---~— du = dx or (sec2u — secu taiiu)du = dx. Thu-

coŝ u
tan u — sec u = x + c or tan(x + y) — sec(x + y) = x + c.

27. Let u =  y —2.x + 3 so that du/dx =  dy/dx —2. Then ^ + 2  = 2 + v/^ or ~t= du =  dx. Thu-
ax y  w

2-y/w = x + c and 2^/y — 2x + 3 = x + c.

Let u = y — x + 5 so that du/dx =

—e~u = x + c and —ey~x+5 =  x + c.

du
28. Let u = y — x + 5 so that du/dx =  dy/dx — 1. Then -— I-1 = 1 + eu or e~udu = dx. Thi;.-

dx

ctu 1
29. Let u = x + y so that du/dx = 1 + dy/dx. Then --- 1 — cos u and----:-- du. = dx. Now

fix 1 + cos u
1 1 — cos u 1 —COS u O

----------------------------------------—  —  =  CSC u — CSC u cot u
1 + cos u 1 — cos2u sin2u

so we have f  (csc2u-c.sc u cot u)du = /  dx and — cot w+csc u =  x+c. Thus — cot(x+y) +csc(x+y) - |
x + c. Setting x = 0 and y =  tt/4 we obtain c =  a / 2  —  1 .  The solution is

csc(x + y) - cot(x + y) = X + V2 — 1.

30. Let u =  3x + 2y so that du/dx =  3 + 2dy/dx. Then ^  = 3+ — - =  ~r~ and ^ du — d.i
y ' Jl dx u + 2 u + 2 5 u + 6

Now bv long division
u + 2 1 4 

— ^ +5u + 6 5 25u + 30

70

98



TABLE OF CONTENTS 99

3.17 Questions with Solutions on Chapter 2.4, Exact
Nonlinear DE



68 ● CHAPTER 2 FIRST-ORDER DIFFERENTIAL EQUATIONS

The integrating factor is then e�3dy/y � e3lny � eln � y3. After we multiply the given
DE by �(y) � y3, the resulting equation is

xy4 dx � (2x2y3 � 3y5 � 20y3) dy � 0.

You should verify that the last equation is now exact as well as show, using the
method of this section, that a family of solutions is .

REMARKS

(i) When testing an equation for exactness, make sure it is of the precise
form M(x, y) dx � N(x, y) dy � 0. Sometimes a differential equation 
is written G(x, y) dx � H(x, y) dy. In this case, first rewrite it as 
G(x, y) dx � H(x, y) dy � 0 and then identify M(x, y) � G(x, y) and 
N(x, y) � �H(x, y) before using (4).

(ii) In some texts on differential equations the study of exact equations
precedes that of linear DEs. Then the method for finding integrating factors
just discussed can be used to derive an integrating factor for 
y� � P(x)y � f (x). By rewriting the last equation in the differential form
(P(x)y � f (x)) dx � dy � 0, we see that

.

From (13) we arrive at the already familiar integrating factor e�P(x)dx, used in
Section 2.3.

My � Nx

N
� P(x)

1
2 x2y4 � 1

2 y6 � 5y4 � c

y3

EXERCISES 2.4 Answers to selected odd-numbered problems begin on page ANS-2.

In Problems 1–20 determine whether the given differential
equation is exact. If it is exact, solve it.

1. (2x � 1) dx � (3y � 7) dy � 0

2. (2x � y) dx � (x � 6y) dy � 0

3. (5x � 4y) dx � (4x � 8y3) dy � 0

4. (sin y � y sin x) dx � (cos x � x cos y � y) dy � 0

5. (2xy2 � 3) dx � (2x2y � 4) dy � 0

6.

7. (x2 � y2) dx � (x2 � 2xy) dy � 0

8.

9. (x � y3 � y2 sin x) dx � (3xy2 � 2y cos x) dy

10. (x3 � y3) dx � 3xy2 dy � 0

11. (y ln y � e�xy) dx � �1

y
� x ln y� dy � 0

�1 � ln x �
y

x� dx � (1 � ln x) dy

�2y �
1

x
� cos 3x� dy

dx
�

y

x2 � 4x3 � 3y sin 3x � 0

12. (3x2y � ey) dx � (x3 � xey � 2y) dy � 0

13.

14.

15.

16. (5y � 2x)y� � 2y � 0

17. (tan x � sin x sin y) dx � cos x cos y dy � 0

18.

19. (4t3y � 15t2 � y) dt � (t4 � 3y2 � t) dy � 0

20. �1

t
�

1

t 2 �
y

t 2 � y2� dt � �yey �
t

t 2 � y2� dy � 0

� (x � sin2 x � 4xyexy2
) dy

(2y sin x cos x � y � 2y2exy2
) dx

�x2y3 �
1

1 � 9x2� dx

dy
� x3y2 � 0

�1 �
3

y
� x� dy

dx
� y �

3

x
� 1

x
dy

dx
� 2xex � y � 6x2
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In Problems 21–26 solve the given initial-value problem.

21. (x � y)2 dx � (2xy � x2 � 1) dy � 0, y(1) � 1

22. (ex � y) dx � (2 � x � yey) dy � 0, y(0) � 1

23. (4y � 2t � 5) dt � (6y � 4t � 1) dy � 0, y(�1) � 2

24.

25. (y2 cos x � 3x2y � 2x) dx
� (2y sin x � x3 � ln y) dy � 0, y(0) � e

26. ,

In Problems 27 and 28 find the value of k so that the given
differential equation is exact.

27. (y3 � kxy4 � 2x) dx � (3xy2 � 20x2y3) dy � 0

28. (6xy3 � cos y) dx � (2kx2y2 � x sin y) dy � 0

In Problems 29 and 30 verify that the given differential equa-
tion is not exact. Multiply the given differential equation
by the indicated integrating factor �(x, y) and verify that the
new equation is exact. Solve.

29. (�xy sin x � 2y cos x) dx � 2x cos x dy � 0;
�(x, y) � xy

30. (x2 � 2xy � y2) dx � (y2 � 2xy � x2) dy � 0;
�(x, y) � (x � y)�2

In Problems 31–36 solve the given differential equation by
finding, as in Example 4, an appropriate integrating factor.

31. (2y2 � 3x) dx � 2xy dy � 0

32. y(x � y � 1) dx � (x � 2y) dy � 0

33. 6xy dx � (4y � 9x2) dy � 0

34.

35. (10 � 6y � e�3x) dx � 2 dy � 0

36. (y2 � xy3) dx � (5y2 � xy � y3 sin y) dy � 0

In Problems 37 and 38 solve the given initial-value problem
by finding, as in Example 4, an appropriate integrating factor.

37. x dx � (x2y � 4y) dy � 0, y(4) � 0

38. (x2 � y2 � 5) dx � (y � xy) dy, y(0) � 1

39. (a) Show that a one-parameter family of solutions of
the equation

(4xy � 3x2) dx � (2y � 2x2) dy � 0

is x3 � 2x2y � y2 � c.

cos x dx � �1 �
2

y� sin x dy � 0

y(0) � 1� 1

1 � y2 � cos x � 2xy� dy

dx
� y(y � sin x)

�3y2 � t 2

y5 � dy

dt
�

t

2y4 � 0, y(1) � 1

(b) Show that the initial conditions y(0) � �2 and 
y(1) � 1 determine the same implicit solution.

(c) Find explicit solutions y1(x) and y2(x) of the dif-
ferential equation in part (a) such that y1(0) � �2
and y2(1) � 1. Use a graphing utility to graph y1(x)
and y2(x).

Discussion Problems

40. Consider the concept of an integrating factor used in
Problems 29–38. Are the two equations M dx � N dy � 0
and �M dx � �N dy � 0 necessarily equivalent in the
sense that a solution of one is also a solution of the other?
Discuss.

41. Reread Example 3 and then discuss why we can con-
clude that the interval of definition of the explicit
solution of the IVP (the blue curve in Figure 2.4.1) is
(�1, 1).

42. Discuss how the functions M(x, y) and N(x, y) can be
found so that each differential equation is exact. Carry
out your ideas.

(a)

(b)

43. Differential equations are sometimes solved by
having a clever idea. Here is a little exercise in
cleverness: Although the differential equation 
(x � ) dx � y dy � 0 is not exact, show how
the rearrangement (x dx � y dy) � dx and
the observation d(x2 � y2) � x dx � y dy can lead to
a solution.

44. True or False: Every separable first-order equation
dy�dx � g(x)h(y) is exact.

Mathematical Model

45. Falling Chain A portion of a uniform chain of length
8 ft is loosely coiled around a peg at the edge of a high
horizontal platform, and the remaining portion of the
chain hangs at rest over the edge of the platform. See
Figure 2.4.2. Suppose that the length of the overhang-
ing chain is 3 ft, that the chain weighs 2 lb/ft, and that
the positive direction is downward. Starting at t � 0
seconds, the weight of the overhanging portion causes
the chain on the table to uncoil smoothly and to fall to
the floor. If x(t) denotes the length of the chain over-
hanging the table at time t � 0, then v � dx�dt is its
velocity. When all resistive forces are ignored, it can
be shown that a mathematical model relating v to x is

1
2

�1x2 � y2
1x2 � y2

�x�1/2y1/2 �
x

x2 � y� dx � N(x, y) dy � 0

M(x, y) dx � �xexy � 2xy �
1

x� dy � 0
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Exercises 2.3 Linear Equations

(c) From the graph wc see that as x — oc, y(x) oscillates with decreasing amplitudes approaching 
9.35672. Since limx-̂ oo 5S(x) = \ , linij;-*^ y(x) — 9.357, and since lima;_i._oc S(x) = 
—̂  , lim ^-^c y(x) = 5e-v/̂ /8 & 2.672.

(d) From the graph in part (b) we see that the absolute maximum occurs around x =  1.7 and tlic- 
absolute minimum occurs around x =  —1.8. Using the root-finding capability of a CAS anc 
solving y'(x) =  0 for we see that the absolute maximum is (1.772,12.235) and the absolute 
minimum is (—1.772,2.044).

1. Let M  = 2x — 1 and N = 3y+7 so that My =  0 = Nx. From fx = 2x— 1 we obtain /  ~ x2—x+h(y
h\y) = 3y -j- 7. and h(y) =  §y2 + 7y. A solution is x2 — x + ^y2 + 7y = c.

2. Let M  = 2x + y and N — —x — 6y. Then My = 1 and Nx =  —1, so the equation is not exact.

3. Let M  = 5.7; + 4y and N — 4x — 8y3 so that My — 4 = N:r. From fx = ox + 4y wc obtai: 
/   |:/:2 + 4xy + h(y), h'(y) — —8y3, and /i(y) = —2y4. A solution is |:t'2 + 4a;y — 2y4 = c.

4. Let M  = siny — ysinx and JV = cosx + a; cosy — y so that My ~ cos y — sin a; = Nx. Fro:; 
fx =  siny — y sin x we obtain /  = xsiny+ ycosx-^h^y). h\y) — —y, and h(y) =  —\y2- A solutic 
is x sin y -j-y cos x — \y2 = c.

