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Abstract

This paper studies the Gaussian ring of integers modulo n, Zn[i]. The motivation

for this paper comes from analogizing the ring of real numbers R to the ring of integers

modulo n, Zn. When appending [i] to the �eld R, de�ning R[i] := {a+ bi|a, b ∈ R}, we
get the �eld of complex numbers, C. This paper investigates the possibility of a similar

outcome when accounting for Zn. Does appending [i] to the ring of integers modulo

n, Zn, de�ning Zn[i] := {a + bi|a, b ∈ Zn}, make it a �eld? Seeing as Z∗
p is a �eld for

prime p, our assumption was that Zp[i] would be a �eld for prime p. However, in this

paper we examine Zn[i] for all n ∈ Z+, and �nd that Zn[i] is a �eld only for values

n = p where p is a prime of the form 4k + 3. Additionally, we give a necessary and

su�cient condition for an element to be a unit and zero divisor in Zn[i]. Examples are

added to further illustrate the use of our �ndings. To conclude, we verify our results

with algorithms and MATLAB code designed to compute the inverse for any unit and

the set of units of Zn[i].
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1 Introduction

1.1 Terminology and Notation

• A ring R is a set with operations (+, .) which satis�es the following properties:

� An abelian group under addition

� A semigroup under multiplication

� Distribution: a(b+ c) = ab+ ac∀a, b, c ∈ R

• A ring with identity is a ring which has an identity under multiplication i.e. ∃e ∈ R
such that ea = ae = a∀a ∈ R

• Let R be a ring, a ∈ R. The inverse of a under addition will be denoted −a. The
inverse of a under multiplication will be denoted a−1

• Let R be a ring with identity, R is called a commutative ring if and only if it is abelian
under multiplication i.e. ab = ba∀a, b ∈ R

• Let R be a commutative ring with identity, R is called a �eld if and only if it is a group
under multiplication i.e. ∃c ∈ R such that ca = ac= identity of R under multiplication
∀a ∈ R

• Let R be a ring, an element a ∈ R, is called a unit if and only if a is invertible. U(R)
will be used to denote the set of units of R.

• Let R be a ring, an element a ∈ R, a 6= 0, is called a nonzero zero divisor if and only
if ∃b ∈ R, b 6= 0, such that ab = 0. Z(R) will be used to denote the set of zero divisors
of R.

• A ring is called an integral domain if and only if the only zero divisor is zero.

• The ring Zn, the set of integers modulo n, is a �eld if and only if n = p where p is a
prime

• C, which denotes the set of complex numbers, C := {a+ bi|a, b ∈ R}, is a �eld.

• Addition and multiplication of complex numbers are de�ned as follows:

� (a+ bi) + (c+ di) = (a+ c) + i(b+ d)

� (a+ bi)(c+ di) = (ac− bd) + i(ad+ bc)
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2 Fields

De�ne a set Zn[i] := {a+ bi|a, b ∈ Zn}.

Theorem 1. Zn[i] is a commutative ring with identity.

Proof. First, we show that Zn[i] is an abelian group under addition ∀n.

• Closure: Let x = a+ bi, y = c+di. Then x+y = (a+ c)+ i(b+d). (a+ c), (b+d) ∈ Zn

so, x+ y ∈ Zn[i].

• Associativity: Let x = a + bi, y = c + di, z = e + fi. Then x + (y + z) = (a + bi) +
((c+ e) + i(d+ f)) = ((a+ c) + i(b+ d)) + (e+ fi) = (x+ y) + z.

• Abelian: Let x = a+bi, y = c+di. Then x+y = (a+c)+ i(b+d) = (c+a)+ i(d+b) =
y + x.

• Identity: 0 + 0i. Let x = a+ bi, then (0 + 0i) + x = (0 + a) + i(0 + b) = a+ bi = x.

• Inverse: Let x = a+bi, then −x = −(a+bi) = −a−bi. Now x−x = (a−a)+i(b−b) =
0 + 0i.

Now, we show that Zn[i] is closed, associative, and has an identity under multiplication ∀n.

• Closure: Let x = a+bi, y = c+di. Then xy = (ac−bd)+ i(ad+bc). ac, bd, ad, bc, (ac−
bd), (ad+ bc) ∈ Zn so, xy ∈ Zn[i].

• Associativity: Let x = a+ bi, y = c+ di, z = e+ fi. Then x(yz) = (a+ bi)((ce− df) +
i(cf + de)) = ((ac− bd) + i(ad+ bc)) + (e+ fi) = (xy)z.

