Exam One, MTH 213 , Fall 2021

Ayman Badawi

(Stop working at 14:45 pm/submit your solution by 15:00 pm) 36
QUESTION 1. (12 points)(SHOW THE WORK)
(i) Find $\ell\left\{e^{4 t} \cos (5 t)\right\}$
(ii) Find $\ell\left\{U_{2}(t) e^{(7 t-14)} \sin (t-2)\right\}$
(iii) Find $\ell^{-1}\left\{\frac{s}{(s+7)^{3}}\right\}$
(iv) Find $\ell^{-1}\left\{\frac{e^{-4 s}}{s^{2}-9}\right\}$

QUESTION 2. (SHOW THE WORK)(6 points)

Solve $y^{(2)}-5 y^{\prime}+6 y=6$, such that $y(0)=y^{\prime}(0)=0$.
QUESTION 3. (SHOW THE WORK)(6 points) Solve $y^{(2)}+10 y^{\prime}+34 y=0$, such that $y(0)=1, y^{\prime}(0)=7$.
QUESTION 4. (SHOW THE WORK)(6 points) Solve $y^{\prime}-3 y=U_{2}(t)$, such that $y(0)=0$
QUESTION 5. (SHOW THE WORK)(6 points) Solve $y^{(2)}-4 y^{\prime}=1$, such that $y(0)=y^{\prime}(0)=0$

Faculty information

Ayman Badawi, Department of Mathematics \& Statistics, American University of Sharjah, P.O. Box 26666, Sharjah, United Arab Emirates.
E-mail: abadawi@aus.edu, www.ayman-badawi.com

Q1
(i) $\int\left\{e^{4 t} \cos (5 t)\right\}$

$$
\begin{aligned}
& e\{\cos (5 t)\}=\frac{s}{s^{2}+25} \\
& e\left\{e^{4 t} \cos (5 t)\right\}=\frac{(s-4)}{(s-4)^{2}+25}
\end{aligned}
$$

(ii) $\left\{\left\{U_{2} \cdot e^{7 t-14} \cdot \sin (t-2)\right\}\right.$

$$
\begin{aligned}
& \rightarrow e^{-25}\left(\left\{e^{7(t+2)-14} \cdot \sin (t+2-2)\right\}\right. \\
& \rightarrow e^{-25} l\left\{e^{7 t} \cdot \sin t\right\} \\
& \rightarrow e^{-25} \cdot \frac{1}{(s-7)^{2}+1}
\end{aligned}
$$

(iii)

$$
\begin{aligned}
& f^{-1}\left\{\frac{s}{(s+7)^{3}}\right\} \\
& f^{-1}\left\{\frac{s+7-7}{(s+7)^{3}}\right\} \rightarrow l^{-1}\left\{\frac{s+7}{(s+7)^{83}}\right\}-7 \\
& \rightarrow l^{-1}\left\{\frac{1}{(s+7)^{2}}\right\}-\frac{7}{2!} l^{-1}\left\{\frac{2!}{(s+7)^{3}}\right\} \\
& \rightarrow t \cdot e^{-7 t}-\frac{7}{2} t^{2} e^{-7 t} \\
& \rightarrow e^{-7 t}\left(t-\frac{7}{2} t^{2}\right)
\end{aligned}
$$

$$
l^{-1}\left\{\frac{s+7-7}{(s+7)^{3}}\right\} \rightarrow l^{-1}\left\{\frac{s+7}{(s+7)^{3}}\right\}-7 l^{-1}\left\{\frac{1}{(s+7)^{3}}\right\}
$$

(iv) $l^{-1}\left\{\frac{e^{-4 s}}{s^{2}-9}\right\}=u_{4} l^{-1}\left\{\frac{1}{s^{2}-9}\right\}$

Hatsan Tanir gooos9492
$\rightarrow \frac{U_{4}}{3} \sinh (3 t)$
$\rightarrow \frac{44}{3} \sinh (3(t-4))$

QL
Solve $y^{\prime \prime}-5 y^{\prime}+6 y=6 \quad$ given $y(0)=y^{\prime}(0)=0$
$L\left\{y^{\prime \prime}-5 y^{\prime}+6 y\right\}=L\{6\}$
$s^{2} y(5)-s y(0)-y^{\prime}(0)-554(5)+5 y(0)+64(5)=\frac{6}{5}$
$4(s)\left[s^{2}-5 s+6\right]=\frac{6}{s}$
年 $4(s)[(s-2)(s-3)]=\frac{6}{s}$

$$
\begin{aligned}
& Y(s)[(s-2)(s-3)]=\frac{6}{s} \\
& Y(s)=\frac{6}{s(s-2)(s-3)}=\frac{A}{s}+\frac{B}{s-2}+\frac{C}{s-3} \\
& A=6=1
\end{aligned}
$$

using cover method $\rightarrow A=\frac{6}{6}=1$

$$
c=\frac{6}{3}=2
$$

$$
B=\frac{6}{-2}=-3
$$

$$
\begin{aligned}
& f^{-1}\{y(s)\}=l^{-1}\left\{\frac{1}{s}-\frac{3}{s-2}+\frac{2}{s-3}\right\} \\
& y(t)=1-3 e^{2 t}+2 e^{3 t}
\end{aligned}
$$