5. Let M  =  2y2x — 3 and N  = 2yx~ + 4 so that M tJ =  4xy = Nx. From fx =  2y2x — 3 we obta:: 
/  = x2y2 — 3x + h.(y), h'(y) =  4. and h(y) — Ay. A solution is x2y2 — 3x 4- 4y = c.

6. Let M  = Axd — 3y sin 3x —y/x2 and N = 2y — 1/x + cos 3x so that My = —3 sin 3a; — 1 jx2 ai. 
Nx — 1 jx2 — 3 sin 3a;. The equation is not exact.

7. Let M  = x2 — y2 and N = x2 — 2xy so that My = —2y and Nx — 2x — 2y. The equation is n "
exact.
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Exercises 2.4 Exact Equations

Lot M  — 1 + In x + y/x and N = — 1 -f In x so that My — 1/x = Nx. From fy =  — 1 + In x we obtain 
= —y + y Inx + h(y), h'(x) = 1 + lna:, and h(y) =  a:lux. A sohition is —y + y Inx + x Inx = c.

Let M =  y3 — if  sin x — x and N = 3xy2 + 2y cos x so that My = 3y2 — 2y sin x =  Nx. From 
= y3 — y2 sin x —x we obtain /  =  a:y3 + y2 cos x — \x2 + h(y). h'(y) =  0, and h(y) =  0. A solution 
xy3 + y2 cos x — ^x2 = c.

Let M  = xs + y3 and N  =  3xy2 so that My = 3y2 = Nx. From fx = x3 + y3 we obtain 
’ =  jf.r4 + xy3 + h(y), h'(y) =  0, and h(y) = 0. A solution is |a:'* + xy3 = c.

Let M  = ylny — e~xy and N  = 1/y + xlny so that My =  1 + lny + xe~xy and Nx =  lny. The 
equation is not exact.

Let M  = 3x2y + el! and N  = x3 + xey — 2y so that My =  Zx* + ev = Nx. From fx = 3x2y + ey we 
:btain /  = x3y -j-xev -f-h(y), h'{y) = —2y. and h(y) = —y2. A solution is x3y + xey — y2 = <:.

Let M = y — 6x2 — 2xex and N  = x so that My = 1 — Nx. From f x = y — 6a-2 —2xex we obtain 
= xy — 2x3 — 2xex + 2ex + h(-y), h!{y) =  0. and h(y) ~ 0. A solution is xy — 2x3 — 2xex + 2ex = c.

Let M  =  1 — 3jx + y and N = 1 — 3jy + x so that My = 1 =  Nx. From fx =  1 — 3/x + y
3-.vc obtain f  =  x — 3In |:r| + xy + h(y), h!(y) = 1 — and h(y) =  y — 3In |;y|. A solution is 

-r y + xy-3  In \xy\ = c.

Let M  = x2y3 — 1 /( l + and N  = x3y2 so that My  3xzy2 = Nx. From
V = x2y3 — 1/ (̂ 1 + 9:c2) wo obtain /  = ^x^y3 — ^ arctan(3a:) + h(y), h.'(y) =  0, and h(y) =  0. 
A solution is x3y3 — arctan(3a:;) = c.

Let M  = —2y and N = by — 2x so that My = — 2 = Nx. From fx = —2y wc obtain /  = —2xy+h(y).
V(y) = 5y, and h(y) =  |y2. A solution is —2xy + %y2 =  c.

Let M  = tana; — siuicsiny Mid N  =  cosx cosy so that My =  — sin.rcosy = Nx. Rrom 
tx -- tanx — sin a: siny wc obtain /  = In | sec a* | + cos x sin y + h(y), h'(y) =  0, and h(y) =  0. A 
solution is In | seca;| + cos a: siny = c.

Let M  = 2y sin x cos x — y + 2y2exy~ and N  = —x + sin2 x + 4xyexy~ so that

My = 2 sin a: cos .x — 1 + 4xy3exy2 + 4yexy2 — Nx.
t o 2

From fx = 2ysinaj cos a; — y + 2y2exy~ we obtain /  =  y sin x — xy + 2exy + h(y), h'(y) = 0. and 
h(y) = 0. A solution is y sin2 x — xy + 2exy2 — c.

Let M  — 4t3y —15̂ 2 —y and N =  t4 + 3y2 — t so that M tJ = At3 — 1=  Nt. From f t = At3y — 1512 — y
wc obtain /  = t4y-bt3 —ty + h(y), h?(y) = 3y2, and h(y) — y?>. A solution is tS j-ot3-ty+y3 = c.

Let M  =  1/t + l/ t2 — y/ (l2 + y2j  and N = ye!/+tf (t2 + y2j so that My = (y2 — t2̂j j  (t2 + y2̂  =

-Yf. From f) = 1/t + I ft2 — yj (t2 + y2̂  we obtain /  = In\t\ — ^ - arctan + h(y), h'(y) =  yey,
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Exercises 2.4 Exact Equations

and h(y) — yey — ey. A solution is

In \t\ — ^ — arctan + yey —ey = c.

21. Let M  =  x 2+2xy+y2 and N = 2xy+x2 —1 so that My = 2(x+y) =  Nx. From fx =  x2+2xy+y2 w-.1
obtain /  =  ^£3+x2y+xy2+/?. (y), h\y) — —1, and h(y) — —y. The solution is ^xli+x2y+xy2—y - c
If 2/(1) =  1 then c = 4/3 and a solution of the initial-value problem is + x2y + xy2 — y =  | .

22. Let M — ex + y and N  =  2 + x + ye?; so that- My = 1 = Nx. From fx = ex + y we obtair. 
f  =  ex + xy + h(y). h'(y) =  2 + ye1', and /i(y) =  2y + yey — y. The solution i-
ex + xy + 2y + yev — ev = c. If y(0) = 1 then c =  3 and a solution of the initial-value prob
lem is ex + xy + 2y + yey — ey = 3.

23. Let M  = Ay + 2t — 5 and N =  6y + At — 1 so that My = A = Nt- From ft =  Ay + 2t — 5 we obtai:. 
f  = Aty+t2— ht+h(y). h'(y) — 6y — 1, and h(y) =  3y2 — y. The solution is Aty+t2 — 5t+3y2 — y =  <
If y(—1) = 2 then c =  8 and a solution of the initial-value problem is Aty + t2 — bt + 3y2 —y =  8.

24. Let M  =  £/2y4 and N = (3y2 — i2) /y° so that My =  —2t/y5 = Nt. From ft = t/2y4 wc obtai:.
t2 3 3 t2 3

+ % ) , h\y) = p ,  and h(y) =  The solution is 4^4 “  2̂ 2

_____3 _ _ _ 5
4y4 2y2 A

25. Let M  = y2 cos x — 3x2y —2x and N  =  2y sin a;- — £3 + In y so that My = 2y cos x — 3:r;2 = Arx- Fror.. 
fx =  y2 cos a: — 3x2y — 2ar we obtain /  = y2 sin x —x^y — x2 + h(y). h!(y) =  In y, and h(y) =  y In y — t.
The solution is y2 sin x — x^y — x2 + y In y —y = c. If y(0) = e then c =  0 and a solution of tl:- 
initial-value problem is y2 sin x — x^y — x2 + y lny — y = 0.

26. Let M  = y1 + y sin x and N = 2xy — cos x —1/ 1̂ + y2̂  so that My = 2y + sinrr = Nx. Fron. 

fx = y2 + ysin.x we obtain /  =  xy2 — ycosx + h(y), h'(y) =   ̂ 9 , and h(y) =  — tan-1 y. Tk-

solution is xy2 — ycosx — tan_1y = c. If y(0) = 1 then c =  —1 —7t/4 and a solution of tli-
7r

initial-value problem is xy2 — ycosx — tan-1 y = -1 — - .

27. Equating My =  3y2 -I- 4toy3 and Nx =  3y2 + 40:cy3 we obtain k = 10.

28. Equating My =  18xy2 — siny and Nx = Akxy2 — siny we obtain k — 9/2.

29. Let M  =  —x2y2 sin x + 2xy2 cosx and N = 2x2y cos x so that My = —2x2ysm x + Axy cos x — A' 
From fy = 2x2y cos x we obtain /  =  x2y2 cos x + h(y), h'(y) = 0, and h(y) =  0. A solution r  
the differential equation is x2y2 cos x = c.

30. Let M  = (x2 + 2xy — y2) / (x2 + 2xy + y2) and N = [y2 -f- 2xy — x2̂  / [y2 + 2xy + x2̂j so thtf 

My - —4xy/(x + y)3 = Nx. From fx = (x2 + 2xy + y2 — 2y2̂) / (x + y)2 we obtain

f  =  + h (y)-, ti(v) =  7^ and Kv) =  -7^2  The solution is o  _ 0̂ 2 = c- y(!) = 1 the:

c =  —5/4 and a solution of the initial-value problem is 4 2
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50 ● CHAPTER 2 FIRST-ORDER DIFFERENTIAL EQUATIONS

REMARKS

(i) As we have just seen in Example 5, some simple functions do not possess
an antiderivative that is an elementary function. Integrals of these kinds of
functions are called nonelementary. For example, and are
nonelementary integrals. We will run into this concept again in Section 2.3.

(ii) In some of the preceding examples we saw that the constant in the one-
parameter family of solutions for a first-order differential equation can be rela-
beled when convenient. Also, it can easily happen that two individuals solving the
same equation correctly arrive at dissimilar expressions for their answers. For
example, by separation of variables we can show that one-parameter families of
solutions for the DE (1 � y2) dx � (1 � x2) dy � 0 are

.

As you work your way through the next several sections, bear in mind that fami-
lies of solutions may be equivalent in the sense that one family may be obtained
from another by either relabeling the constant or applying algebra and trigonom-
etry. See Problems 27 and 28 in Exercises 2.2.

arctan x � arctan y � c    or    
x � y

1 � xy
� c

�sin x2 dx�x
3 e�t2

dt

EXERCISES 2.2 Answers to selected odd-numbered problems begin on page ANS-1.

In Problems 1–22 solve the given differential equation by
separation of variables.

1. 2.

3. dx � e3xdy � 0 4. dy � (y � 1)2dx � 0

5. 6.

7. 8.

9. 10.

11. csc y dx � sec2x dy � 0

12. sin 3x dx � 2y cos33x dy � 0

13. (ey � 1)2e�y dx � (ex � 1)3e�x dy � 0

14. x(1 � y2)1/2 dx � y(1 � x2)1/2 dy

15. 16.

17. 18.

19. 20.
dy

dx
�

xy � 2y � x � 2

xy � 3y � x � 3

dy

dx
�

xy � 3x � y � 3

xy � 2x � 4y � 8

dN

dt
� N � Ntet�2dP

dt
� P � P2

dQ

dt
� k(Q � 70)

dS

dr
� kS

dy

dx
� �2y � 3

4x � 5�
2

y ln x
dx

dy
� �y � 1

x �
2

exy
dy

dx
� e�y � e�2x�ydy

dx
� e3x�2y

dy

dx
� 2xy2 � 0x

dy

dx
� 4y

dy

dx
� (x � 1)2dy

dx
� sin 5x

21. 22.

In Problems 23–28 find an explicit solution of the given
initial-value problem.

23.

24.

25.

26.

27.

