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Abstract

This paper studies the Gaussian ring of integers modulo n, Z,[i]. The motivation
for this paper comes from analogizing the ring of real numbers R to the ring of integers
modulo n, Z,. When appending [i] to the field R, defining R[i] := {a + bi|a,b € R}, we
get the field of complex numbers, C. This paper investigates the possibility of a similar
outcome when accounting for Z,. Does appending [i] to the ring of integers modulo
n, Ln, defining Zy[i] := {a + bila,b € Z,}, make it a field? Seeing as Zj is a field for
prime p, our assumption was that Z,[i] would be a field for prime p. However, in this
paper we examine Z,[i] for all n € Z*, and find that Z,[i] is a field only for values
n = p where p is a prime of the form 4k + 3. Additionally, we give a necessary and
sufficient condition for an element to be a unit and zero divisor in Z,[i]. Examples are
added to further illustrate the use of our findings. To conclude, we verify our results
with algorithms and MATLAB code designed to compute the inverse for any unit and
the set of units of Zj|i].
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1

1.1

Introduction

Terminology and Notation

A ring R is a set with operations (+, .) which satisfies the following properties:

— An abelian group under addition
— A semigroup under multiplication

— Distribution: a(b+ ¢) = ab+ acVa,b,c € R

A ring with identity is a ring which has an identity under multiplication i.e. Je € R
such that ea = ae =aVa € R

Let R be a ring, a € R. The inverse of a under addition will be denoted —a. The
inverse of @ under multiplication will be denoted a~*

Let R be a ring with identity, R is called a commutative ring if and only if it is abelian
under multiplication i.e. ab = baVa,b € R

Let R be a commutative ring with identity, R is called a field if and only if it is a group
under multiplication i.e. 3¢ € R such that ca = ac= identity of R under multiplication
Va € R

Let R be a ring, an element a € R, is called a unit if and only if a is invertible. U(R)
will be used to denote the set of units of R.

Let R be a ring, an element a € R,a # 0, is called a nonzero zero divisor if and only
if 3b € R, b # 0, such that ab = 0. Z(R) will be used to denote the set of zero divisors
of R.

A ring is called an integral domain if and only if the only zero divisor is zero.

The ring Z,,, the set of integers modulo n, is a field if and only if n = p where p is a
prime

C, which denotes the set of complex numbers, C := {a + bi|a,b € R}, is a field.
Addition and multiplication of complex numbers are defined as follows:

— (a+bi)+ (c+di) = (a+c¢) +i(b+d)
— (a+bi)(c+ di) = (ac — bd) +i(ad + be)



2 Fields

Define a set Z,[i| := {a + bi|a,b € Z,}.
Theorem 1. 7Z,[i| is a commutative ring with identity.
Proof. First, we show that Z,[i] is an abelian group under addition Vn.

e Closure: Let © = a+bi,y = c+di. Then v+y = (a+c¢)+i(b+d). (a+c¢),(b+d) € Z,
S0, T+ Yy € Zyli].

e Associativity: Let x = a+bi,y = c+ di,z = e+ fi. Then z + (y + z) = (a + bi) +
((c+e)+i(d+f))=((a+c)+i(b+d)+ (e+ fi) = (x +y) + 2.

e Abelian: Let + = a+bi,y = c+di. Then 4y = (a+c¢)+i(b+d) = (c+a)+i(d+b) =
Y+

o Identity: 0+ 0i. Let z = a + bi, then (0+0i) +2 = (0+a) +i(0+b) = a+ bi = .

e Inverse: Let x = a+bi, then —z = —(a+bi) = —a—bi. Nowx—z = (a—a)+i(b—b) =
0+ Oz.