QU
solve $y^{\prime \prime}+10 y^{\prime}+34 y=0$

$$
\begin{aligned}
& L\left\{y^{\prime \prime}+10 y^{\prime}+34 y\right\}=L\{0\} \\
& 5^{2} Y(5)-5 y(0)-y^{\prime}(0)+1054(5)-10 y(0)+344(5)=0 \\
& s^{2} 4(s)+1054(5)+34 k(5)-s-7-10=0 \\
& Y(s)\left[s^{2}+10 s+34\right]=s+17 \\
& 4(3)\left[\left(5+\frac{10}{2}\right)^{2}-\left(\frac{10}{2}\right)^{2}+34\right]=s+17 \\
& 4(s)\left[(s+5)^{2}+9\right]=s+17 \\
& y(s)=\frac{s+17}{(s+5)^{2}+9} \\
& y(s)=\frac{s+5}{(s+5)^{2}+9}+\frac{12}{(s+5)^{2}+9} \\
& l^{-1}(4(s))=t^{-1}\left\{\frac{s+5}{(s+5)^{2}+9}\right\}+\frac{12}{3} e^{-1}\left\{\frac{3}{(s+5)^{2}+9}\right\} \\
& y(t)=e^{-5 t} \cdot \cos 3 t+4 \sin 3 t \cdot e^{-5 t} \\
& y(t)=e^{-5 t}(\cos 3 t+4 \sin 3 t)
\end{aligned}
$$

Q4
Qolve $y^{\prime}-3 y=42 \quad$ given $y(0)=0$
Hafsah Tanir

$$
L\left\{y^{\prime}-3 y\right\}=L\left\{u_{2}\right\}
$$

$$
\begin{aligned}
& s Y(s)-y(0)^{0}-3 y(s)=\frac{e^{-2 s}}{s} \\
& y(s)[s-3]=\frac{e^{-2 s}}{s} \\
& y(s)=e^{-2 s} \cdot \frac{1}{s(s-3)} \\
& y(s)=e^{-2 s}\left[\frac{A}{s}+\frac{B}{s-3}\right] \rightarrow \text { using cover method } \\
& y(s)=e^{-2 s}\left[\frac{1}{3} \cdot \frac{1}{s-3}-\frac{1}{3} \cdot \frac{1}{s}\right] \\
& t^{-1}\{y(s)\}=-\frac{1}{3} \quad B=\frac{1}{3} \\
& y(t)=t_{2}^{-1}\left\{e^{-2 s}\left[\frac{1}{3} \cdot \frac{1}{s-3}-\frac{1}{3} \cdot \frac{1}{s}\right]\right\} \\
& y(t)=\frac{u_{2}}{3}\left(e^{3(t-2)}-\frac{1}{3}\right)
\end{aligned}
$$

Q5
solve $y^{\prime \prime}-4 y^{\prime}=1 \quad$ given $\quad y(0)=y^{\prime}(0)=0$ 900009492

$$
\begin{aligned}
& s^{2} y(s)-s y(0)-y(0)-4 s y(s)+4 y(0)=\frac{1}{s} \\
& y(s)\left[s^{2}-4 s\right]=\frac{1}{s} \\
& y(s)[s(s-4)]=\frac{1}{s} \\
& y(s)=\frac{1}{s^{2}(s-4)}=\frac{A}{s}+\frac{B}{s^{2}}+\frac{c}{s-4}
\end{aligned}
$$

by cover method $\rightarrow B=-\frac{1}{4} \quad C=\frac{1}{16}$

$$
\begin{aligned}
& A \rightarrow A S^{2}-4 A S+B S-4 B+C S^{2}=1 \\
& A+C=0 \rightarrow A+\frac{1}{16}=0 \rightarrow A=\frac{-1}{16}
\end{aligned}
$$

$$
\begin{aligned}
& y(s)=\frac{-1}{16} \cdot \frac{1}{5}-\frac{1}{4} \cdot \frac{1}{s^{2}}+\frac{1}{16} \frac{1}{5-4} \\
& f^{-1}\{y(s)\}=l^{-1}\left\{-\frac{1}{16} \cdot \frac{1}{5}\right\}-\frac{1}{4} l^{-\{ }\left\{\frac{1}{s^{2}}\right\}+\frac{1}{16} f^{1}\left\{\frac{1}{5-4}\right\} \\
& y(t)=-\frac{1}{16}-\frac{1}{4} t+\frac{1}{16} e^{4 t}
\end{aligned}
$$