• Commutativity: Let x = a + bi, y = c + di. Then xy = (ac − bd) + i(ad + bc) =
(ca− db) + i(da+ cb) = yx.

• Distribution: Let x = a+bi, y = c+di, z = e+fi. Then x(y+z) = (a+bi)((c+e)+i(d+
f)) = (a(c+e)−b(d+f))+i(a(d+f)+b(c+e)) = ac+ae−bd−bf+i(ad+af+bc+be) =
((ac− bd) + i(ad+ bc)) + ((ae− bf) + i(af + be)) = xy + xz.

• Identity: 1 + 0i. Let x = a+ bi, then (1 + 0i)x = (a− 0) + i(b+ 0) = a+ bi = x.

�

Theorem 2. If n is composite or n = 2, Zn[i] is not a �eld.

Proof. For n = 2:
Z2[i] = {0 + 0i, 0 + 1i, 1 + 0i, 1 + 1i}. We have (1 + 1i)2 = 0 + 0i. Thus 1 + 1i doesn't have
a multiplicative inverse in Z2[i]. Z2[i] is not a �eld.
For composite n:
Since Zn is not a �eld for composite n, and Zn ⊂ Zn[i], Zn[i] is not a �eld. �

Now, it is clear from Theorem2 that for Zn[i] to be a �eld the only 2 possible values left
for n are: n = p, where p is an odd prime of the form 4k + 3, or n = p, where p is an odd
prime of the form 4k + 1.
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Theorem 3. Zn[i] is a �eld if and only if n = p for some odd prime p of the form 4k + 3,
k ∈ Z.

Proof. Let a + bi ∈ Zp[i], a + bi 6= 0, we are trying to �nd an element, say c + di ∈ Zp[i],
c+ di 6= 0, such that (a+ bi)(c+ di) = 1 i.e. such that:

• ac− bd ≡ 1

• ad+ bc ≡ 0

Using Cramer's Rule, this system has a unique solution if and only if∣∣∣∣a −bb a

∣∣∣∣ 66= 0 (1)

a2 + b2 66= 0 (2)

multiplying by a−2 assuming, without loss of generality, that a 6= 0, and since Z∗
p is a �eld

1 + a−2b2 66= 0 (3)

(a−1b)2 66= −1 (4)

let x = a−1b
x2 = −1 (5)

is not solvable in Z∗
p

x4 = 1 (6)

is not solvable in Z∗
p i.e. if and only if @x ∈ Z∗

p with order 4.
Now, we know Z∗

p is a cyclic group under multiplication and |Z∗
p| = p−1. So, if p = 4k+1,

p− 1 = 4k, so 4 | p− 1. Hence, ∃! cyclic subgroup of order 4 and thus, ∃ an element x ∈ Z∗
p

of order 4. Therefore, x4 = 1 is solvable in Z∗
p. However, if p = 4k + 3, p − 1 = 4k + 2, so

4 - p − 1. Hence, @ a cyclic subgroup of order 4 and thus, @ an element x ∈ Z∗
p of order 4.

Therefore, x4 = 1 is not solvable in Z∗
p.

So, Zp[i] is a �eld if and only if p = 4k + 3. �

Corollary 1. Since Zn[i] is �nite, it is an integral domain if and only if it is a �eld. Hence,
Zn[i] is an integral domain if and only if n = p for some odd prime p of the form 4k + 3,
k ∈ Z.

Theorem 4. Let F be a �nite �eld, de�ne F [i] := {a + bi|a, b ∈ F}. F [i] is a �eld if and
only if |F | = pn, where p is a prime of the form 4k + 3, k ∈ Z with n ∈ Z+.

Proof. Let F be a �nite �eld, we know |F | = pn, where p is a prime, n ∈ Z+. Additionally, F
is a �eld extension of Zp i.e. Zp ⊂ F . Thus, if |F | = pn where p = 2 or p is of the form 4k+1,
then Zp[i] ⊂ F [i], and F [i] is not a �eld. On the other hand, if p is of the form 4k+3, |F | =
(4k + 3)n. Using the binomial expansion theorem, |F | = (4k + 3)n =

∑n
m=0

(
n
m

)
(4k)n−m3m.

Clearly, each term in this summation has 4 as a factor expect for the last term which is
3n. Thus, 4 - |F |, and since every �nite �eld is cyclic under multiplication, by the same
approach presented in Theorem3, and given that equations (1− 6) are applicable still, F [i]
is a �eld. �
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Examples.