Now, we show that Z,[i] is closed, associative, and has an identity under multiplication Vn.

e Closure: Let © = a+0bi,y = c+di. Then xy = (ac—bd) +i(ad+bc). ac,bd, ad, be, (ac—
bd), (ad + bc) € Zy, so, xy € Lyi].

e Associativity: Let x = a+bi,y = c+di,z = e+ fi. Then z(yz) = (a+ bi)((ce — df ) +
i(cf +de)) = ((ac — bd) +i(ad + bc)) + (e + fi) = (zy)z.

e Commutativity: Let z = a + bi,y = ¢+ di. Then zy = (ac — bd) + i(ad + bc) =
(ca — db) + i(da + cb) = yux.

e Distribution: Let # = a+bi,y = c+di, z = e+ fi. Then z(y+2) = (a+bi)((c+e)+i(d+
1) = (a(cte)=b(d+f))+i(a(d+ f)+b(c+e)) = ac+ae—bd—bf +i(ad+af+be+be) =
((ac — bd) +i(ad + bc)) + ((ae — bf) +i(af + be)) = vy + xz.

e Identity: 1+ 0i. Let z = a + bi, then (1 +0i)z = (a —0)+i(b+0) =a+bi = x.

Theorem 2. If n is composite or n = 2, Zy,|i] is not a field.

Proof. For n = 2:

Zsli] = {0+ 0i,0 + 1i,1 + 0i, 1 + 1i}. We have (1 + 14)> = 0 + 0i. Thus 1 + 1i doesn’t have
a multiplicative inverse in Zs[i]. Zli] is not a field.

For composite n:

Since Z,, is not a field for composite n, and Z,, C Z,[i], Z,[i] is not a field. |

Now, it is clear from Theorem?2 that for Z,[i] to be a field the only 2 possible values left
for n are: n = p, where p is an odd prime of the form 4k + 3, or n = p, where p is an odd
prime of the form 4k + 1.



Theorem 3. Z,[i] is a field if and only if n = p for some odd prime p of the form 4k + 3,
keZ.

Proof. Let a+ bi € Z,|i], a + bi # 0, we are trying to find an element, say c + di € Z,|i],
¢+ di # 0, such that (a 4 bi)(c + di) = 1 i.e. such that:

e ac—bd=1
e ad+bc=0

Using Cramer’s Rule, this system has a unique solution if and only if

a —b
i 1)
a? +b*#£0 (2)
multiplying by a=2 assuming, without loss of generality, that a # 0, and since Zy is a field
1+a2b* #0 (3)
(a7 # -1 (4)
let x = a™'b
vt =1 (5)
is not solvable in Z;
zt=1 (6)

is not solvable in Z; i.e. if and only if Az € Z,, with order 4.

Now, we know Z; is a cyclic group under multiplication and |Z;| = p—1. So, if p = 4k+1,
p—1=4k,so4|p—1. Hence, 3! cyclic subgroup of order 4 and thus, 3 an element = € Z,
of order 4. Therefore, 2* = 1 is solvable in Z,. However, if p =4k + 3, p— 1 =4k + 2, s0
41 p—1. Hence, 3 a cyclic subgroup of order 4 and thus, 3 an element = € Zs, of order 4.
Therefore, 2* = 1 is not solvable in Z7.

So, Z,[i] is a field if and only if p = 4k + 3. |

Corollary 1. Since Z,[i] is finite, it is an integral domain if and only if it is a field. Hence,
Z,i] is an integral domain if and only if n = p for some odd prime p of the form 4k + 3,
ke Z.

Theorem 4. Let F' be a finite field, define Fi] :== {a + bila,b € F}. F[i| is a field if and
only if |F| = p", where p is a prime of the form 4k + 3, k € Z with n € Z*.

Proof. Let F be a finite field, we know |F'| = p", where p is a prime, n € Z*. Additionally, F’
is a field extension of Zpi.e. Z, C F. Thus, if |F| = p™ where p = 2 or p is of the form 4k +1,
then Z,[i] C F[i], and F[i] is not a field. On the other hand, if p is of the form 4k + 3, |F| =
(4k + 3)™. Using the binomial expansion theorem, |F| = (4k 4+ 3)" = > _ (") (4k) ™3™,
Clearly, each term in this summation has 4 as a factor expect for the last term which is
3". Thus, 4 { |F|, and since every finite field is cyclic under multiplication, by the same
approach presented in Theorem3, and given that equations (1 — 6) are applicable still, F[i]

is a field. ]



Examples.