28. (1 � x4) dy � x(1 � 4y2) dx � 0, y(1) � 0

In Problems 29 and 30 proceed as in Example 5 and find an
explicit solution of the given initial-value problem.

29.

30.

31. (a) Find a solution of the initial-value problem consisting
of the differential equation in Example 3 and the ini-
tial conditions y(0) � 2, y(0) � �2, and .y(1

4) � 1

dy

dx
� y 2 sin x2,  y(�2) � 1

3

dy

dx
� ye�x2

,  y(4) � 1

11 � y2 dx � 11 � x2 dy � 0, y(0) �
13

2

dy

dt
� 2y � 1, y(0) � 5

2

x2 dy

dx
� y � xy, y(�1) � �1

dy

dx
�

y2 � 1

x2 � 1
, y(2) � 2

dx

dt
� 4(x2 � 1), x(�>4) � 1

(ex � e�x)
dy

dx
� y2dy

dx
� x11 � y2
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Exercises 2.2
Separable Variables

 v of the following problems we will encov,nter an expression of the form, In j<7(y)| = f(x) + c. To
d(y) we exponentiate both sides of the equation. This yields |<7(y)| = eAx)+c = e,:e / ^  which

- 9iy) — ±ece.f(x\ Letting ci =  we obtain g(y) = c\g^ x\

:; :n dy =  sin 5.x dx we obtain y — — | cos 5x + c.

;:m dy = (x + l )2dx we obtain y ~ j(x  -f 1)  ̂+ c.

: : m dy =  —e_3x dx we obtain y =  |e-3x + c.

1  J  7 i x  • 1  1. m ----—p dy = dx we obtain-----= x + cory =  l —
{y - 1)2 y - 1 ' x + c
1 4':m - dy = — dx we obtain In \y\ = 4 In I#I + c or y = c\x4.
y %
l i . i: .in —~dy = —2x dx we obtain —  -—x2 + c or y — —7;

c.

y* y “ z2 + ci
,':>m e~2ydy =  e?xdx we obtain 3e~‘2y + 2(/jX = c.

: jiii yevdy — (e~x + e~'ix̂  dx we obtain yey — eu + e~x + = c.

:: :n (y + 2 + - J dy =  x2 hi x dx we obtain 7- + 2y + In |yj = ~r- In jx| — i;r'
V V J 2 3 9

1 ; 1 u+ . 2 1: 7̂ ---TT7>dy —7---- —77dx we obtain ----- = ----- hc.(2y + 3)2 J (4* + 5)2 2j/ + 3 4x + 5
1 1

':m i---dy = ----h— dx or sin ydy =  - cos2x dx = — i ( l  + cos2x) dx we obtaincsc y ’ scc^x z
:-os y =  —\x — | sin 2x + c or 4 cos y = 2x + sin 2x + ci.

s m  3 'v
•C'in 2y dy = --- 17—  dx or 2y dy = — tan 3x sec2 3.x dx we obtain y2 — —I  sec2 3.x + c.cos'13.x ' 0

ey —ex
j in ----- k dy = ------o fix wc obtain —(e,J + 1) = A(ex + 1) + c.

(ev + l Y (ex + 1) 2V
V x 7 1 ( 9\ V2 / o\ 1/2:: „-m--- :— 7777dy = ------^ dx we obtain 1 + y =  (1 + x ) + c.

(1 + y2) (l+.x2)1/2 V } . V }

r: .'in — dS = A'dr we obtain S = cekr.

1 :an n   ̂ 7 n ^  = ^ we °^ta^L h1 IQ — 70| = kt + c or Q — 70 = ciefct.v̂>r / U
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Exercises 2.2 Separable Variables

17. From p   ̂j^ d P  — ^   ̂ ^ dP = dt we obtain In |P| — In |1 —P\ = t + c so that In 

t + c or --- — = ci e(. Solving for P we have P =
1 - P

1 - P  1 b l+ c ie* '

18. From c/Ar = ffe*"1"2 — l) dt we obtain In |Ar| = £ef+2 — e<+2 —t + c or Ar = Cie1

y ~~2 :e —1 / 5 \ / 5 \
19. From --- -dy = ---- dx or 1---- - dy = (1 ----- - ) dx we obtain y — 5 In \y + 31 =

y + Z x + 4 V y + 3/ V x + 4/
' z  +  4 x  0

x — 5 In |x + 4| + c or I - — j  = c\ex y.

20. From dy =  ^ dx or ( 1 H-- ) dy = (l-{---- \ dx we obtain y + 2 In \y — 11 =
y — 1 ' x - 3 \ y — l j  \ x - 3 Jy- 1  x — 3 \ y - 1

x 4- 5 In Lt — 31 + c or ~ — ^  = c\ec~v.(a: — 3)°
1  _ fx 2 \21. From x dx = j  ̂  ̂dy we obtain 5 a;2 = sin-1 y + c or y = sin + c i j .

1 1 ex 1 122. From — dy = —---— dx - 7— — r dx we obtain —  - tan-1 ex + c or y =
y2 ex + e x (ex)2 + 1 y ' tan 1ex + c '

23. From - — dx = Adt we obtain tan-1x =  At + c. Using x(tt/A) =  1 we find c = —3ir/A. The
•1 | 1

solution of the initial-value problem is tan-1 x =  At — or x = tan (̂ At —

1 , 1 , 1 / 1 1 \ , 1 / 1 1 \ ,24. From — - ay — —̂— - dx or - --------- - \ dy = - ---------- dx we obtain
y2- l  :r2 —1 2 \y-] y + 1 /  2 Var —1 x + l j

In (y —1| — hi |y + 1| = In |a: — lj — In la: + 11 + In c or ^ | = — — — • Using y(2) =  2 we find
y  i 1 ,X r  J-

y —1 x —1c = 1. A solution of the initial-value problem is ~ ̂  ^  - or y = x.

25. From - dy = -—rj— dx = dx we obtain In \y\ =  — i  — In |x] = c or xy = cie~1/x. Using
l j J/ \  <!  iX J »./;

y(—l) = —1 we find c\ ~ e-1. The solution of the initial-value problem is xy =  or
y = jx.

I26. From --- — dy =  dt we olrf.ain —g In |1— 2y| = t  + c or 1 — 2y =  c\e~2t. Using y(0) =  5/2 wc fine
i— Zy

c-j = —A. The solution of the initial-value problem is 1 —2y = —4e-2* or y -- 2e~ 2t + ^ .

27. Separating variables aud integrating we obtain
dx dy . _! . _ j- () and sin x — sm y = c.

V l- X 2 y/l - y2
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Exercises 2.2 Separable Variables

Setting x = 0 and y =  V3/2 we obtain c — —7r/3. Thus, an implicit solution of the initial-value 
problem is sin-1 x—sin-1 y = — tt/3. Solving for y and using an addition formula from trigonometry, 
we get

. 7T x \/3 V 1 —x2(* —i \ r  o *  ̂ ^
;y =  s m ^ s in  x  +  -  j  =  X cos -  +  y  1 -  x /  s in  -  =  -  +

—xFrom --- ——77dy = ------~ dx we obtain
1 + (2y) J 1 + (*2)2

^ tan-1 2y = — ̂  tan" 1 :c2 + c or tan-1 2y + tan- 1x2 = ci. 
z  z

Using y(l) = 0 we find c\ = 7r/4. Thus, an implicit solution of the initial-value problem is 
tail-1 2y + tan-1 z2 = tt/4 . Solving for y and using a trigonometric identity we get

2y = tan — tan ;r

1 /  7t _ i  9\
y — - tan I — — tan x J

1 tan | — tan(tan-1 x2)
2 1+ tan ̂  tan(tan_1 x2)

1 1 —x2
2 1 + x2 '

Separating variables, integrating from 4 to and using t as a dummy variable of integration gives

J4 y dt Ja

lny(̂ f4 = J4 e~ t2(it

\ny(x) — lny(4) = j  e~r dt
Ja

Using the initial condition we have

lny(a:) =  lny(4) +  jf e"f2dt =  In 1 +  e^'dt =  eT^ dt.
Thus,

y(x) =  eh e 1
9

39
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3.19 Questions with Solutions on Chapter 3.1, Cooling
Warming and Mixture Applications



Using this age, determine what percentage of the origi-
nal amount of C-14 remained in the cloth as of 1988.

Newton’s Law of Cooling/Warming

13. A thermometer is removed from a room where the
temperature is 70° F and is taken outside, where the air
temperature is 10° F. After one-half minute the ther-
mometer reads 50° F. What is the reading of the ther-
mometer at t � 1 min? How long will it take for the
thermometer to reach 15° F?

14. A thermometer is taken from an inside room to the out-
side, where the air temperature is 5° F. After 1 minute
the thermometer reads 55° F, and after 5 minutes it
reads 30° F. What is the initial temperature of the inside
room?

15. A small metal bar, whose initial temperature was 20° C,
is dropped into a large container of boiling water. How
long will it take the bar to reach 90° C if it is known that
its temperature increases 2° in 1 second? How long will it
take the bar to reach 98° C?

16. Two large containers A and B of the same size are filled
with different fluids. The fluids in containers A and B
are maintained at 0° C and 100° C, respectively. A small
metal bar, whose initial temperature is 100° C, is low-
ered into container A. After 1 minute the temperature
of the bar is 90° C. After 2 minutes the bar is removed
and instantly transferred to the other container. After
1 minute in container B the temperature of the bar rises
10°. How long, measured from the start of the entire
process, will it take the bar to reach 99.9° C?

17. A thermometer reading 70° F is placed in an oven
preheated to a constant temperature. Through a glass
window in the oven door, an observer records that the
thermometer reads 110° F after minute and 145° F
after 1 minute. How hot is the oven?

18. At t � 0 a sealed test tube containing a chemical is
immersed in a liquid bath. The initial temperature of
the chemical in the test tube is 80° F. The liquid bath
has a controlled temperature (measured in degrees
Fahrenheit) given by Tm(t) � 100 � 40e�0.1t, t � 0,
where t is measured in minutes.

(a) Assume that k � �0.1 in (2). Before solving the
IVP, describe in words what you expect the temper-
ature T(t) of the chemical to be like in the short
term. In the long term.

(b) Solve the initial-value problem. Use a graphing util-
ity to plot the graph of T(t) on time intervals of var-
ious lengths. Do the graphs agree with your
predictions in part (a)?

19. A dead body was found within a closed room of a house
where the temperature was a constant 70° F. At the time
of discovery the core temperature of the body was
determined to be 85° F. One hour later a second mea-

1
2
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surement showed that the core temperature of the body
was 80° F. Assume that the time of death corresponds to
t � 0 and that the core temperature at that time was
98.6° F. Determine how many hours elapsed before the
body was found. [Hint: Let t1 � 0 denote the time that
the body was discovered.]

20. The rate at which a body cools also depends on its
exposed surface area S. If S is a constant, then a modifi-
cation of (2) is

where k � 0 and Tm is a constant. Suppose that two cups
A and B are filled with coffee at the same time. Initially,
the temperature of the coffee is 150° F. The exposed
surface area of the coffee in cup B is twice the surface
area of the coffee in cup A. After 30 min the temperature
of the coffee in cup A is 100° F. If Tm � 70° F, then what
is the temperature of the coffee in cup B after 30 min?