The following are examples of �elds: Z3[i], Z7[i], Z11[i], Z19[i], F [i] where |F | = pn and
p is a prime of the form 4k + 3, etc.

On the other hand, the following are not �elds: Z2[i], Z4[i], Z5[i], Z13[i], etc.
Ultimately, what makes these �ndings even more interesting is the fact that we can

now construct �elds of speci�c orders using an unconventional method. Normally, �elds
are constructed using irreducible polynomials. Taking an irreducible polynomial f(x) of
degree n, which is guaranteed to exist, and forming Zp[x]/f(x) gives us a �eld of order pn.
However, we have found a new way involving complex numbers which allows us to form �elds
of order pn, n ∈ 2Z+, where p is a prime of the form 4k + 3. Notice that n ∈ 2Z+, that
is because depending on the order of the �eld we use for construction, say F , the resulting
�eld F +Fi will have |F +Fi| = |F |2. So, if |F | = pm, m ∈ Z+, |F +Fi| = p2m = pn, where
n = 2m ∈ 2Z+.

Consider constructing a �eld of order p2. By taking a �eld F of order p you can form the
�eld F1 = F +Fi which has p2 elements. Similarly, consider constructing a �eld of order p4.
One can either construct G1 = G+Gi where G is a �eld of order p2, or they can construct
F2 = F1+F1j where, similar to i, j2 = −1. The reason for a variable change is to ensure the
formation of p4 distinct elements, because if we were to construct F2 as F2 = F1 + F1i, then
taking any 2 elements a + bi and c + di ∈ F1 leads to constructing the following element in
F2, (a + bi) + (c + di)i = (a − d) + (b + c)i which is also ∈ F1. In other words, we end up
always constructing elements from F1, so, we'd construct only p2 elements since half of the
elements will be duplicates of the others.

Accordingly, consider constructing a �eld of order p6. One can construct the �eld H1 =
H +Hi where H is a �eld of order p3. However, since we can't construct a �eld of the form
F3 = M +Mi, where F3 is a �eld of order p3 and M is a �nite �eld, seeing as 3 /∈ 2Z+, we
can't use the trick we used for p2 and construct H1 as H1 = F3 + F3j.

As a result, we can clearly see that in order to construct a �eld F of order pn, where
F = F1 + F1i1, i

2
1 = −1, and F1 = F2 + F2i2, i

2
2 = −1, and F2 = F3 + F3i3, i

2
3 = −1, . . . ,

and Fm−1 = Fm + Fm, i
2
m = −1, where |Fm| = pk, k ∈ Z+, gcd(k, 2) = 1, it must be that

n = 2mk.
Based on that, consider constructing �nite �elds of the following orders (assume p is a

prime of the form 4k + 3):

• p24 = p3(2)
3

� Method 1: Let F1 be a �nite �eld, |F1| = p12, we construct F = F1 + F1i1 →
|F | = p24

� Method 2: Let F2 be a �nite �eld, |F2| = p6, we construct F1 = F2 + F2i2 →
|F1| = p12, then we construct F = F1 + F1i1 → |F | = p24

� Method 3: Let F3 be a �nite �eld, |F3| = p3, we construct F2 = F3 + F3i3 →
|F2| = p6, then we construct F1 = F2 + F2i2 → |F1| = p12, then we construct
F = F1 + F1i1 → |F | = p24

• p16 = p2
4
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� Method 1: Let F1 be a �nite �eld, |F1| = p8, we construct F = F1+F1i1 → |F | =
p16

� Method 2: Let F2 be a �nite �eld, |F2| = p4, we construct F1 = F2 + F2i2 →
|F1| = p8, then we construct F = F1 + F1i1 → |F | = p16

� Method 3: Let F3 be a �nite �eld, |F3| = p2, we construct F2 = F3 + F3i3 →
|F2| = p4, then we construct F1 = F2 + F2i2 → |F1| = p8, then we construct
F = F1 + F1i1 → |F | = p16

� Method 4: Let F4 be a �nite �eld, |F4| = p, we construct F3 = F4 + F4i4 →
|F3| = p2, then we construct F2 = F3 + F3i3 → |F2| = p4, then we construct
F1 = F2 + F2i2 → |F1| = p8, then we construct F = F1 + F1i1 → |F | = p16

• p30 = p3(5)(2)

� Method 1: Let F1 be a �nite �eld, |F1| = p15, we construct F = F1+F1i→ |F | =
p30

• p35 = p7(5)

� Not possible

3 Set of Units and Zero Divisors

Now, using the proof for Theorem3, we give a necessary and su�cient condition so that an
element a+ bi ∈ Zn[i] is invertible:

Theorem 5. Let n ≥ 1 be a positive integer and a + bi ∈ Zn[i], then a + bi is invertible if
and only if a2 + b2 ∈ U(Zn). Furthermore, suppose (a+ b)−1 = c+ di, then c = a(a2 + b2)−1

and d = −b(a2 + b2)−1.