The following are examples of fields: Zs[i], Z7[i], Z11]t], Zoli], F[i] where |F| = p™ and
p is a prime of the form 4k + 3, etc.

On the other hand, the following are not fields: Zs[i], Z4[i|, Zs[i], Z13]i], etc.

Ultimately, what makes these findings even more interesting is the fact that we can
now construct fields of specific orders using an unconventional method. Normally, fields
are constructed using irreducible polynomials. Taking an irreducible polynomial f(z) of
degree n, which is guaranteed to exist, and forming Z,[x]/f(x) gives us a field of order p".
However, we have found a new way involving complex numbers which allows us to form fields
of order p", n € 2Z*, where p is a prime of the form 4k + 3. Notice that n € 2Z7, that
is because depending on the order of the field we use for construction, say F', the resulting
field F + Fi will have |F + Fi| = |F|?. So, if |F| = p™, m € Z*, |F + Fi| = p™ = p", where
n=2me227".

Consider constructing a field of order p?. By taking a field F' of order p you can form the
field Iy = F + Fi which has p? elements. Similarly, consider constructing a field of order p?.
One can either construct Gy = G + Gi where G is a field of order p?, or they can construct
Fy = Fy + F,j where, similar to i, j> = —1. The reason for a variable change is to ensure the
formation of p* distinct elements, because if we were to construct F, as Fy = F} + Fyi, then
taking any 2 elements a + bi and ¢+ di € Fj leads to constructing the following element in
Fy, (a+bi) 4+ (c+ di)i = (a — d) + (b+ ¢)i which is also € F}. In other words, we end up
always constructing elements from F, so, we’d construct only p? elements since half of the
elements will be duplicates of the others.

Accordingly, consider constructing a field of order p. One can construct the field H; =
H + Hi where H is a field of order p®. However, since we can’t construct a field of the form
F3 = M + Mi, where Fy is a field of order p® and M is a finite field, seeing as 3 ¢ 2727, we
can’t use the trick we used for p? and construct H, as H, = F3 + F3j.

As a result, we can clearly see that in order to construct a field F' of order p”, where
F = F1 + Flil, Z% = —1, and F1 = F2 +F2i2, Z% = —1, and F2 = F3 + ngg, Z% = —1, RO
and F,,_, = F,, + F,,, 12, = —1, where |F,,| = p*, k € ZT, gcd(k,2) = 1, it must be that
n=2"k.

Based on that, consider constructing finite fields of the following orders (assume p is a
prime of the form 4k + 3):

° p24 _ p3(2)3
— Method 1: Let F} be a finite field, |F}| = p'?, we construct F = F| + Fyi; —

|F| =p*
— Method 2: Let Fy be a finite field, |Fy| = pb we construct Fy = Fy + Fhyiy —
|Fi| = p'?, then we construct F' = F} + Fyi; — |F| = p*

— Method 3: Let F3 be a finite field, |F3| = p3, we construct Fy = F3 + Fyiz —
|F3| = p®, then we construct Fy = Fy + Fyiy — |Fi| = p'2, then we construct
F:F1+F1i1 — ’F’ :p24



— Method 1: Let F; be a finite field, |F}| = p®, we construct F = Fy + Fyi; — |F| =
P16

— Method 2: Let Fy be a finite field, |Fy| = p*, we construct F| = Fy + Fhip —
|Fi| = p®, then we construct ' = Fy + Fyi; — |F| = p'®

— Method 3: Let F3 be a finite field, |F3| = p? we construct Fy = F3 + Fyiz —
|F5| = p?, then we construct Fy = Fy + Fhyis — |Fy| = p®, then we construct
F:Fl—.—FlZ'l — ’F| Ip16