Mixtures

21. A tank contains 200 liters of fluid in which 30 grams of
salt is dissolved. Brine containing 1 gram of salt per liter
is then pumped into the tank at a rate of 4 L/min; the
well-mixed solution is pumped out at the same rate. Find
the number A(t) of grams of salt in the tank at time t.

22. Solve Problem 21 assuming that pure water is pumped
into the tank.

23. A large tank is filled to capacity with 500 gallons of pure
water. Brine containing 2 pounds of salt per gallon is
pumped into the tank at a rate of 5 gal/min. The well-
mixed solution is pumped out at the same rate. Find the
number A(t) of pounds of salt in the tank at time t.

24. In Problem 23, what is the concentration c(t) of the salt
in the tank at time t? At t � 5 min? What is the concen-
tration of the salt in the tank after a long time, that is, as
t : �? At what time is the concentration of the salt in
the tank equal to one-half this limiting value?

25. Solve Problem 23 under the assumption that the solu-
tion is pumped out at a faster rate of 10 gal/min. When
is the tank empty?

26. Determine the amount of salt in the tank at time t in
Example 5 if the concentration of salt in the inflow is
variable and given by cin(t) � 2 � sin(t�4) lb/gal.
Without actually graphing, conjecture what the solution
curve of the IVP should look like. Then use a graphing
utility to plot the graph of the solution on the interval
[0, 300]. Repeat for the interval [0, 600] and compare
your graph with that in Figure 3.1.4(a).

27. A large tank is partially filled with 100 gallons of fluid
in which 10 pounds of salt is dissolved. Brine containing

dT

dt
� kS(T � Tm),
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Exercises 3.1 Linear Models

15. We use the fact that the boiling temperature for water is 100° C. Now assume that dT/dt =
k(T - 100) so that T = 100 + cekt. If T(0) = 20° and T(l) =  22°, then c =  -80 and k = 
ln(39/40) —0.0253. Then T(t) =  100 — 80e-0 0253t, and when T =  90, t =  82.1 seconds. 
T(t) =  98° then t =  145.7 seconds.

16. The differential equation for the first container is dT\jdt = k](Ti — 0) =  k\Ti, whose solution 
Ti(t) = cieklt. Since Xj (0) =  100 (the initial temperature of the metal bar), we have 100 -c\ an 
Ti(t) -- 100efclf. After 1 minute, T i(l) = lOOe*1 =  90°C, so h  =  In0.9 and l\(t) =  100e'hl° 
After 2 minutes, T\(2) =  100e21ll° 9 = 100(0.9)2 = 81°C.

The differential equation for the second container is dT^jdt =  hi (Th — 100), whose solution 
T2(t) - 100+C2.efc2<. When the metal bar is immersed in the second container, its initial temperatir. -
is T2(0) = 81, so

T2(0) = 100 + c2ek' ^  =  100 + c2 = 81

and e2 = —19. Thus, T2(i) = 100 —I9ek2t. After 1 minute in the second tank, the temperature 
the metal bar is 91°C. so

jT2( 1) = 100 - 19e*2 = 91

efca = JL
6 19

and 72(f) =  100 — 19ef lnC9/19). Setting T^it) - 99.9 we have

100 - 19enn(9/19) = 99.9

f  111(9/ 19) _
~ 19

t  =  M E M . 7 ,0 2 .
ln(9/19)

Thus, from the start of the “double dipping” process, the total time until the bar reaches 99.9; 
in the second container is approximately 9.02 minutes.

17. Using separation of variables to solve dT/dt — k(T —Trn) we get T(t) - Tm + cekt. Using T(0) - ' 
we find c =  70 —Tm, so T(t) = Tm + (70 —Tm)ekt. Using the given observations, we obtain

r ( i )  =  Tm + (70 -  Tm)ekl2 = 110
T ( l ) = T m + ( 7 0 - T m)e* =  145.
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Exercises 3.1 Linear Models

Then, from the first equation, ek/2 —(110 —Tm)/{70 —Tm) and

110 -Tm
70 -Tm

(110 -Tmf
70 - Tm.

145 -Tm
70 - Trn

= 145-Ti„

12100 - 220Tm + T2, = 10150 - 215T, _  rpZ  
Til ' J-m

Tm = 390.

The temperature in the oven is 390°.

(a) The initial temperature of the bath is Tm(0) — 60°, so in the short term the temperature of the 
chemical, which starts at 80°, should decrease or cool. Over time, the temperature of the bath 
will increase toward 100° since e-tUf decreases from 1 toward 0 as t increases from 0. Thus, 
in the long term, the temperature of the chemical should increase or warm toward 100°.

;b) Adapting the model for Newton’s law of cooling, we have T
dT

= -0.1(T- 100 + 40e-(m), T(0) = 80.
dt

Writing the differential equation in the form 
dT
^  + 0.1T =  10-4e“ait
dt

we sec that it is linear with integrating factor e^Q'ldt = eQ lt. Tims

d , o.nT\ =  i 0eo.u _ 4 
dt1 1

and
eo.uT =  iooeau - 4 t + c

T(t) =  100 - Ue~0At + ce~0M.

Now T(0) =  80 so 100 + c — 80. c =  —20 and

T(t) = 100 - 4«e-0-lt - 20e_o lt = 100 - (At + 20)e_(Ut.

The thinner curve verifies the prediction of cooling followed by warming toward 100°. The 
wider curve shows the temperature Tm of the liquid bath.

" .Ti.tifying Tm =  70, the differential equation is dT/dt = k{T — 70). Assuming T(0) =98.6 and 
-..rat.ing variables we find T(t) = 70 + 2S.9ekt. If t\ > 0 is the time of discovery of the body, then

T(t1) = 70 + 28.6ektl = 85 and T(tr + 1) = 70 + 28.6efĉ 1+1) = 80.
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Therefore ektl — 15/28.6 and = 10/28.6. This implies
k 10 _hu 10 28.6 2

e "  28.6 C _  2&6 ' ~15~ _  3 ’
so k = In | ~ —0.405465108. Therefore

t\ = 7 hi «  1.5916 «  1.6.
k 28.6

Death took place about 1.6 hours prior to the discovery of the body.

20. Solving the differential equation dT/dt = kS(T — Tm) subject to T(0) = To gives

T(t) = Tm + (To - Tm)ekSt.

The temperatures of the coffee in cups A and B are, respectively,

Ta  (t) = 70 + 80efc5* and TD(t) =  70 + 80e2kSt.

Then T4(30) =  70 + S0em s  =  100, which implies e30kS = §. Hence

Tb (.30) - 70 + 80ae()kS = 70 + 80 (em 9 ) 2

= 70 + 80 ( J )  = 70 + 80 = 81.25°F.

21. From dA/dt = 4 — A/50 we obtain A — 200 + ce-*/50. If -4.(0) = 30 then c. = —170 
A = 200 - 170e-t/50.

22. From dA/dt =  0 — .4/50 we obtain A —ce~t//o . If A(0) = 30 then c =  30 and A =  30e-t/5l).

23. From dA/dt = 10 — A/100 wc obtain A = 1000 + ce-*/100. If .4(0) = 0 then c = —1000 
A(t) =  1000 - lOOOe-*/100.

24. From Problem 23 the number of pounds of salt in the tank at time t is A(t) = 1000 — 1000e-( 
The concentration at time t is c(t) =  Aft)/500 = 2 — 2e“*/100. Therefore c(5) = 2 —2e_1/" 
0.0975 lb/'gal and lim*_>00c(t) —2. Solving c(t) = 1 = 2 —2e-*/100 for t we obtain t =  100 hi
69.3 min.

25. From
dA _ 10A 2A
dt ~ 500 — (10 — 5)£ _  100 - t

we obtain A =  1000 — lOt + c(100 —t)2. If A(0) = 0 then c = — ̂  . The tank is empty in 
minutes.

26. With Cin(t) =  2 + sin(£/4) lb/gal, the initial-value problem is

^  + I5o'4 =  6 + 3sini ’ '4(°) = 5a

90
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differential equation is linear with integrating factor eJ dt/im = ef/ll,t\ so

:[e‘/ ,0<U(*)] = (e + S sm j) ^ ’00
_d 
dt1

e>tm A(t) = 600//1”  + ^2 e /100 sin *-
313 4

3750
313

,//1 oocos - + C.

. 1 5 0  . t 3750 t _/./inn A(t) =  600 + —  sm-4 - —  caS-+ce-'' .
ing t = 0 and A = 50 we have 600 — 3750/313 + c = 50 and c =  —168400/313. Then

4/^ 150 • * 3750 *
A m = m  + 3 i3Sm4 - l i u CX4

168400
313

graphs on [0,300; and [0,600] below show the effect of the sine function in the input when 
pared with the graph in Figure 3.1.4(a) in the text.

am

dA _  o 4A
~dt ~ _  100 + (6 - 4)i

= 3 2A
50T t

jbtain A = 50 + 1 + c(50 + 1)~2. If A(Q) - 10 then c = -100.000 and A(30) =  64.38 pounds.

Initially the tank contains 300 gallons of solution. Since brine is pumped in at a rate of
3 gal/min and the mixture is pumped out at a rate of 2 gal/min. the net. change is an increase 
of 1 gal/min. Thus, in 100 minutes the tank will contain its capacity of 400 gallons.

The differential equation describing the amount of salt in the tank is A'(t) = 6 — 2^4/(300 4-t)
with solution

A{t) =  600 + 21- (4.95 x 107)(300 + 1)~2, 0 < t <  100,

as noted in the discussion following Example 5 in the text. Thus, the amount of salt in the 
tank when it overflows is

4(100) = 800 - (4.95 x 107)(400)~2 = 490.625 lbs.

When the tank is overflowing the amount of salt in the tank is governed by the differential
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3.20 Questions with Solutions on Chapter 4.3, Reduction
of order



By choosing c1 � 1 and c2 � 0, we find from y � u(x)y1(x) that a second solution of
equation (3) is

(5)

It makes a good review of differentiation to verify that the function y2(x) defined in
(5) satisfies equation (3) and that y1 and y2 are linearly independent on any interval
on which y1(x) is not zero.

EXAMPLE 2 A Second Solution by Formula (5)

The function y1 � x2 is a solution of x2y� � 3xy� � 4y � 0. Find the general solu-
tion of the differential equation on the interval (0, �).

SOLUTION From the standard form of the equation,

we find from (5)

.

The general solution on the interval (0, �) is given by y � c1y1 � c2y2; that is,
y � c1x2 � c2x2 ln x.

REMARKS

(i) The derivation and use of formula (5) have been illustrated here because this
formula appears again in the next section and in Sections 4.7 and 6.2. We use (5)
simply to save time in obtaining a desired result. Your instructor will tell you
whether you should memorize (5) or whether you should know the first princi-
ples of reduction of order.

(ii) Reduction of order can be used to find the general solution of a nonhomo-
geneous equation a2(x)y� � a1(x)y� � a0(x)y � g(x) whenever a solution y1 of
the associated homogeneous equation is known. See Problems 17–20 in
Exercises 4.2.