Proof. If (a + b)−1 = c + di, then (a + bi)(c + di) = 1. Now, using Cramer's Rule from
Theorem3, the unique solution to the equations

• ac− bd ≡ 1 in Zn

• ad+ bc ≡ 0 in Zn

is c =

∣∣∣∣∣∣1 −b0 a

∣∣∣∣∣∣∣∣∣∣∣∣a −bb a

∣∣∣∣∣∣
= a

a2+b2
= a(a2 + b2)−1 and d =

∣∣∣∣∣∣a 1
b 0

∣∣∣∣∣∣∣∣∣∣∣∣a −bb a

∣∣∣∣∣∣
= −b

a2+b2
= −b(a2 + b2)−1. However,

(a2 + b2)−1 exists if and only if a2 + b2 ∈ U(Zn). �

Corollary 2. Consequently, since both Zn and Zn[i] are �nite, meaning every non-unit is a
zero divisor, let n ≥ 1 be a positive integer and a + bi ∈ Zn[i], then a + bi is a zero divisor
if and only if a2 + b2 ∈ Z(Zn). The set of zero divisors thereby is as follows: Z(Zn[i]) :=
Zn[i]− U(Zn[i]).
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Examples.

Consider for starters Z2[i], the set of units U(Z2[i]) = {1+ 0i, 0+ 1i} since 02 +12 = 1 ∈
U(Z2) and consequently, the set of zero divisors Z(Z2[i]) = {0 + 0i, 1 + 1i} since 0 /∈ U(Z2)
and 12 +12 = 2 ≡ 0 in Z2. If we wish to compute the inverse of the unit 0+ 1i, we will have
(0 + 1i)−1 = c+ di where c = 0 and d = −1(1−1) = −1 ≡ 1, thus (0 + 1i)−1 = 0 + 1i.

We consider the following elements in each given ring and test whether this element is a
unit. If yes, we compute the inverse:

1. 4+ 4i ∈ Z5[i]→ 42 +42 = 32 ≡ 2 ∈ U(Z5)→ 4+ 4i ∈ U(Z5[i])→ c = 4(2−1) = 4(3) =
12 ≡ 2 and d = −4(2−1) = −2 ≡ 3→ (4 + 4i)−1 = 2 + 3i

2. 11+8i ∈ Z13[i]→ 112+82 = 185 ≡ 3 ∈ U(Z13)→ 11+8i ∈ U(Z13[i])→ c = 11(3−1) =
11(9) = 99 ≡ 8 and d = −8(3−1) = 5(9) = 45 ≡ 6→ (11 + 8i)−1 = 8 + 6i

3. 16 + 4i ∈ Z17[i]→ 162 + 42 = 272 ≡ 0 ∈ Z(Z17)→ 16 + 4i ∈ Z(Z17[i])

4. 3 + 2i ∈ Z4[i]→ 32 + 22 = 13 ≡ 1 ∈ U(Z4)→ 3 + 2i ∈ U(Z4[i])→ c = 3(1−1) = 3 and
d = −2(1−1) = −2 ≡ 2→ (3 + 2i)−1 = 3 + 2i

5. 8 + 7i ∈ Z15[i] → 82 + 72 = 113 ≡ 8 ∈ U(Z15) → 8 + 7i ∈ U(Z15[i]) → c = 8(8−1) =
8(2) = 16 ≡ 1 and d = −7(8−1) = 8(2) = 16 ≡ 1→ (8 + 7i)−1 = 1 + 1i

6. 18 + 6i ∈ Z21[i]→ 182 + 62 = 360 ≡ 3 ∈ Z(Z21)→ 18 + 6i ∈ Z(Z21[i])

4 Conclusion

In conclusion, this paper considers complex numbers of the form Zn+Zni where the imaginary
and real parts are taken from Zn. The primary aim was to �nd conditions on n such that
Zn + Zni is a �eld. Most importantly, we were able to construct �elds of cardinalities pn,
n ∈ 2Z+, p = 4k+3, k ∈ Z, contrary to common methods which use irreducible polynomials.
A set of algorithms and MATLAB code are provided in the appendix for computation of the
inverse of any unit and the set of units of Zn + Zni.