— Method 4: Let Fj be a finite field, |Fy| = p, we construct F3 = Fy + Fyiq —
|F3| = p?, then we construct Fy = F3 + Fyiz — |Fy| = p?, then we construct
Fy = Fy + Fyiy — |Fy| = p®, then we construct F' = Fy + Fyi; — |F| = p'©

o 30 = OO

— Method 1: Let F} be a finite field, |F}| = p'®, we construct F' = Fy + Fji — |F| =

p30

o p¥ = pi®)

— Not possible

3 Set of Units and Zero Divisors

Now, using the proof for Theorem3, we give a necessary and sufficient condition so that an
element a + bi € Z,[i] is invertible:

Theorem 5. Let n > 1 be a positive integer and a + bi € Zy,|i], then a + bi is invertible if
and only if a®* + b* € U(Z,,). Furthermore, suppose (a+b)~' = c+di, then ¢ = a(a® + b*)~!
and d = —b(a* + b*)~1.

Proof. If (a + b)™' = ¢+ di, then (a + bi)(c + di) = 1. Now, using Cramer’s Rule from
Theoremd, the unique solution to the equations

e ac—bd=11in 7Z,

e ad+bc=0in Z,

1 —b a 1
. a a 2 | p2\—1 b 0 —b 2 2\—1
1S ¢ = W —b = pERw = a(a + b ) and d = a0 —b = RS = _b<a —+ b ) R HOWGVGI',
b a b a
a“ 4+ b°)" " exists if and only if a® + b~ € n).
( 2 b2) L exi if and only if 24 p? U(Zy,) [ |

Corollary 2. Consequently, since both Z,, and Z,[i] are finite, meaning every non-unit is a
zero divisor, let n > 1 be a positive integer and a + bi € Z,[i], then a + bi is a zero divisor
if and only if a* + > € Z(Z,). The set of zero divisors thereby is as follows: Z(Zy,[i]) :=
Zin 1) = U(Zni]).



Examples.

Consider for starters Zs[i], the set of units U(Zy[i]) = {1 + 04,0+ 17} since 0*°+12 =1 €
U(Zs) and consequently, the set of zero divisors Z(Zs[i]) = {0+ 0i,1 + 1i} since 0 ¢ U(Z,)
and 12+ 12 = 2 = 0 in Z,. If we wish to compute the inverse of the unit 0 + 14, we will have
(0+1i)' =c+di wherec=0and d=—1(1"%) = =1 = 1, thus (0 + 17)"* = 0 + 1i.

We consider the following elements in each given ring and test whether this element is a
unit. If yes, we compute the inverse:

1 4+ 4i € Zsli] > 42442 =32=2¢€ U(Zs) — 4+4i € U(Zs[i]) —» c =4(271) = 4(3) =
12=2andd=—4(2") = —2=3 - (4+4)" =2+3i

2. 114+ & € Zlg[Z] — 112+82 =18 =3¢ U(Zlg) — 1148 € U(Zlg[ZD — C= 11(3_1) =
11(9)=99=8and d=—8(37')=5(9) =45=6 — (11 + &)~ ' = 8 + 6i

3. 16 +4i € Zy7[i] = 1624+ 42 =272 = 0 € Z(Z17) — 16 + 4i € Z(Zy7i])

4. 342 €Zyfi] 5 R +22=13=1¢€ U(Zy) — 3+ 2i € U(Z4[i]) = c=3(1"") = 3 and
d=—-2(1"1)=-2=2— (3+2)1 =3+2

5. 8+ Ti € Zys[i) = 8+ 17> =113 =8 € U(Zy5) — 8+ 7i € U(Z5[i]) — ¢ = 8(871) =
8(2)=16=1landd=—-7(81)=812)=16=1— 8+Ti) ' =1+1i

4 Conclusion

In conclusion, this paper considers complex numbers of the form Z,, 47, where the imaginary
and real parts are taken from Z,. The primary aim was to find conditions on n such that
Ly + Zyt is a field. Most importantly, we were able to construct fields of cardinalities p",
n € 271, p = 4k+3, k € Z, contrary to common methods which use irreducible polynomials.
A set of algorithms and MATLAB code are provided in the appendix for computation of the
inverse of any unit and the set of units of Z,, + Z,1.