� x2 � dx

x
� x2 ln x

; e3�d x /x � eln x3
� x3y2 � x2 � e3�dx /x

x4 dx

y� �
3

x
y� �

4

x2 y � 0,

y2 � y1(x) � e��P(x) dx

y1
2(x)

dx.
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EXERCISES 4.2 Answers to selected odd-numbered problems begin on page ANS-4.

In Problems 1–16 the indicated function y1(x) is a solution
of the given differential equation. Use reduction of order or
formula (5), as instructed, to find a second solution y2(x).

1. y� � 4y� � 4y � 0; y1 � e2x

2. y� � 2y� � y � 0; y1 � xe�x

3. y� � 16y � 0; y1 � cos 4x

4. y� � 9y � 0; y1 � sin 3x

5. y� � y � 0; y1 � cosh x

6. y� � 25y � 0; y1 � e5x

7. 9y� � 12y� � 4y � 0; y1 � e2x/3

8. 6y� � y� � y � 0; y1 � ex/3

9. x2y� � 7xy� � 16y � 0; y1 � x4

10. x2y� � 2xy� � 6y � 0; y1 � x2

11. xy� � y� � 0; y1 � ln x

12. 4x2y� � y � 0; y1 � x1/2 ln x

13. x2y� � xy� � 2y � 0; y1 � x sin(ln x)

14. x2y� � 3xy� � 5y � 0; y1 � x2 cos(ln x)

Note that you will laugh

The questions on Reduction from1-14/ y_1 is not
needed :))))) since you can do them using
undetermined method or cauchy-euler.

The book is doing reduction before undetermined and
before Cauchy-Euler

Question 15/Yes y1 is needed

Question 16/ y_1 is not needed.
Anyway/ Practice using reduction

use y^\\ + q(x) y^\ + p(x)y = 0/ given y_1

First find L = e^{integral -q(x) dx}

y_2 = y_1 (Integral (L / y_1^2) dx)
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15. (1 � 2x � x2)y� � 2(1 � x)y� � 2y � 0; y1 � x � 1

16. (1 � x2)y� � 2xy� � 0; y1 � 1

In Problems 17–20 the indicated function y1(x) is a solution
of the associated homogeneous equation. Use the method
of reduction of order to find a second solution y2(x) of the
homogeneous equation and a particular solution of the given
nonhomogeneous equation.

17. y� � 4y � 2; y1 � e�2x

18. y� � y� � 1; y1 � 1

19. y� � 3y� � 2y � 5e3x; y1 � ex

20. y� � 4y� � 3y � x; y1 � ex

Discussion Problems

21. (a) Give a convincing demonstration that the second-
order equation ay� � by� � cy � 0, a, b, and c con-
stants, always possesses at least one solution of the
form , m1 a constant.

(b) Explain why the differential equation in part (a)
must then have a second solution either of the form

y1 � em1x
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or of the form , m1 and m2

constants.

(c) Reexamine Problems 1–8. Can you explain why the
statements in parts (a) and (b) above are not
contradicted by the answers to Problems 3–5?

22. Verify that y1(x) � x is a solution of xy� � xy� � y � 0.
Use reduction of order to find a second solution y2(x) in
the form of an infinite series. Conjecture an interval of
definition for y2(x).

Computer Lab Assignments

23. (a) Verify that y1(x) � ex is a solution of 

xy� � (x � 10)y� � 10y � 0.

(b) Use (5) to find a second solution y2(x). Use a CAS to
carry out the required integration.

(c) Explain, using Corollary (A) of Theorem 4.1.2, why
the second solution can be written compactly as

.y2(x) � �
10

n�0

1

n!
xn

y2 � xem1xy2 � em2 x

HOMOGENEOUS LINEAR EQUATIONS

WITH CONSTANT COEFFICIENTS

REVIEW MATERIAL
● Review Problem 27 in Exercises 1.1 and Theorem 4.1.5
● Review the algebra of solving polynomial equations (see the Student Resource 

and Solutions Manual)

INTRODUCTION As a means of motivating the discussion in this section, let us return to first-
order differential equations—more specifically, to homogeneous linear equations ay� � by � 0,
where the coefficients a � 0 and b are constants. This type of equation can be solved either by
separation of variables or with the aid of an integrating factor, but there is another solution method,
one that uses only algebra. Before illustrating this alternative method, we make one observation:
Solving ay� � by � 0 for y� yields y� � ky, where k is a constant. This observation reveals the
nature of the unknown solution y; the only nontrivial elementary function whose derivative is a
constant multiple of itself is an exponential function emx. Now the new solution method: If we substi-
tute y � emx and y� � memx into ay� � by � 0, we get

Since emx is never zero for real values of x, the last equation is satisfied only when m is a solution or
root of the first-degree polynomial equation am � b � 0. For this single value of m, y � emx is a
solution of the DE. To illustrate, consider the constant-coefficient equation 2y� � 5y � 0. It is not
necessary to go through the differentiation and substitution of y � emx into the DE; we merely have
to form the equation 2m � 5 � 0 and solve it for m. From we conclude that is a
solution of 2y� � 5y � 0, and its general solution on the interval (��, �) is 

In this section we will see that the foregoing procedure can produce exponential solutions for
homogeneous linear higher-order DEs,

(1)

where the coefficients ai, i � 0, 1, . . . , n are real constants and an � 0.

any(n) � an�1y(n�1) � 	 	 	 � a2y� � a1y� � a0y � 0,

y � c1e
�5x/2.
y � e�5x/2m � �5

2

amemx � bemx � 0    or    emx (am � b) � 0.

4.3
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Nadeen Tarek

120



121



122



123



124



125



126



127



128



129



130



131



132



133



134



135



136



TABLE OF CONTENTS 137

3.22 Questions with Solutions, Review Exam II
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liter per min. The solution is pumped out at rate 3 liter per min. Find A(t)/ amount of sugar in the tank.
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3.23 Questions with Solutions, Review Final Exam
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EXERCISES 5.1 Answers to selected odd-numbered problems begin on page ANS-7.

5.1.1 SPRING/MASS SYSTEMS: 
FREE UNDAMPED MOTION

1. A mass weighing 4 pounds is attached to a spring whose
spring constant is 16 lb/ft. What is the period of simple
harmonic motion?

2. A 20-kilogram mass is attached to a spring. If the fre-
quency of simple harmonic motion is 2�p cycles/s,
what is the spring constant k? What is the frequency
of simple harmonic motion if the original mass is
replaced with an 80-kilogram mass?

3. A mass weighing 24 pounds, attached to the end of
a spring, stretches it 4 inches. Initially, the mass is
released from rest from a point 3 inches above the equi-
librium position. Find the equation of motion.

4. Determine the equation of motion if the mass in
Problem 3 is initially released from the equilibrium
position with a downward velocity of 2 ft /s.

5. A mass weighing 20 pounds stretches a spring 6 inches.
The mass is initially released from rest from a point
6 inches below the equilibrium position.

(a) Find the position of the mass at the times t � p�12,
p�8, p�6, p�4, and 9p�32 s.

(b) What is the velocity of the mass when t � 3p�16 s?
In which direction is the mass heading at this
instant?

(c) At what times does the mass pass through the equi-
librium position?

6. A force of 400 newtons stretches a spring 2 meters.
A mass of 50 kilograms is attached to the end of the
spring and is initially released from the equilibrium
position with an upward velocity of 10 m/s. Find the
equation of motion.

7. Another spring whose constant is 20 N/m is suspended
from the same rigid support but parallel to the
spring/mass system in Problem 6. A mass of 20 kilo-
grams is attached to the second spring, and both masses
are initially released from the equilibrium position with
an upward velocity of 10 m/s.

(a) Which mass exhibits the greater amplitude of
motion?

(b) Which mass is moving faster at t � p�4 s? At
p�2 s?

(c) At what times are the two masses in the same
position? Where are the masses at these times? In
which directions are the masses moving?

8. A mass weighing 32 pounds stretches a spring 2 feet.
Determine the amplitude and period of motion if the
mass is initially released from a point 1 foot above the

equilibrium position with an upward velocity of 2 ft/s.
How many complete cycles will the mass have com-
pleted at the end of 4p seconds?

9. A mass weighing 8 pounds is attached to a spring. When
set in motion, the spring/mass system exhibits simple
harmonic motion. Determine the equation of motion if
the spring constant is 1 lb/ft and the mass is initially
released from a point 6 inches below the equilibrium
position with a downward velocity of . Express the
equation of motion in the form given in (6).

10. A mass weighing 10 pounds stretches a spring foot.
This mass is removed and replaced with a mass of
1.6 slugs, which is initially released from a point foot
above the equilibrium position with a downward veloc-
ity of . Express the equation of motion in the form
given in (6). At what times does the mass attain a dis-
placement below the equilibrium position numerically
equal to the amplitude?

11. A mass weighing 64 pounds stretches a spring 0.32 foot.
The mass is initially released from a point 8 inches
above the equilibrium position with a downward veloc-
ity of 5 ft /s.

(a) Find the equation of motion.

(b) What are the amplitude and period of motion?

(c) How many complete cycles will the mass have com-
pleted at the end of 3p seconds?

(d) At what time does the mass pass through the equi-
librium position heading downward for the second
time?

(e) At what times does the mass attain its extreme
displacements on either side of the equilibrium
position?

(f ) What is the position of the mass at t � 3 s?

(g) What is the instantaneous velocity at t � 3 s?

(h) What is the acceleration at t � 3 s?

(i) What is the instantaneous velocity at the times when
the mass passes through the equilibrium position?

(j) At what times is the mass 5 inches below the equi-
librium position?

(k) At what times is the mass 5 inches below the equi-
librium position heading in the upward direction?

12. A mass of 1 slug is suspended from a spring whose
spring constant is 9 lb/ft. The mass is initially released
from a point 1 foot above the equilibrium position
with an upward velocity of . Find the times
at which the mass is heading downward at a velocity
of 3 ft /s.

13. Under some circumstances when two parallel springs,
with constants k1 and k2, support a single mass, the

13 ft /s

1
2

5
4 ft/s

1
3

1
4

3
2 ft/s
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5 Modeling with Higher-Order
Differential Equations

Exercises 5.1 Lmear Modelst Initial-Value Pwjblenits
:r'.' “ ' ' ”' V - V;V: 'r.

; \ '' W , ” ' '' ; " ' V w,\ wJ\

1. From |x" + 16a: = 0 wc obtain

x — c\ cos 8\/21 + C-2 sin 8\f21

so that the period of motion is 2tt/8\/2 = \/2tt/8 seconds.

2. From 20a:'7 -f-kx = 0 we obtain

1 ik. . 1 [k

so that the frequency 2/tt = 5 y / 5 vr and k - -320 N/m. If 80a,’" -t- 320.x = 0 then

x =  ci cos 21 + C2 sin 21

so that the frequency is 2/ 2tt = 1/tt cyclcs/s.

3. From ^x" + 72x = 0, a:(0) - —1/4. and ^(O) =  0 we obtain x =  — ̂  cos4v61.

4. From |a:;/ + 72x = 0, ;r(0) = 0, and o/(Q) = 2 we obtain x = sin4\/6£.

!. From |;r" + 40a: = 0, a:(0) =  1/2. and a/(0) =  0 wc obtain x = | cosSi.