For future work, we would like to study ideals of the ring of Gaussian integers modulo
n, Zn[i]. We wish to investigate theorems pertaining to the order of the ring, or the value of
n and its relation with regards to the possibility of the ring being a principle ideal domain,
Euclidian domain, and unique factorization domain.
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Appendices

A Algorithms

In this section we propose algorithms for the construction of the ring of Gaussian integers
Zn[i], as well as, �nding the inverse of any unit and the set of units of Zn[i].

A.1 Algorithm to Construct Zn[i]

input : n
output: 2D array A

1 x ← zn(n);
2 for i = 1 to n do

3 for j = 1 to n do

4 A(i,j)← x(i)+x(j)i;
5 end

6 end

Algorithm 1: Algorithm to Construct Zn[i]

Commentary: Create a 2D array, A, and give each cell the value of a complex number
created using values from Zn, by calling the function zn which takes n as an input and
outputs an array with elements of Zn, as follows:

input : n
output: 1D array A

1 for i = 1 to n do

2 A(i)← i− 1;
3 end

Algorithm 2: Algorithm to Construct Zn

MATLAB code:

1 function [A] = zn i (n)
2 y=zn (n ) ;
3 A=zeros ( length ( y ) , length ( y ) ) ;
4 for i =1: length ( y )
5 for j =1: length ( y )
6 A( i , j )=complex (y ( i ) , y ( j ) ) ;
7 end

8 end

9 end

1 function [ y ] = zn (n)
2 y=zeros (1 , n ) ;
3 for i =1:n
4 y ( i )=i −1;
5 end

6 end
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A.2 Algorithm to Check for Unit and Find Inverse for an Element

in Zn[i]

input : a+bi,n
output: inverse

1 if unitzn(a2 + b2,n)= 0 then
2 inverse = 0;
3 else

4 inverse ← a(unitzn(a2 + b2,n))−b(unitzn(a2 + b2,n))i;
5 end

Algorithm 3: Algorithm to Check for Unit and Find Inverse for an Element in Zn[i]

Commentary: Verify whether a2 + b2 is a unit of Zn, which can be done by calling the
function unitzn which takes an element from Zn and n as inputs and either outputs the
inverse of the element in Zn, or, if the inverse does not exist, outputs zero as the inverse as
follows:

input : n
output: inverse

1 if gcd(a,n)=1 then

2 inverse = c;
3 (// c can be calculated using Euclid's Division Algorithm)

4 else

5 inverse ← 0;
6 end

Algorithm 4: Algorithm to Check for Unit and Find Inverse for an Element in Zn

MATLAB code:

1 function [ r e s u l t ] = is_unit_zni (x , n)
2 i f is_unit_zn (mod( real ( x)^2+imag( x )^2 ,n ) , n)==0
3 r e s u l t =0;
4 else

5 r e s u l t=complex (mod( real ( x )∗ is_unit_zn ( real ( x)^2+imag( x )^2 ,n ) , n ) , . . .
6 mod(−imag( x )∗ is_unit_zn ( real ( x)^2+imag( x )^2 ,n ) , n ) ) ;
7 end

1 function [ r e s u l t ] = is_unit_zn (a , n)
2 [ g , c , ~] = gcd ( a , n ) ;
3 i f g==1
4 r e s u l t = mod( c , n ) ;
5 else

6 r e s u l t =0;
7 end

8 end

11



A.3 Algorithm to Find Set of Units for Zn[i]

input : n
output: set

1 A ← zni(n);
2 k ← 1;
3 for i = 1 to n do

4 for j = 1 to n do

5 if unitzni(A(i,j),n)6= 0 then
6 set(i) ← A(i,j);
7 k = k + 1;

8 end

9 end

10 end

Algorithm 5: Algorithm to Find Set of Units for Zn[i]

Commentary: Create a 2D array, A, with the elements of Zn[i] calling the function from
the �rst algorithm. Then, check whether each element in the 2D array is a unit calling the
function from the second algorithm. If an element is a unit, add it to the resulting array,
set.

MATLAB code:

1 function [ y ] = units_zni (n)
2 r=zn i (n ) ;
3 k=1;
4 for i =1:n
5 for j =1:n
6 i f i s_unit_zni ( r ( i , j ) , n)~=0
7 y (k)=r ( i , j ) ;
8 k=k+1;
9 end

10 end

11 end
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