For future work, we would like to study ideals of the ring of Gaussian integers modulo
n, Z,[i]. We wish to investigate theorems pertaining to the order of the ring, or the value of
n and its relation with regards to the possibility of the ring being a principle ideal domain,
Euclidian domain, and unique factorization domain.



References

[1] A. Badawi, Abstract Algebra Manual: Problems and Solutions, Nova Science Publishers,
2004.



1
2
3
4
5
6
7
8
9

Appendices

A Algorithms

In this section we propose algorithms for the construction of the ring of Gaussian integers
Z,i], as well as, finding the inverse of any unit and the set of units of Z,[i].

A.1 Algorithm to Construct Z,|i]

input :n
output: 2D array A
X < zn(n);
for i =1tondo
for j =1tondo
| Ag) ¢ x(@)+x(5)is
end
end

[ N N S

Algorithm 1: Algorithm to Construct Z, ]

Commentary: Create a 2D array, A, and give each cell the value of a complex number
created using values from Z,, by calling the function zn which takes n as an input and
outputs an array with elements of Z,, as follows:

input :n
output: 1D array A

1 fori=1tondo
2 | A(i)i—1;
3 end

Algorithm 2: Algorithm to Construct Z,
MATLAB code:

function [A| = zni(n) 1 function [y| = zn(n)
y=zn(n); 2 y=zeros (1,n);
A-zeros(length(y),length(y)); 3 for i=1l:n
for i=1:length(y) 4 y(i)=i—1;

for j=1:length(y) 5 end

A(l,j)=complex(y(i),y(j)); 6 end

end
end
end

10
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A.2 Algorithm to Check for Unit and Find Inverse for an Element
in Z,]i]

input :a+bin
output: inverse

1 if unitzn(a® + *,n)= 0 then

2 ‘ inverse = (;

3 else

a | inverse < a(unitzn(a® 4 b%,n) )—b(unitzn(a® + b%,n))i;
5 end

Algorithm 3: Algorithm to Check for Unit and Find Inverse for an Element in Z,[]

Commentary: Verify whether a® + b* is a unit of Z,, which can be done by calling the
function unitzn which takes an element from Z, and n as inputs and either outputs the
inverse of the element in Z,, or, if the inverse does not exist, outputs zero as the inverse as
follows:

input :n
output: inverse
if ged(a,n)=1 then
inverse = c¢;
(// ¢ can be calculated using Euclid’s Division Algorithm)
else
| inverse < 0;
end

Algorithm 4: Algorithm to Check for Unit and Find Inverse for an Element in Z,
MATLAB code:

[= B~ S U VN

function [result] = is_ unit_ zni(x,n)

if is_unit_zn(mod(real(x) 2+imag(x)~2,n),n)==
result=0;

else

result=complex (mod(real(x)xis_unit_zn(real(x) 2+imag(x)~2,n),n) ,...

mod(—imag(x)*is_unit_zn(real(x) 2+imag(x)~2,n),n));
end

function |[result] = is_unit_zn(a,n)
g, ¢, 7] = ged(a,n);
if g=—1
result = mod(c¢,n);
else
result =0;
end
end

11
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A.3 Algorithm to Find Set of Units for Z,|[i]

input :n
output: set
1 A<+ zni(n);

2 k<« 1;
s fori=1tondo

4 for j=1tondo

5 if unitzni(A(4,5),n)# 0 then
6 set(i) < A(i,5);

7 k=Fk+1;

8 end

9 end
10 end

Algorithm 5: Algorithm to Find Set of Units for Z,[i]

Commentary: Create a 2D array, A, with the elements of Z,[i] calling the function from
the first algorithm. Then, check whether each element in the 2D array is a unit calling the
function from the second algorithm. If an element is a unit, add it to the resulting array,
set.

MATLAB code:

function |y| = units_zni(n)
r=zni(n);
k=1;
for i=1:n
for j=1:n
if is_unit_zni(r(i,j),n) =0
y(k)=r(i,j);
k=k+1;
end
end
end
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