(a) x (tt/12) =  —1/4, x (tt/ 8) = -1/2, x(7r/6) = -1/4, j;(7t/4) = 1/2, ^(9tt/32) = \/2/4.
(b) x' - —4sin81. so that ^(Stt/IG) =  4 ft/s directed downward.
(c) If x =  cos 8t. —0 then t — (2n -f 1)tt/16 for n =  0. 1, 2. . . . .

5. From 50a/' + 200x = 0. ;i‘(0) = 0. and x'(0) = —10 we obtain x = —5sin2t and x! = —10 cos 21

'• From 20:c// •+ 20a; =  0, a~(0) = 0, and aj'(0) =  —10 we obtain x =  —10 sin t and x/ = —10cost
(a) The 20 kg mass has the larger amplitude.
(b) 20 kg: x'(tt/A) =  -by/2 m/s, 2/ (tt/2) = 0 m/s; 50 kg: :r'(7r/4) =  0 m/s, x'('x/2) - 10 m/s
(c) If —0 sin 21 =  —10 sin t then sint(cos t — 1) = 0 so that t =  nn for n — 0, 1. 2, ..., placing both 

masses at the equilibrium position. The 50 kg mass is moving upward; the 20 kg mass is 
moving upward when n is even and downward when n is odd.

231
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is

where and the phase angles f
and u are, respectively, defined by sin f � c1 �A,
cos f � c2 �A and

,

.

(b) The solution in part (a) has the form
x(t) � xc(t) � xp(t). Inspection shows that xc(t) is tran-
sient, and hence for large values of time, the solution
is approximated by xp(t) � g(g) sin(gt � u), where

.

Although the amplitude g(g) of xp(t) is bounded as
show that the maximum oscillations will

occur at the value . What is the
maximum value of g? The number 
is said to be the resonance frequency of the system.

(c) When F0 � 2, m � 1, and k � 4, g becomes

.

Construct a table of the values of g1 and g(g1) corre-
sponding to the damping coefficients b� 2, b� 1,

, and . Use a graphing utility to
obtain the graphs of g corresponding to these damp-
ing coefficients. Use the same coordinate axes. This
family of graphs is called the resonance curve or
frequency response curve of the system. What is
g1 approaching as ? What is happening to the
resonance curve as ?

44. Consider a driven undamped spring/mass system
described by the initial-value problem

.

(a) For n � 2, discuss why there is a single frequency
g1�2p at which the system is in pure resonance.

(b) For n � 3, discuss why there are two frequencies
g1�2p and g2�2p at which the system is in pure
resonance.

(c) Suppose v� 1 and F0 � 1. Use a numerical solver
to obtain the graph of the solution of the initial-value
problem for n � 2 and g� g1 in part (a). Obtain the
graph of the solution of the initial-value problem for
n � 3 corresponding, in turn, to g� g1 and g� g2

in part (b).

d 2x

dt2 � �2x � F0 sinn �t, x(0) � 0, x�(0) � 0

� : 0
� : 0

� � 1
4� � 3

4, � � 1
2

g(�) �
2

1(4 � �2 )2 � �2�2

1�2 � 2	2/2

�1 � 1�2 � 2	2

t : �,

g(�) �
F0

1(�2 � �2)2 � 4	2�2

 cos � �
�2 � � 2

1(�2 � �2)2 � 4	2� 2

 sin � �
�2	�

1(�2 � �2)2 � 4	2� 2

A � 1c1
2 � c2

2

�
F0

1(�2 � �2)2 � 4	2�2
 sin(�t � � ),

x(t) � Ae�lt sin�2v2 � l2t � f�

5.1.4 SERIES CIRCUIT ANALOGUE

45. Find the charge on the capacitor in an LRC series circuit
at t � 0.01 s when L � 0.05 h, R � 2 
, C � 0.01 f,
E(t) � 0 V, q(0) � 5 C, and i(0) � 0 A. Determine the
first time at which the charge on the capacitor is equal to
zero.

46. Find the charge on the capacitor in an LRC series
circuit when , R � 20 
, , E(t) � 0 V,
q(0) � 4 C, and i(0) � 0 A. Is the charge on the capaci-
tor ever equal to zero?

In Problems 47 and 48 find the charge on the capacitor and
the current in the given LRC series circuit. Find the maxi-
mum charge on the capacitor.

47. , R � 10 
, , E(t) � 300 V, q(0) � 0 C,
i(0) � 0 A

48. L � 1 h, R � 100 
, C � 0.0004 f, E(t) � 30 V, 
q(0) � 0 C, i(0) � 2 A

49. Find the steady-state charge and the steady-state current
in an LRC series circuit when L � 1 h, R � 2 
,
C � 0.25 f, and E(t) � 50 cos t V.

50. Show that the amplitude of the steady-state current in
the LRC series circuit in Example 10 is given by E0�Z,
where Z is the impedance of the circuit.

51. Use Problem 50 to show that the steady-state current
in an LRC series circuit when , R � 20 
,
C � 0.001 f, and E(t) � 100 sin 60t V, is given by
ip(t) � 4.160 sin(60t � 0.588).

52. Find the steady-state current in an LRC series
circuit when , R � 20 
, C � 0.001 f, and 
E(t) � 100 sin 60t � 200 cos 40t V.

53. Find the charge on the capacitor in an LRC series circuit
when , R � 10 
, C � 0.01 f, E(t) � 150 V,
q(0) � 1 C, and i(0) � 0 A. What is the charge on the
capacitor after a long time?

54. Show that if L, R, C, and E0 are constant, then the
amplitude of the steady-state current in Example 10 is a
maximum when . What is the maximum
amplitude?

55. Show that if L, R, E0, and g are constant, then the
amplitude of the steady-state current in Example 10 is a
maximum when the capacitance is C � 1�Lg2.

56. Find the charge on the capacitor and the current in an LC
circuit when L � 0.1 h, C � 0.1 f, E(t) � 100 sin gt V,
q(0) � 0 C, and i(0) � 0 A.

57. Find the charge on the capacitor and the current in an
LC circuit when E(t) � E0 cos gt V, q(0) � q0 C, and
i(0) � i0 A.

58. In Problem 57 find the current when the circuit is in
resonance.

� � 1>1LC

L � 1
2 h

L � 1
2 h

L � 1
2 h

C � 1
30 fL � 5

3 h

C � 1
300 fL � 1

4 h
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Exercises 5.1 Linear M-.-

(c)

Solving jQq” + 2q' + 100<? = 0 we obtain q(t) — e 20t(c \  cos 4 0 1 + C 2 S in 4 0 t ) .  The initial conditions 
r /(0 )  =  5 and r / ( 0 )  =  0  im p ly  c \  =  5 and o i  =  5/2. Thus

q(t) = e~20t (5cos40i + | sin 40^ = v/25 + 2-5/4 e_20tsin(40t + 1.1071)

and g(0.01) rj 4.5676 coiilombs. The charge is zero for the first time when 40t + 1.1071 = tt or 
t  0.0509 second.

Solving \q" + 20q' + 300^ = 0 we obtain q{t) — cie-20* + C2 e~m . The initial conditions q(0) =  4 
and c/(0) = 0 imply C\ =  6 and c-2=  — 2. Thus

q(t) =  6e~20t - 2e~m .

Setting q = 0 we find e40* =  1/3 which implies t < 0. Therefore the charge is not 0 for t >  0. 

Solving ^q!/ + 10q' + 30q = 300 we obtain q(t) =  e_3<(ci cos 3t 4- c-2 sin 3 ) +10. The initial conditions 
?(0) - q'(0) = 0 imply Ci — C2 =  —10. Thus

q(t) — 10 — lOe-^ (cos 31 + sin 3t) and i(t) = 60e~6t sin 31.

Solving i(t) =  0 we see that the maximum charge occurs when t = tt/3 and q(ir/3) 10.432. 

Solving q" + 100^ + 2500g = 30 we obtain q(t) =  cie*00* + C2 te~M  + 0.012. The initial conditions 
j'0) =  0 and q'(0) =  2 imply c\ =  —0.012 and C2 = 1.4. Thus, using i(t) =  q'(t) we get

q{t) = —0.012e-50* + lAte~m  + 0.012 and i{t) = 2e~50t - 70te~50t.

Solving i(t) =  0 we see that the maximum charge occurs when t = 1/35 sccond and <7(1/35) ~ 
.01871 coulomb.

Solving q” + 2q' + 4q = 0 we obtain qc = e-< (cos \/3t + sin s/Stj. The steady-state charge has the 
:jrm qp = .4cost + Bsint. Substituting into the differential equation we find

(3A + 2B) cos t + (3B — 2A) sin  = 50 cos t.

Thus, A =  150/13 and B =  100/13. The steady-state charge is

::d the steady-state current is

, , 150 100 .
qvv) = “j j  cos * + “j j  sm *

150 . 100 
* * * '  =  — 1 3 “  s m  £  +  U  C 0 S
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74 ● CHAPTER 2 FIRST-ORDER DIFFERENTIAL EQUATIONS

EXERCISES 2.5 Answers to selected odd-numbered problems begin on page ANS-2.

Each DE in Problems 1–14 is homogeneous.

In Problems 1–10 solve the given differential equation by
using an appropriate substitution.

1. (x � y) dx � x dy � 0 2. (x � y) dx � x dy � 0

3. x dx � (y � 2x) dy � 0 4. y dx � 2(x � y) dy 

5. (y2 � yx) dx � x2 dy � 0

6. (y2 � yx) dx � x2 dy � 0

7.

8.

9.

10.

In Problems 11–14 solve the given initial-value problem.

11.

12.

13. (x � yey/x) dx � xey/x dy � 0, y(1) � 0

14. y dx � x(ln x � ln y � 1) dy � 0, y(1) � e

Each DE in Problems 15–22 is a Bernoulli equation.

In Problems 15–20 solve the given differential equation by
using an appropriate substitution.

15. 16.

17. 18.

19. 20.

In Problems 21 and 22 solve the given initial-value problem.

21.

22. y1/2 dy

dx
� y3/2 � 1, y(0) � 4

x2 dy

dx
� 2xy � 3y4, y(1) � 1

2

3(1 � t2)
dy

dt
� 2ty( y3 � 1)t2 dy

dt
� y2 � ty

x
dy

dx
� (1 � x)y � xy2dy

dx
� y(xy3 � 1)

dy

dx
� y � exy2x

dy

dx
� y �

1

y2

(x2 � 2y2)
dx

dy
� xy, y(�1) � 1

xy2 dy

dx
� y3 � x3, y(1) � 2

x
dy

dx
� y � 1x2 � y2, x � 0

�y dx � (x � 1xy) dy � 0

dy

dx
�

x � 3y

3x � y

dy

dx
�

y � x

y � x

Each DE in Problems 23–30 is of the form given in (5).

In Problems 23–28 solve the given differential equation by
using an appropriate substitution.

23. 24.

25. 26.

27. 28.

In Problems 29 and 30 solve the given initial-value problem.

29.

30.

Discussion Problems

31. Explain why it is always possible to express any homoge-
neous differential equation M(x, y) dx � N(x, y) dy � 0 in
the form

.

You might start by proving that

.

32. Put the homogeneous differential equation

(5x2 � 2y2) dx � xy dy � 0

into the form given in Problem 31.

33. (a) Determine two singular solutions of the DE in
Problem 10.

(b) If the initial condition y(5) � 0 is as prescribed in
Problem 10, then what is the largest interval I over
which the solution is defined? Use a graphing util-
ity to graph the solution curve for the IVP.

34. In Example 3 the solution y(x) becomes unbounded as
x : ��. Nevertheless, y(x) is asymptotic to a curve as
x : �� and to a different curve as x : �. What are the
equations of these curves?

35. The differential equation dy�dx � P(x) � Q(x)y � R(x)y2

is known as Riccati’s equation.

(a) A Riccati equation can be solved by a succession
of two substitutions provided that we know a

M(x, y) � xaM(1, y>x)    and    N(x, y) � xaN(1, y>x)

dy

dx
� F �y

x�

dy

dx
�

3x � 2y

3x � 2y � 2
, y(�1) � �1

dy

dx
� cos(x � y), y(0) � 
>4

dy

dx
� 1 � ey�x�5dy

dx
� 2 � 1y � 2x � 3

dy

dx
� sin(x � y)

dy

dx
� tan2(x � y)

dy

dx
�

1 � x � y

x � y

dy

dx
� (x � y � 1)2

Questions on Substitution, y = ux or u = ax + by
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Exercises 2.5 Solutions by Substitutions

2. Letting y = ux we have

(x + ux) dx + x{u dx + x du) = 0 

(1 + 2-u) dx + x du = 0

dx du
-- h ---—x 1 + 2u

= 0

In |x| + - In |1 + 2u\ =  c

rr2 ( l  + 2| ) =  C

x1 + 2 xy =  ci.

3. Letting x = vy we liavc

vy{v dy + y dv) + (y - 2vy) dy =  0

vy2dv + y (y2 - 2v + l) dy = 0 

vdv + rfy = ()

In

In \v — 1|

x

(u - l )2 y
1

y

v - l
1

x/y- 1

+ In \y\ = c

+ lny =  c

(x - y) In \x -y\-y = c(x - y).

4. Letting x = vy wc have

y(v dy + ydv) — 2 (vy + y) dy =  0

y dv — (t> + 2) dy =  0

dv _  dy ^  0 
v + 2 y

In \v + 2| — In \y\ = c

In x
+ 2; - In \y| = c

x + 2y = ciy
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Exercises 2.5 Solutions by Substitutions

5. Letting y = ux wc have
(u?x2 + ux2̂j dx — x2(u dx -r x du) = 0

u2 dx — x du =  0

dx d u _
9 uX >

In |.t | +  — =  c
u

In Irrl + — = c
V

y In \x\ + x = cy.

6. Letting y - ux and using partial fractions, we have
(̂ u2x2 + ux2'} dx + x2 (u dx + x du) =  0

x2 (v? + 2 it} dx + x3du =  0

dx du
—  + “ 7---=  0x u(u + 2)

In |jc| + ^ In | w[ — ^ In \u + 2| = c

ci

X \
,2„ _

7. Letting y =  ux wc have

xry = c\ (y + 2x).

(ux —x) dx — (ux + x) (udx + x du) =  0

(u2 + l) dx + x(u + 1) du =  0

dx u + 1 ,
—  + -s— - du =  0 
x u2 + 1

In jx| + ^ In (u2 + l) + tan-1 u = c

lnx2 + 1  ̂+ 2 tan-1 - = c

In fa;2 + y2) + 2 tan 1 — = c\.
' ' x
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Exercises 2.5 Solutions by Substitutions

(a; + 3ux) dx — (3a- -+ ux) (u dx + x du) = 0 

('u2 — l) dx + x(u + 3) du = 0 

dx it + 3
---h 7---—rz--- r r  du = 0
X (u — l ) ( l l + l )

In |.-r) + 2 In \u — 1| — In |u + 1) = c 

x(u — l) 2

Letting y = ux we have

u 4- 1 =  Cl

(y - x f  = c.i{y -+x).

Letting y =  ux we have

—ux dx + (x + \fu X') (u dx + x du) = 0

(x2 + ) du + xu^'2 dx =  0 

1\ , dx(V3/2 + i U + * = 0
V u) x

—2w-1/2 + In \u\ + In |x| = c

In \y/x\ + In |xj = 2\jxfy + c

y(ln \y\ - c)2 = 4x.

Letting y = ux we have

(uz + \jx2 — (ux)2 ) da: —x(udx + xdu) du = 0

\/x2 — u2x2 dx — x2 du = 0

x\j 1 —u2 dx — x2du — 0, (x > 0) 

dx du
= 0

X  V l  -  ti 2

In x — sin-1u = c

sin 1 u = In x + ci

156



Exercises 2.5 Solutions by Substitutions

/ 2 3 4 . _o , . dw 6 9 . . . . .  .21. Prom y -- y =  — and w = y we obtain —— h —w =  —  ̂. An integrating factor is x  so tha:
x x *  ' dx x xz

x6w = — x5 + c or y~3 =  — x_1 + cx~b. If y( 1) =  ^ then c =  ^  and y~3 =  — fx -1 + ^ x -6.
dt i.  3 3

22. From if + y =  y~1//2 and w =  y3/2 we obtain —  + -w = - . An integrating factor is e3x-/2 so tha:fix z z
eixl2w — (?x>2 + c or y3/2 = 1 + ce~iX/'2. If y(0) = 4 then c =  7 and ,(/}/2 =  1 + 7e~^xt2.

23. Let u =  x -f'  + l  so that du/dx =  1 + dy/dx. Then ^  — 1 = u2 or — —-x du = dx. Tlni-
dx 1 + tr

tan-5 u = x + c or u =  tan(x + c), and x + y + 1 = t.an(x + c) or y — tan(x + c) —x —1.

24. Let u ~ x + y so that du/dx = 1 + dy/dx. Then ~  —1 = ---- or u du = dx. Thus Aw,2 = x + .
dx u

or u2 = 2x + ci. and (x + y)2 =  2x + cj.

25. Let u = x + y so that du/dx =  1 + dy/dx. Then ^  — 1 = tan2u or cos2udu = dx. Thu?
\JfJU

^ + |sin2u = x+c or 2 +sin2u = 4x+ei, and 2(x+y)+sin2(x+y) : 4x+ci or 2y+sin2(x+y) = 

2x + ci.

26. Let u —x + y so that du/dx = 1 + dy/dx. Then — 1 =  sin u o r-- — du =  dx. Multiplying
ctcc 1 sm *?/

1 sin ̂
bv (1 — sin if)/(1 — sin u) we have ---~— du = dx or (sec2u — secu taiiu)du = dx. Thu-

coŝ u
tan u — sec u = x + c or tan(x + y) — sec(x + y) = x + c.

27. Let u =  y —2.x + 3 so that du/dx =  dy/dx —2. Then ^ + 2  = 2 + v/^ or ~t= du =  dx. Thu-
ax y  w

2-y/w = x + c and 2^/y — 2x + 3 = x + c.

Let u = y — x + 5 so that du/dx =

—e~u = x + c and —ey~x+5 =  x + c.

du
28. Let u = y — x + 5 so that du/dx =  dy/dx — 1. Then -— I-1 = 1 + eu or e~udu = dx. Thi;.-

dx

ctu 1
29. Let u = x + y so that du/dx = 1 + dy/dx. Then --- 1 — cos u and----:-- du. = dx. Now

fix 1 + cos u
1 1 — cos u 1 —COS u O

----------------------------------------—  —  =  CSC u  CSC u cot u
1 + cos u 1 — cos2u sin2u

so we have f  (csc2u-c.sc u cot u)du = /  dx and — cot w+csc u =  x+c. Thus — cot(x+y) +csc(x+y) - |
x + c. Setting x = 0 and y =  tt/4 we obtain c =  a / 2   1 .  The solution is

csc(x + y) - cot(x + y) = X + V2 — 1.

30. Let u =  3x + 2y so that du/dx =  3 + 2dy/dx. Then ^  = 3+ — - =  ~r~  and ^ du — d.i
y ' Jl dx u + 2 u + 2 5 u + 6

Now bv long division
u + 2 1 4 

— ^ +5u + 6 5 25u + 30

70
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4 Worked out Solutions for all
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4.1 Solution for Quiz I
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4.2 Solution for Quiz II
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4.3 Solution for Quiz III (3 different versions )



180



181



182



183



184



185



186



187



188



TABLE OF CONTENTS 189

4.4 Solution for Quiz IV
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4.5 Solution for Quiz V
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4.6 Solution for Quiz VI
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4.7 Solution for EXAM I



205



206



207



208



209



Easier calculations:
 ... .... = 3(s^2 + 1)/(s(s^2 + 1) + s/
(s(s^2 + 1)) = 3/s + 1/(s^2 + 1) .

Hence f(t) = 3 + sin(t)
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a can be any real number
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4.8 Solution for EXAM II
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Another Solution
w = y^\, hence w^\ = y^\\/ so w^\ - (1/t - 1)w = e^{-t}/t
Q(t) = - (1/t - 1) = 1 - 1/t / Hence I = e^{Integral(1 - 1/t) dt} = e^t/t / Thus
w = Integral(I. e^{-t}/t)/ I = Integral (1/t^2)/I = (-1/t + c)/I = -e^{-t} + cte^{-t}
Since w = y^\ , Integral (w) = Integral (y^\) = y
Hence y = Integral(e^{-t}(ct - 1) dt) = -e^{-t}(ct - 1) - ce^{-t} + c_2. = e^{-t}(-ct - c) + c_2 + e^{-t}
Note y_p = e^{-t}
y_h = c e^{-t}(-t - 1) + c_2
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Empty:
0 = 1200 - 4t. So t = 300 mint
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4.9 Solution for Final Exam



225



226



227



228



229



230



231



232



233



234



235



236



237



238 TABLE OF CONTENTS

5 Section : Assessment Tools-Quizzes
(unanswered)
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5.1 Quiz I



Name—————————————–, ID ———————–

MTH 205, Fall 2020, 1–1 © copyright Ayman Badawi 2020

Quiz One, MTH 205 , Fall 2020

Ayman Badawi

QUESTION 1. (i) `−1{ 3
2s+5}

(ii) `−1{ 3
s2+4 +

7
s9}

(iii) `{(t+ 2)2}

QUESTION 2. findy(t), wherey(2) − 5y′ + 6y = 1, y(0) = y′(0) = 0

Faculty information
Ayman Badawi, Department of Mathematics & Statistics, American University of Sharjah, P.O. Box 26666, Sharjah, United Arab Emirates.
E-mail: abadawi@aus.edu, www.ayman-badawi.com
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5.2 Quiz II



Name—————————————–, ID ———————–

MTH 205, Fall 2020, 1–1 © copyright Ayman Badawi 2020

Quiz Two, MTH 205 , Fall 2020

Ayman Badawi

QUESTION 1. (i) `−1{ e−4s

s2+9}

(ii) `−1{ 1
(s−3)2+4 +

6e−3s

s4 }

(iii) `{U5(t)e
t−5cosh(t− 5)}

QUESTION 2. findy(t), wherey′ − 2y = U3e
t−3, y(0) = 0

Faculty information
Ayman Badawi, Department of Mathematics & Statistics, American University of Sharjah, P.O. Box 26666, Sharjah, United Arab Emirates.
E-mail: abadawi@aus.edu, www.ayman-badawi.com
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5.3 Quiz III



Name—————————————–, ID ———————–

MTH 205, Fall 2020, 1–1 © copyright Ayman Badawi 2020

Quiz Three, MTH 205 , Fall 2020

Ayman Badawi

QUESTION 1. Let f(t) =

{
1 if 0 ≤ t < 3
0 if t ≥ 3

(i) Write f(t) in terms of unit-step functions

(ii) Find y(t), where y′ − 4y = f(t).

QUESTION 2. Find y(t), where y(2) − 6y′ − 5y = 0, y(0) = 0, y′(0) = 2.

Faculty information
Ayman Badawi, Department of Mathematics & Statistics, American University of Sharjah, P.O. Box 26666, Sharjah, United Arab Emirates.
E-mail: abadawi@aus.edu, www.ayman-badawi.com
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5.4 Quiz IV



Name—————————————–, ID ———————–

MTH 205, Fall 2020, 1–1 © copyright Ayman Badawi 2020

Quiz Four, MTH 205 , Fall 2020

Ayman Badawi

QUESTION 1. Find the general solution of the L.D.E : y(3) − 6y(2) + 9y′ = e−2t

QUESTION 2. Find the general solution of the L.D.E : y′ + 3y = cos(t)

QUESTION 3. Find the general solution of the L.D.E : y(3) − 3y(2) + 6.25y′ = 25

Faculty information
Ayman Badawi, Department of Mathematics & Statistics, American University of Sharjah, P.O. Box 26666, Sharjah, United Arab Emirates.
E-mail: abadawi@aus.edu, www.ayman-badawi.com
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5.5 Quiz V



Name—————————————–, ID ———————–

MTH 205, Fall 2020, 1–1 © copyright Ayman Badawi 2020

Quiz Five, MTH 205 , Fall 2020

Ayman Badawi

QUESTION 1. Consider ty(2) − 4y′ = t4. Find yg

QUESTION 2. Solve for yg.
ty′ + y = tsin(t2).

Faculty information
Ayman Badawi, Department of Mathematics & Statistics, American University of Sharjah, P.O. Box 26666, Sharjah, United Arab Emirates.
E-mail: abadawi@aus.edu, www.ayman-badawi.com
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5.6 Quiz VI



Name—————————————–, ID ———————–

MTH 205, Fall 2020, 1–1 © copyright Ayman Badawi 2020

Quiz Six, MTH 205 , Fall 2020

Ayman Badawi

QUESTION 1. (i) Given
dy
dx = −exy+4x−3y2+2xy

ex−x2+6yx+sin(y)−7
a. Convince me that the given D.E is Exact (hint: rewrite it as fxdx+fydy = 0 be careful with the sign )?SHOW

THE WORK

b. Solve the D.E. (Show the work)

QUESTION 2.
dy
dx = y3 − 6y2 − 7y. Classify each critical value as stable, semistable, or nonstable.

QUESTION 3. Imagine a company is making a fake-sweet drink (only water and sugar). The tank has capacity of 1200
liters. Initially, it contains 300 liters of brine (water and sugar) that contains 80 grams of sugar, i.e. A(0) = 80. A
solution containing 2 grams of sugar per liter is pumped into the tank at rate 6 liter per min and the solution is pumped
out at rate 3 liter per min.

(i) Let c(t) be the concentration of the sugar in the tank at time t. Find c(t).

(ii) Let A(t) be the amount of sugar in the tank at time t. Find A(t).

Faculty information
Ayman Badawi, Department of Mathematics & Statistics, American University of Sharjah, P.O. Box 26666, Sharjah, United Arab Emirates.
E-mail: abadawi@aus.edu, www.ayman-badawi.com
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6 Section : Assessment Tools-EXAMS
(unanswered)
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6.1 Exam I



Name—————————————–, ID ———————–

MTH 205, Fall 2020, 1–2 © copyright Ayman Badawi 2020

Exam One, MTH 205 , Fall 2020

Ayman Badawi

QUESTION 1. (5 points) Use Laplace Transformation and find y(t), where

y′′ − 6y′ + 5y = U2(t)(e
(t−2)), y(0) = 0, y′(0) = 0

.

QUESTION 2. (5 points) Use Laplace Transformation and find y(t), where

y′′ − 4y′ + 13y = 3δ0(t), y(0) = 0, y′(0) = 0
.

QUESTION 3. (5 points) Use Laplace Transformation and find y(t), where

y′ − 4y = U2(t) − 4
∫ t

0
y(r) dr, y(0) = 0

.

QUESTION 4. (5 points) Find yg(t), where

y′′ − 2y′ + y = 2et
.

QUESTION 5. (5 points) Find the largest interval around t = 2 , say I , so that the L. D. E:

(t2−9)y′′ +
√
t+ 1y′+ t2y = 5t+1, y(2) = 4, y′(2) = −3

has unique solution over I . [hint: Use the Initial Value Fundamental Theorem]

QUESTION 6. (6 points) Find yg(t)

y(3) − 4y(2) + 13y′ = et + 8t
.

QUESTION 7. (5 points) Solve forx(t) ONLY (do not findy(t))

x′(t)− y(t) = 0, x(0) = 3

x(t) + y′(t) = 3, y(0) = 1
QUESTION 8. (9 points)
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2 Ayman Badawi

(i) Find `−1{ s
(s+3)2}.

(ii) Find `{
∫ t

0 e(7t−5r)cos(2r) dr}
(iii) Find `−1{ se−2s

(s+3)2+9}.

QUESTION 9. (5 points) Given y = 3sin(t)et is the ONLY solution to the L.D.E

ay′′ + by′ + cy = 3sin(t)et

Find the values of a, b, c. [Hint: Personally, I will use Laplace, since y = 3sin(t)et, it is clear that y(0) = 0 and
y′(0) = 3]

Faculty information
Ayman Badawi, Department of Mathematics & Statistics, American University of Sharjah, P.O. Box 26666, Sharjah, United Arab Emirates.
E-mail: abadawi@aus.edu, www.ayman-badawi.com
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6.2 Exam II



Name—————————————–, ID ———————–

MTH 205, Fall 2020, 1–1 © copyright Ayman Badawi 2020

Exam Two, MTH 205 , Fall 2020

Ayman Badawi

Score = 50

QUESTION 1. (i) (4 points) Find yh(t) : t2y′′ + 3ty′ + 4y = 0, t > 0

(ii) (7 points) Find yg(t) : y′′ − (1
t − 1)y′ = e−t

t , t > 0 [Hint: you might need
∫
(aw(t) + w′(t))eat dt = w(t)eat, where a is a real number!!, I gave you one version of this observation when

a = 1]

(iii) (4 points) Find yh(t) : t2y′′ − 7ty′ + 16y = 0, t > 0.

(iv) (6 points) find y(t) : ty′ + 4y = 4t2ety
3
4 , t > 0

(v) (4 points) Solve the nonlinear diff. equation:
dy
dx = 2xy3√

1+x2
, x ≥ 0

(vi) (4 points) Solve the nonlinear diff. equation:
dw
dh = 1

h+4w3ew
, w > 0

(vii) (6 points) Find yg(t) : y′′ − 4
ty
′ + 4

t2
y = 1

t2
, t > 0

(viii) (5 points) First convince me that the following D.E. is EXACT. Then solve it.

(2x+ y2x+ ey + 2)dx+ (x2y + xey + 4y3 + 7)dy = 0
.

QUESTION 2. (5 points) Imagine: A cake is removed from an oven, its temperature is measured at 180°C. It is placed
in a room temperature 23°C. Two minutes later its temperature is 120°C. How long will it take for the cake to reach
33°C?

QUESTION 3. (5 points) Imagine: A large tank is filled to capacity with 1200 gallons of pure water (i.e., A(0) = 0).
Brine containing 2 pounds of salt per gallon is pumped into the tank at a rate of 4 gal/min. The well mixed solution is
pumped out at rate 8 gal/min. Find the number A(t) of pounds of salt in the tank at time t. When is the tank empty?

Faculty information
Ayman Badawi, Department of Mathematics & Statistics, American University of Sharjah, P.O. Box 26666, Sharjah, United Arab Emirates.
E-mail: abadawi@aus.edu, www.ayman-badawi.com
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6.3 Final Exam



Name—————————————–, ID ———————–

MTH 205, Fall 2020, 1–2 © copyright Ayman Badawi 2020

Final-Exam, MTH 205 , Fall 2020

Ayman Badawi

Score = 54
QUESTION 1. (6 points) Imagine a steel ball weighing 128 pounds is attached to spring. The spring stretched 2 foot.
The ball started in motion by displacing it in 0.5 foot above the equilibrium point with downward initial velocity 2
foot/second. (note gravity = 32ft/sec2)

i) Find the equation of the motion of the ball x(t)

ii) Rewrite x(t) in terms of the phase angle Φ.

QUESTION 2. (4 points) Given

y′ = y4 − 16y2
. Find all critical values. Then By drawing (as we did in class), classify each as stable,

semi-stable or unstable.

QUESTION 3. (4 points) Solve the following D.E:

y′ =
x

2xy + 6x+ y + 3
, x > 0

QUESTION 4. (4 points) Solve the following D.E:

(x2y + 4y3)dx+ (−3xy2 − x3)dy = 0, x > 0

QUESTION 5. (4 points) Find yg

y′′ + y′ =
1
t
− 1
t2

, t > 0

QUESTION 6. (4 points) Solve the following D.E:

y′ =
2x+ y

(4x+ 2y)2 + 1
− 2 , x > 0

QUESTION 7. (4 points) Solve the following D.E:

y′ + 2y = e−t −
∫ t

0
y(t− r) dr, y(0) = 0

QUESTION 8. (4 points) Solve the following D.E:

y′′ + 2y′ + 5y = δ3(t), y(0) = y′(0) = 0

QUESTION 9. (4 points) Write down the general form of yp for the following D.E (i.e., describe how yp looks like),

but do not find it explicitly :

y(5) + 6y(4) + 9y(3) = 4t3 + t2e−3t
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QUESTION 10. (4 points) Solve the following D.E. [Note : m(m− 1)(m− 2) = m3 − 3m2 + 2m]

y(3) +
6.5
t2
y′ = 0 , t > 0

QUESTION 11. (4 points) Given y1 = 1 and y2 = ln(t) (t > 0) are solutions to

y′′ + a1(t)y
′ + a0(t)y = 0

Use variation method to find yp, when solving

y′′ + a1(t)y
′ + a0(t)y =

1
t2

QUESTION 12. (4 points) Solve the following D.E:

y′ =
1

(ln(y) + y−1) 3
√
t− 3

2t

QUESTION 13. (4 points) (Note that 1 + 2b2 = 1 + b2 + b2) Solve for x(t) ONLY:

x′(t)− y(t) = 0, x(0) = 0

x(t) + y′(t) = t, y(0) = 2

Faculty information
Ayman Badawi, Department of Mathematics & Statistics, American University of Sharjah, P.O. Box 26666, Sharjah, United Arab Emirates.
E-mail: abadawi@aus.edu, www.ayman-badawi.com
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